Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 478
Question Number 171922 Answers: 0 Comments: 2
$${if}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{positive}\:{roots}\:{of}\:{the}\:{eqn} \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0},\:{find}\:{the}\:{sum}\:{M}=\sqrt[{\mathrm{4}}]{\alpha}\:+\sqrt[{\mathrm{4}}]{\beta} \\ $$
Question Number 171921 Answers: 1 Comments: 0
$$\frac{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} −\mathrm{9}}}{\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{3}}}=\mathrm{3},\:{find}\:{x} \\ $$
Question Number 171919 Answers: 0 Comments: 0
$${if} \\ $$$${a}+{b}+{c}=\mathrm{2196} \\ $$$$\sqrt[{\mathrm{3}}]{{a}}\:+{b}+{c}=\mathrm{2076} \\ $$$${a}+\sqrt[{\mathrm{3}}]{{b}}\:+{c}=\mathrm{1860} \\ $$$${a}+{b}+\sqrt[{\mathrm{3}}]{{c}}\:=\mathrm{480},\:{determine}\:{the}\:{value}\:{of} \\ $$$${a}^{\frac{\mathrm{2}}{\mathrm{3}}} +{b}^{\frac{\mathrm{2}}{\mathrm{3}}} +{c}^{\frac{\mathrm{2}}{\mathrm{3}}} ,\:{if}\:{a},{b},{c}\:{are}\:{all}\:{integer}. \\ $$
Question Number 171910 Answers: 3 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{9}\:\:\:−\:\:\:\mathrm{4x}^{\mathrm{2}} } \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{trigonometric}\:\mathrm{substitution}. \\ $$
Question Number 171908 Answers: 0 Comments: 4
Question Number 171906 Answers: 0 Comments: 0
$${a}\:{fource}\:{f}\:{facts}\:{on}\:{a}\:{body}\:{of}\:{mass} \\ $$$$\left({t}+\mathrm{2}\right){kg}\:{and}\:{it}'{s}\:{momentum}\:{was} \\ $$$$\left({t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{8}\right)\:{kg}\:.\:{m}/\:{sec} \\ $$$$\:{what}\:{is}\:{the}\:{average}\:{power}\:{in}\:{the} \\ $$$${first}\:\mathrm{3}\:{seconds} \\ $$
Question Number 171883 Answers: 0 Comments: 0
$$\mathrm{The}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\:\mathrm{has}\:\mathrm{gradient} \\ $$$$\mathrm{function}\:\mathrm{4x}+\mathrm{2}\:\mathrm{and}\:\mathrm{stationary}\:\mathrm{value}\:\mathrm{1}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a},{b}\:\mathrm{and}\:{c}. \\ $$
Question Number 171873 Answers: 1 Comments: 2
$${solve}: \\ $$$$\frac{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:−\frac{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:\:=\mathrm{8}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}} \\ $$
Question Number 171872 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{4}} \:\mathrm{x}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{10}}\:\:=\:\:\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\mathrm{x}} \\ $$
Question Number 171871 Answers: 1 Comments: 2
$${solve}: \\ $$$$\frac{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:\:+\:\:\frac{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:=\mathrm{98} \\ $$
Question Number 171870 Answers: 1 Comments: 0
$${if}\:{x}\:{is}\:{a}\:{real}\:{number},{then} \\ $$$$\sqrt{{log}_{{e}} \:\frac{\mathrm{4}{x}−{x}^{\mathrm{2}} }{\mathrm{3}}\:}\:\: \\ $$
Question Number 171869 Answers: 2 Comments: 0
$${find}\:{the}\:{square}\:{root}\:{of}: \\ $$$$\sqrt{\frac{\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{14}}\:{x}+\mathrm{2}}{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{x}\:+\frac{\mathrm{1}}{\mathrm{6}}}} \\ $$
Question Number 171868 Answers: 0 Comments: 2
$${solve}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1997}\left({x}−{y}\right),{find}\:{the}\:{positive}\:{integer}\:{solution}. \\ $$
Question Number 171867 Answers: 1 Comments: 0
$${solve}:\:{x}_{\mathrm{4}} ^{\mathrm{2}} =\mathrm{100100}_{\mathrm{2}} ,\:{find}\:{x}\:{and}\:{leave}\:{answer}\:{in}\:{base}\:\mathrm{2}. \\ $$
Question Number 171866 Answers: 0 Comments: 1
$$\sqrt{{a}}+\sqrt{{b}}=\sqrt{\mathrm{2009}}.\:{find}\:{a}\:{and}\:{b}. \\ $$
Question Number 171861 Answers: 0 Comments: 8
$${if}\: \\ $$$${ax}+{by}=\mathrm{5} \\ $$$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} =\mathrm{10} \\ $$$${ax}^{\mathrm{3}} +{by}^{\mathrm{3}} =\mathrm{50} \\ $$$${ax}^{\mathrm{4}} +{by}^{\mathrm{4}} =\mathrm{130} \\ $$$${find}\:\mathrm{13}\left({x}+{y}−{xy}\right)−\mathrm{120}\left({a}+{b}\right) \\ $$
Question Number 171860 Answers: 0 Comments: 0
$${solve}: \\ $$$$\frac{\mathrm{4}{x}^{\mathrm{2}} }{\left[\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{2}{x}}\right]^{\mathrm{2}} }<\mathrm{2}{x}+\mathrm{9} \\ $$
Question Number 171858 Answers: 0 Comments: 0
$${solve}: \\ $$$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y}\:{between}\:\mathrm{0}^{°\:} {and}\mathrm{180}^{°} \:{which}\:{satisfy}\:{the}\:{simultaneous}\:{eqn} \\ $$$${sin}\left({x}+{y}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$${cos}\mathrm{2}{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 171854 Answers: 1 Comments: 0
$${solve}: \\ $$$$\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{{n}} =\mathrm{3} \\ $$
Question Number 171849 Answers: 1 Comments: 1
$${solve}: \\ $$$$\mathrm{3}^{\mathrm{2}{x}+{y}} =\mathrm{12} \\ $$$$\mathrm{2}^{{x}−{y}} =\mathrm{4} \\ $$
Question Number 171847 Answers: 1 Comments: 1
$${solve}: \\ $$$${log}_{{x}} \mathrm{10}+{log}_{{x}^{\mathrm{2}} } \mathrm{10}=\mathrm{6} \\ $$
Question Number 171846 Answers: 0 Comments: 2
$${solve}: \\ $$$${x}^{\mathrm{9}} −\mathrm{2}{x}^{\mathrm{5}} −\mathrm{3}{x}=\mathrm{0} \\ $$
Question Number 171845 Answers: 0 Comments: 0
$${n}_{{c}_{{r}+\mathrm{1}} } +\:{n}_{{c}_{{r}} } ={n}+\mathrm{1}_{{c}_{{r}\:\:.{solve}\:{for}\:\:{n}\:{and}\:{r}.} } \\ $$
Question Number 171844 Answers: 1 Comments: 0
$${solve}: \\ $$$${x}^{\mathrm{5}} −\mathrm{5}{x}^{\mathrm{4}} +\mathrm{9}{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{1}=\mathrm{0} \\ $$
Question Number 171843 Answers: 0 Comments: 0
$${find}\:{a}: \\ $$$$\left(\mathrm{2}:\mathrm{3}:\mathrm{4}:\mathrm{5}\right){a}=\mathrm{5}:\mathrm{6}:\mathrm{7}:\mathrm{8} \\ $$
Question Number 171841 Answers: 1 Comments: 0
$${solve}: \\ $$$$\mathrm{2}^{\left(\mathrm{5}{x}−\mathrm{20}\right)} =\mathrm{1}! \\ $$
Pg 473 Pg 474 Pg 475 Pg 476 Pg 477 Pg 478 Pg 479 Pg 480 Pg 481 Pg 482
Terms of Service
Privacy Policy
Contact: info@tinkutara.com