Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 478
Question Number 171107 Answers: 0 Comments: 0
$${Please}\:{help} \\ $$$${li}\underset{{x}\rightarrow−\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${li}\underset{{x}\rightarrow+\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${g}\left({x}\right)=\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1} \\ $$$${g}\left({x}\right)'=? \\ $$$$ \\ $$
Question Number 171096 Answers: 1 Comments: 0
$$ \\ $$$$\int\frac{{x}\:{e}^{\mathrm{2}{x}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:\:\:{please}\:{help} \\ $$
Question Number 171094 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}: \\ $$$$\boldsymbol{\Omega}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\left(\boldsymbol{\mathrm{n}}!\right)^{\mathrm{2}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}\right)!}\right)^{\mathrm{2}} \frac{\mathrm{2}^{\mathrm{4}\boldsymbol{\mathrm{n}}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} }\overset{?} {=}\frac{\mathrm{7}}{\mathrm{2}}\boldsymbol{\zeta}\left(\mathrm{3}\right)−\pi\boldsymbol{\mathrm{G}} \\ $$$$\boldsymbol{\mathrm{G}}−\boldsymbol{\mathrm{Catalan}}'\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{constant}} \\ $$
Question Number 171091 Answers: 0 Comments: 2
Question Number 171090 Answers: 1 Comments: 3
$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{u}\right)\sqrt{{ud}\left({u}\right)} \\ $$$${Demonstrate}\:{that}\:\forall{n}\in{N},\:{I}_{{n}+\mathrm{1}} −{I}_{{n}} =\left(\mathrm{1}−{u}\right)^{{n}} {u}^{\frac{\mathrm{3}}{\mathrm{2}}} {d}\left({u}\right)\:\:{and}\:{deduce}\:{the}\:{meaning}\:{of}\:{variations}\:{of}\:\left({I}_{{n}} \right)\in{N} \\ $$
Question Number 171085 Answers: 1 Comments: 0
$$\mathrm{43}\:{devided}\:{by}\:{x}\:{remainder}\:{is}\:{x}−\mathrm{5}\:{how}\:{many}\:{value}\:{of}\:{x}? \\ $$
Question Number 171079 Answers: 1 Comments: 2
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}−\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}}}}}{{x}}=? \\ $$
Question Number 171078 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{sketch}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{graph}}\:\boldsymbol{\mathrm{of}} \\ $$$$\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}+\mathrm{5}\right) \\ $$$$ \\ $$
Question Number 171071 Answers: 1 Comments: 0
$${justify}\:{that}\:\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:{is}\:{convergent}. \\ $$
Question Number 171070 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{1}=\mathrm{2}^{\boldsymbol{\mathrm{x}}} \\ $$$$\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 171064 Answers: 2 Comments: 0
$${When}\:\:{A}^{−\mathrm{1}} =\begin{bmatrix}{\mathrm{3}}&{\mathrm{1}}\\{\mathrm{8}}&{\mathrm{4}}\end{bmatrix} \\ $$$${find}\:{the}\:\:{A}=?\:,\mid{A}^{−\mathrm{1}} \mid\centerdot{A}=? \\ $$
Question Number 171046 Answers: 2 Comments: 0
Question Number 171044 Answers: 1 Comments: 3
$${Is}\:{the}\:{Light}\:{a}\:{matter}? \\ $$
Question Number 171043 Answers: 1 Comments: 0
$${A}\in{R} \\ $$$${A}=\frac{\sqrt{{x}−\mathrm{2}}+{x}+\mathrm{3}}{\:\sqrt{\mathrm{4}−\mathrm{2}{x}}+{x}−\mathrm{1}}\:\:\:\:\:\:\:\:\:\:{faind}\:{A}=? \\ $$
Question Number 171034 Answers: 0 Comments: 2
Question Number 171033 Answers: 2 Comments: 1
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}}\:\left[\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}−\mathrm{1}}\:}−\mathrm{1}\:\right]=? \\ $$
Question Number 171032 Answers: 1 Comments: 0
$${Find}\:{the}\:{domain}\:{and}\:{range}\:{of}\:{the} \\ $$$${function},\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 171031 Answers: 1 Comments: 0
Question Number 171025 Answers: 2 Comments: 0
Question Number 171023 Answers: 0 Comments: 0
Question Number 171038 Answers: 2 Comments: 0
Question Number 171021 Answers: 0 Comments: 0
Question Number 171039 Answers: 1 Comments: 0
$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{n}} \sqrt{{ud}\left({u}\right)} \\ $$$${Demonstrate}\:{that}\:\forall{n}\in{N},\:{I}_{{n}} \geq\mathrm{0} \\ $$
Question Number 176906 Answers: 1 Comments: 3
Question Number 171014 Answers: 1 Comments: 0
Question Number 182219 Answers: 1 Comments: 0
Pg 473 Pg 474 Pg 475 Pg 476 Pg 477 Pg 478 Pg 479 Pg 480 Pg 481 Pg 482
Terms of Service
Privacy Policy
Contact: info@tinkutara.com