Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 474

Question Number 171171    Answers: 1   Comments: 2

Question Number 171170    Answers: 0   Comments: 0

Question Number 171165    Answers: 1   Comments: 0

A triangle QRS is to be constructed from a line segment of lenght 15cm. Construct the triangle using the division of the line segment into the ratio 5:4:3 such that QS and RS are laegest and smallest ratio respectively. circumscribe the triangle by locating the circumcenter.

$${A}\:{triangle}\:{QRS}\:{is}\:{to}\:{be}\:{constructed}\:{from} \\ $$$${a}\:{line}\:{segment}\:{of}\:{lenght}\:\mathrm{15}{cm}.\: \\ $$$${Construct}\:{the}\:{triangle}\:{using}\:{the} \\ $$$${division}\:{of}\:{the}\:{line}\:{segment}\:{into}\:{the} \\ $$$${ratio}\:\mathrm{5}:\mathrm{4}:\mathrm{3}\:{such}\:{that}\:{QS}\:{and}\:{RS}\:{are} \\ $$$${laegest}\:{and}\:{smallest}\:{ratio}\:{respectively}. \\ $$$${circumscribe}\:{the}\:{triangle}\:{by}\:{locating} \\ $$$${the}\:{circumcenter}. \\ $$

Question Number 171164    Answers: 2   Comments: 0

show that the common chord of the circle x^2 +y^2 =4 and x^2 +y^2 −4x−2y−4=0 passes through the origin.

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{common}}\:\boldsymbol{\mathrm{chord}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{circle}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{4}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{y}}−\mathrm{4}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{passes}}\:\boldsymbol{\mathrm{through}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{origin}}. \\ $$

Question Number 171161    Answers: 1   Comments: 0

Question Number 171160    Answers: 1   Comments: 0

Question Number 171156    Answers: 0   Comments: 0

show that the equation 3x^2 +3y^2 −24x+12y+12=0 is a circle

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\: \\ $$$$\:\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\mathrm{24}\boldsymbol{\mathrm{x}}+\mathrm{12}\boldsymbol{\mathrm{y}}+\mathrm{12}=\mathrm{0} \\ $$$$\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{circle}} \\ $$

Question Number 171153    Answers: 1   Comments: 0

An aeroplane covers a certain distance at a speed of 240kmph in 5 hours. to cover the same distance in 1(2/3) hrs, it must travel at a speed of: A) 300kmph B) 360kmph C) 600kmph D) 700kmph Mastermind

$${An}\:{aeroplane}\:{covers}\:{a}\:{certain}\:{distance} \\ $$$${at}\:{a}\:{speed}\:{of}\:\mathrm{240}{kmph}\:{in}\:\mathrm{5}\:{hours}. \\ $$$${to}\:{cover}\:{the}\:{same}\:{distance}\:{in}\:\mathrm{1}\frac{\mathrm{2}}{\mathrm{3}}\:{hrs}, \\ $$$${it}\:{must}\:{travel}\:{at}\:{a}\:{speed}\:{of}: \\ $$$$\left.{A}\right)\:\mathrm{300}{kmph} \\ $$$$\left.{B}\right)\:\mathrm{360}{kmph} \\ $$$$\left.{C}\right)\:\mathrm{600}{kmph} \\ $$$$\left.{D}\right)\:\mathrm{700}{kmph} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171152    Answers: 1   Comments: 0

The average ages of three person is 27 years. Their ages are in the propor tion of 1:3:5. What is the age in years of the youngest one among them? Mastermind

$${The}\:{average}\:{ages}\:{of}\:{three}\:{person}\:{is} \\ $$$$\mathrm{27}\:{years}.\:{Their}\:{ages}\:{are}\:{in}\:{the}\:{propor} \\ $$$${tion}\:{of}\:\mathrm{1}:\mathrm{3}:\mathrm{5}.\:{What}\:{is}\:{the}\:{age}\:{in}\:{years} \\ $$$${of}\:{the}\:{youngest}\:{one}\:{among}\:{them}? \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171189    Answers: 2   Comments: 0

f(x)=((16^x )/(4+16^x )) faind volue of f((1/(20)))+f((2/(20)))+........+f(((19)/(20)))

$${f}\left({x}\right)=\frac{\mathrm{16}^{{x}} }{\mathrm{4}+\mathrm{16}^{{x}} }\:\:\:\:\:{faind}\:{volue}\:{of} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{20}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{20}}\right)+........+{f}\left(\frac{\mathrm{19}}{\mathrm{20}}\right) \\ $$

Question Number 171147    Answers: 0   Comments: 2

Question Number 171146    Answers: 0   Comments: 2

Question Number 171145    Answers: 0   Comments: 0

let p be a non constant polynomial with degree n such that: p(z)=a_n z^n +...+a_0 show that if z∈C with∣z∣≥max{1,(2/(∣a_n ∣))Σ_(i=1) ^(n−1) ∣a_i ∣} then (1/2)∣a_n ∣∣z∣^n ≤∣p(z)∣≤(3/2)∣a_n ∣∣z∣^n (i already did the right side of the inequality so try to show ∣p(z)∣≥(1/2)∣a_n ∣∣z∣^n )

$$\mathrm{let}\:\mathrm{p}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}\:\mathrm{constant}\:\mathrm{polynomial}\:\mathrm{with}\: \\ $$$$\mathrm{degree}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that}:\:\mathrm{p}\left(\mathrm{z}\right)=\mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} +...+\mathrm{a}_{\mathrm{0}} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{z}\in\mathbb{C}\:\mathrm{with}\mid\mathrm{z}\mid\geqslant\mathrm{max}\left\{\mathrm{1},\frac{\mathrm{2}}{\mid\mathrm{a}_{\mathrm{n}} \mid}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mid\mathrm{a}_{\mathrm{i}} \mid\right\} \\ $$$$\mathrm{then}\:\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{a}_{\mathrm{n}} \mid\mid\mathrm{z}\mid^{\mathrm{n}} \leqslant\mid\mathrm{p}\left(\mathrm{z}\right)\mid\leqslant\frac{\mathrm{3}}{\mathrm{2}}\mid\mathrm{a}_{\mathrm{n}} \mid\mid\mathrm{z}\mid^{\mathrm{n}} \\ $$$$\left(\mathrm{i}\:\mathrm{already}\:\mathrm{did}\:\mathrm{the}\:\mathrm{right}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inequality}\right. \\ $$$$\left.\mathrm{so}\:\mathrm{try}\:\mathrm{to}\:\mathrm{show}\:\mid\mathrm{p}\left(\mathrm{z}\right)\mid\geqslant\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{a}_{\mathrm{n}} \mid\mid\mathrm{z}\mid^{\mathrm{n}} \right) \\ $$

Question Number 171136    Answers: 0   Comments: 4

Using Taylor′s theorem, prove that x−(x^3 /6)<sin x<x−(x^3 /6)+(x^5 /(120)) for x>0

$$\mathrm{Using}\:\mathrm{Taylor}'\mathrm{s}\:\mathrm{theorem},\:\mathrm{prove}\:\mathrm{that} \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}<\mathrm{sin}\:{x}<{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+\frac{{x}^{\mathrm{5}} }{\mathrm{120}}\:\:\:\mathrm{for}\:{x}>\mathrm{0} \\ $$

Question Number 171134    Answers: 0   Comments: 0

Question Number 171132    Answers: 1   Comments: 0

Question Number 171130    Answers: 0   Comments: 0

Question Number 171125    Answers: 1   Comments: 0

Question Number 171124    Answers: 0   Comments: 0

Question Number 171117    Answers: 3   Comments: 0

∫_0 ^∞ ((sin x)/x)dx = (?)

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{sin}\:{x}}{{x}}{dx}\:=\:\left(?\right) \\ $$

Question Number 171116    Answers: 0   Comments: 0

Question Number 171109    Answers: 2   Comments: 1

Question Number 171108    Answers: 1   Comments: 0

Question Number 171107    Answers: 0   Comments: 0

Please help lim_(x→−∞) (x−1)e^(x−1) −1=? lim_(x→+∞) (x−1)e^(x−1) −1=? g(x)=(x−1)e^(x−1) −1 g(x)′=?

$${Please}\:{help} \\ $$$${li}\underset{{x}\rightarrow−\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${li}\underset{{x}\rightarrow+\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${g}\left({x}\right)=\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1} \\ $$$${g}\left({x}\right)'=? \\ $$$$ \\ $$

Question Number 171096    Answers: 1   Comments: 0

∫((x e^(2x) )/((2x+1)^2 ))dx please help

$$ \\ $$$$\int\frac{{x}\:{e}^{\mathrm{2}{x}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:\:\:{please}\:{help} \\ $$

Question Number 171094    Answers: 0   Comments: 0

prove that: 𝛀=Σ_(n=0) ^∞ ((((n!)^2 )/((2n)!)))^2 (2^(4n) /((2n+1)^3 ))=^? (7/2)𝛇(3)−πG G−Catalan′s constant

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}: \\ $$$$\boldsymbol{\Omega}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\left(\boldsymbol{\mathrm{n}}!\right)^{\mathrm{2}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}\right)!}\right)^{\mathrm{2}} \frac{\mathrm{2}^{\mathrm{4}\boldsymbol{\mathrm{n}}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} }\overset{?} {=}\frac{\mathrm{7}}{\mathrm{2}}\boldsymbol{\zeta}\left(\mathrm{3}\right)−\pi\boldsymbol{\mathrm{G}} \\ $$$$\boldsymbol{\mathrm{G}}−\boldsymbol{\mathrm{Catalan}}'\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{constant}} \\ $$

  Pg 469      Pg 470      Pg 471      Pg 472      Pg 473      Pg 474      Pg 475      Pg 476      Pg 477      Pg 478   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com