Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 474

Question Number 170624    Answers: 0   Comments: 7

Question Number 170623    Answers: 2   Comments: 0

Question Number 170610    Answers: 1   Comments: 0

Question Number 170683    Answers: 0   Comments: 0

l′union d′un ferme et d′un borne est-il compacte? quand est-il de l′intersection.

$${l}'{union}\:{d}'{un}\:{ferme}\:{et}\:{d}'{un}\:{borne}\:{est}-{il} \\ $$$${compacte}?\:{quand}\:{est}-{il}\:{de}\:{l}'{intersection}. \\ $$

Question Number 170608    Answers: 0   Comments: 0

Question Number 170601    Answers: 2   Comments: 1

Question Number 170590    Answers: 0   Comments: 1

Question Number 170588    Answers: 0   Comments: 0

Question Number 170584    Answers: 0   Comments: 20

Question Number 170580    Answers: 1   Comments: 0

calculate Σ_(n=1) ^∞ (( F_n )/(n.3^( n) )) = ?

$$ \\ $$$$\:\:\:{calculate} \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{F}_{{n}} }{{n}.\mathrm{3}^{\:{n}} }\:=\:?\:\:\: \\ $$$$ \\ $$

Question Number 170579    Answers: 0   Comments: 0

prove Σ_(n=1) ^∞ (( 1)/( F_n )) < 4 F_n : fibonacci sequence

$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\:\:\mathrm{F}_{{n}} }\:<\:\mathrm{4}\:\:\:\:\:\:\mathrm{F}_{{n}} :\:{fibonacci}\:{sequence} \\ $$

Question Number 170576    Answers: 0   Comments: 2

Question Number 170593    Answers: 2   Comments: 1

Question Number 170578    Answers: 1   Comments: 0

∫_0 ^( 1) (√x) sin^( −1) ( x )dx = ?

$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:{sin}^{\:−\mathrm{1}} \left(\:{x}\:\right){dx}\:=\:? \\ $$$$ \\ $$

Question Number 170572    Answers: 1   Comments: 0

Question Number 170568    Answers: 1   Comments: 0

Question Number 170566    Answers: 2   Comments: 0

Find min value f(x)= (x+4)(x+5)(x+6)(x+7)

$$\:\:\mathrm{Find}\:\mathrm{min}\:\mathrm{value}\: \\ $$$$\:\:{f}\left({x}\right)=\:\left({x}+\mathrm{4}\right)\left({x}+\mathrm{5}\right)\left({x}+\mathrm{6}\right)\left({x}+\mathrm{7}\right) \\ $$

Question Number 170565    Answers: 1   Comments: 0

Question Number 170563    Answers: 0   Comments: 0

Question Number 170552    Answers: 1   Comments: 1

Question Number 170551    Answers: 2   Comments: 0

Question Number 170550    Answers: 0   Comments: 0

Question Number 170549    Answers: 1   Comments: 0

∫_0 ^1 xarctan^6 x dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} {xarctan}^{\mathrm{6}} {x}\:{dx}=? \\ $$

Question Number 170547    Answers: 0   Comments: 0

lim_(x→+∞) (x)^(1/3) ∫_x ^(x+1) ((sin t)/( (√(t+cos t))))dt=?

$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{x}}\int_{\mathrm{x}} ^{\mathrm{x}+\mathrm{1}} \frac{\mathrm{sin}\:\mathrm{t}}{\:\sqrt{\mathrm{t}+\mathrm{cos}\:\mathrm{t}}}\mathrm{dt}=? \\ $$

Question Number 170546    Answers: 1   Comments: 0

Solve:quadratic equation about t: 1.h=v_0 t+(1/2)gt^2 ,2.x=v_0 t+(1/2)at^2 solve v:v^2 −v_0 ^2 =2ax

$${Solve}:{quadratic}\:{equation}\:{about}\:{t}: \\ $$$$\mathrm{1}.\mathrm{h}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} ,\mathrm{2}.\mathrm{x}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}} \\ $$$$\mathrm{solve}\:\mathrm{v}:{v}^{\mathrm{2}} −{v}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2}{ax} \\ $$

Question Number 170545    Answers: 0   Comments: 1

please help me to find this. a= ∫∫_D ((ydxdy)/(a^2 +x^2 )) D:{x≥0.y≥0.x^2 +y^2 ≤a^2 } b=∫∫∫_v (x−y+z)^2 dxdydz v:{x=0.y=0.z=0 x+z=1.y+z=1} c=∫∫∫_V xydxdydz V:{0≤z≤1. x^2 +y^2 ≤z^2 }

$$\:\:\:\:{please}\:{help}\:{me}\:{to}\:{find}\:{this}. \\ $$$$\:\:\:{a}=\:\int\int_{{D}} \frac{{ydxdy}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:{D}:\left\{{x}\geqslant\mathrm{0}.{y}\geqslant\mathrm{0}.{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{a}^{\mathrm{2}} \right\} \\ $$$$\:\:\:{b}=\int\int\int_{{v}} \left({x}−{y}+{z}\right)^{\mathrm{2}} {dxdydz} \\ $$$$\:\:{v}:\left\{{x}=\mathrm{0}.{y}=\mathrm{0}.{z}=\mathrm{0}\:{x}+{z}=\mathrm{1}.{y}+{z}=\mathrm{1}\right\} \\ $$$$\:\:\:\:{c}=\int\int\int_{{V}} {xydxdydz} \\ $$$$\:\:\:\:\:\:\:\:{V}:\left\{\mathrm{0}\leqslant{z}\leqslant\mathrm{1}.\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{z}^{\mathrm{2}} \right\} \\ $$

  Pg 469      Pg 470      Pg 471      Pg 472      Pg 473      Pg 474      Pg 475      Pg 476      Pg 477      Pg 478   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com