Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 474

Question Number 171730    Answers: 1   Comments: 0

solve((8^x −2^x )/(6^x −3^(x ) ))=2. find x

$${solve}\frac{\mathrm{8}^{{x}} −\mathrm{2}^{{x}} }{\mathrm{6}^{{x}} −\mathrm{3}^{{x}\:} }=\mathrm{2}.\:{find}\:{x} \\ $$$$ \\ $$

Question Number 171728    Answers: 1   Comments: 0

((x^3 +y^3 )/(x+y))=7 ((x^3 −y^3 )/(x−y))=19. find x and y

$$\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} }{{x}+{y}}=\mathrm{7} \\ $$$$\frac{{x}^{\mathrm{3}} −{y}^{\mathrm{3}} }{{x}−{y}}=\mathrm{19}.\:{find}\:{x}\:{and}\:{y} \\ $$

Question Number 171727    Answers: 3   Comments: 0

Question Number 176836    Answers: 0   Comments: 3

s(B′−A′)=4 s(B−A)=6 s(A)=9 What is the number of subsets of B with at most 2 elements ?

$$\mathrm{s}\left(\mathrm{B}'−\mathrm{A}'\right)=\mathrm{4} \\ $$$$\mathrm{s}\left(\mathrm{B}−\mathrm{A}\right)=\mathrm{6} \\ $$$$\mathrm{s}\left(\mathrm{A}\right)=\mathrm{9} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{subsets}\:\mathrm{of}\:\mathrm{B}\:\mathrm{with} \\ $$$$\mathrm{at}\:\mathrm{most}\:\mathrm{2}\:\mathrm{elements}\:? \\ $$

Question Number 176839    Answers: 2   Comments: 0

If a=2+(√(15)) Express (((√(15))+((196)/(54))))^(1/3) in terms of a

$$\mathrm{If}\:{a}=\mathrm{2}+\sqrt{\mathrm{15}}\:\:\mathrm{Express} \\ $$$$\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{15}}+\frac{\mathrm{196}}{\mathrm{54}}}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a} \\ $$

Question Number 171725    Answers: 1   Comments: 0

Question Number 171719    Answers: 1   Comments: 2

(1/(1+sin^2 x)) + (1/(1+cos^2 x)) = ((48)/(35))

$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:=\:\frac{\mathrm{48}}{\mathrm{35}} \\ $$

Question Number 171718    Answers: 0   Comments: 0

Question Number 171717    Answers: 1   Comments: 0

Question Number 171716    Answers: 0   Comments: 0

whats the formulla of E(x) and Find ∫_1 ^( (5/2)) E(x^2 )dx

$${whats}\:{the}\:{formulla}\:{of}\:{E}\left({x}\right)\:{and}\:{Find}\: \\ $$$$\int_{\mathrm{1}} ^{\:\frac{\mathrm{5}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 171712    Answers: 0   Comments: 0

Calculate: I(α)=∫(1/(t^α ((√(t^2 −1)))))dt

$${Calculate}: \\ $$$${I}\left(\alpha\right)=\int\frac{\mathrm{1}}{{t}^{\alpha} \left(\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)}{dt} \\ $$

Question Number 171708    Answers: 1   Comments: 0

∫_0 ^∞ 2x−3 dx=...

$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{2}{x}−\mathrm{3}\:{dx}=... \\ $$

Question Number 171706    Answers: 2   Comments: 0

Question Number 171705    Answers: 1   Comments: 0

Question Number 171694    Answers: 2   Comments: 0

Question Number 171693    Answers: 2   Comments: 0

Question Number 171688    Answers: 0   Comments: 0

In △ABC AA^′ , BB^′ , CC^′ - cevians AA^′ ∩ BB^′ ∩ CC^′ = {P} Prove that: min([APC^′ ],[BPA^′ ],[CPB^′ ])+min([APB^′ ],[BPC^′ ],[CPA^′ ]) ≤ ((Rr (√3))/2)

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{AA}^{'} \:,\:\mathrm{BB}^{'} \:,\:\mathrm{CC}^{'} \:-\:\mathrm{cevians} \\ $$$$\mathrm{AA}^{'} \:\cap\:\mathrm{BB}^{'} \:\cap\:\mathrm{CC}^{'} \:=\:\left\{\mathrm{P}\right\} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{min}\left(\left[\mathrm{APC}^{'} \right],\left[\mathrm{BPA}^{'} \right],\left[\mathrm{CPB}^{'} \right]\right)+\mathrm{min}\left(\left[\mathrm{APB}^{'} \right],\left[\mathrm{BPC}^{'} \right],\left[\mathrm{CPA}^{'} \right]\right)\:\leqslant\:\frac{\mathrm{Rr}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 171684    Answers: 1   Comments: 0

Question Number 171681    Answers: 1   Comments: 0

Question Number 171677    Answers: 1   Comments: 0

Question Number 171673    Answers: 0   Comments: 0

Question Number 171667    Answers: 1   Comments: 0

Question Number 171666    Answers: 0   Comments: 1

Question Number 171665    Answers: 1   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Anyone?

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Anyone}? \\ $$

Question Number 171664    Answers: 1   Comments: 1

Solve ∫(x^2 /(1+x^2 ))tan^(−1) xdx

$${Solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} {xdx} \\ $$

Question Number 171649    Answers: 0   Comments: 0

  Pg 469      Pg 470      Pg 471      Pg 472      Pg 473      Pg 474      Pg 475      Pg 476      Pg 477      Pg 478   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com