Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 468

Question Number 170259    Answers: 0   Comments: 0

Question Number 170240    Answers: 0   Comments: 0

A deck of 2022 cards is numbered 1 to 2022. The first, 1, is placed at the bottom of the deck , the second,2, is discarded, the third ,3, placed at the bottom, the next,4, is discarded, and so on. the process continue till only one card is left. What is the number on the card? can you generalise? try some simpler example to help.

$$\:\mathrm{A}\:\mathrm{deck}\:\mathrm{of}\:\mathrm{2022}\:\mathrm{cards}\:\mathrm{is}\:\mathrm{numbered} \\ $$$$\:\mathrm{1}\:\mathrm{to}\:\mathrm{2022}.\:\mathrm{The}\:\mathrm{first},\:\mathrm{1},\:\mathrm{is}\:\mathrm{placed}\:\mathrm{at}\: \\ $$$$\:\:\:\mathrm{the}\:\mathrm{bottom}\:\mathrm{of}\:\mathrm{the}\:\mathrm{deck}\:,\:\mathrm{the}\: \\ $$$$\mathrm{second},\mathrm{2},\:\mathrm{is}\:\mathrm{discarded},\:\mathrm{the}\:\mathrm{third}\:,\mathrm{3},\: \\ $$$$\mathrm{placed}\:\mathrm{at}\:\mathrm{the}\:\mathrm{bottom},\:\mathrm{the}\:\mathrm{next},\mathrm{4},\:\mathrm{is}\: \\ $$$$\:\mathrm{discarded},\:\mathrm{and}\:\mathrm{so}\:\mathrm{on}.\:\mathrm{the}\:\mathrm{process}\: \\ $$$$\mathrm{continue}\:\mathrm{till}\:\mathrm{only}\:\mathrm{one}\:\mathrm{card}\:\mathrm{is}\:\mathrm{left}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{on}\:\mathrm{the}\:\mathrm{card}?\: \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{generalise}?\:\mathrm{try}\:\mathrm{some}\:\mathrm{simpler} \\ $$$$\mathrm{example}\:\mathrm{to}\:\mathrm{help}. \\ $$$$\: \\ $$

Question Number 170226    Answers: 1   Comments: 0

solve { ((x+y+z+w=0)),((x+y+z+2w=0)),((2x+2y+3z+4w=1)),((2x+3y+4z+5w=2)) :}

$${solve}\: \\ $$$$\begin{cases}{{x}+{y}+{z}+{w}=\mathrm{0}}\\{{x}+{y}+{z}+\mathrm{2}{w}=\mathrm{0}}\\{\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{4}{w}=\mathrm{1}}\\{\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}+\mathrm{5}{w}=\mathrm{2}}\end{cases} \\ $$$$ \\ $$

Question Number 170221    Answers: 1   Comments: 1

lim_(x→0^+ ) (((((√x))^(√x) −x^x )/(((√x))^x −x^(√x) )))=? help me

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\frac{\left(\sqrt{{x}}\right)^{\sqrt{{x}}} −{x}^{{x}} }{\left(\sqrt{{x}}\right)^{{x}} −{x}^{\sqrt{{x}}} }\right)=? \\ $$$${help}\:{me} \\ $$

Question Number 170212    Answers: 3   Comments: 0

which rectangle with integer length side have numerically the same area and perimeter? Find them all. Find a proof that convinces that you have found them all. what about right− angled triangle? how many solutions?

$$\:\mathrm{which}\:\mathrm{rectangle}\:\mathrm{with}\:\mathrm{integer}\:\mathrm{length}\: \\ $$$$\:\:\mathrm{side}\:\mathrm{have}\:\mathrm{numerically}\:\mathrm{the}\:\mathrm{same}\:\mathrm{area} \\ $$$$\:\:\mathrm{and}\:\mathrm{perimeter}?\:\mathrm{Find}\:\mathrm{them}\:\mathrm{all}.\:\mathrm{Find} \\ $$$$\:\mathrm{a}\:\mathrm{proof}\:\mathrm{that}\:\mathrm{convinces}\:\mathrm{that}\:\mathrm{you}\:\mathrm{have} \\ $$$$\:\mathrm{found}\:\mathrm{them}\:\mathrm{all}.\:\mathrm{what}\:\mathrm{about}\:\mathrm{right}− \\ $$$$\:\mathrm{angled}\:\mathrm{triangle}?\:\mathrm{how}\:\mathrm{many}\:\mathrm{solutions}? \\ $$

Question Number 170211    Answers: 1   Comments: 0

lim_(x→0) (((tan^(−1) (((x−x(√(1−x^2 )))/( (√(1−x^2 ))+x^2 ))))/x^3 ))=? pleas solve this

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{tan}^{−\mathrm{1}} \left(\frac{{x}−{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+{x}^{\mathrm{2}} }\right)}{{x}^{\mathrm{3}} }\right)=? \\ $$$${pleas}\:{solve}\:{this} \\ $$

Question Number 170206    Answers: 2   Comments: 0

1. { ((y^(log_x y) =x^4 )),((log_2 (y−x)=1)) :} 2. 25^(−x) −5^(−x+1) ≥50

$$\mathrm{1}.\:\:\:\:\begin{cases}{{y}^{{log}_{{x}} {y}} ={x}^{\mathrm{4}} }\\{{log}_{\mathrm{2}} \left({y}−{x}\right)=\mathrm{1}}\end{cases} \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{25}^{−{x}} −\mathrm{5}^{−{x}+\mathrm{1}} \geqslant\mathrm{50} \\ $$

Question Number 170205    Answers: 1   Comments: 0

If x is nearer a than b in [a,b], is (√x) necessarily nearer (√a) than (√b) Give a proof of counterexample

$$\:\mathrm{If}\:\mathrm{x}\:\mathrm{is}\:\mathrm{nearer}\:\:\:\mathrm{a}\:\:\mathrm{than}\:\:\mathrm{b}\:\:\mathrm{in}\:\left[\mathrm{a},\mathrm{b}\right],\: \\ $$$$\mathrm{is}\:\sqrt{\mathrm{x}}\:\mathrm{necessarily}\:\mathrm{nearer}\:\sqrt{\mathrm{a}}\:\:\mathrm{than}\:\sqrt{\mathrm{b}} \\ $$$$ \\ $$$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}\:\mathrm{of}\:\mathrm{counterexample} \\ $$

Question Number 170203    Answers: 1   Comments: 0

solve: 5^(lgx) =50−x^(lg5)

$${solve}:\:\mathrm{5}^{{lgx}} =\mathrm{50}−{x}^{{lg}\mathrm{5}} \\ $$

Question Number 170202    Answers: 0   Comments: 10

A point is 3cm, 4cm and 5cm away from three vertices of a rectangle. How far can it be from the 4th vertex. Find all solutions

$$\:\mathrm{A}\:\mathrm{point}\:\mathrm{is}\:\mathrm{3cm},\:\mathrm{4cm}\:\mathrm{and}\:\mathrm{5cm}\:\mathrm{away}\: \\ $$$$\:\:\mathrm{from}\:\mathrm{three}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rectangle}.\: \\ $$$$\:\mathrm{How}\:\mathrm{far}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{from}\:\mathrm{the}\:\mathrm{4th}\:\mathrm{vertex}. \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{solutions} \\ $$

Question Number 170199    Answers: 1   Comments: 0

Find the first four terms of the series for e^x sinhx Mastermind

$${Find}\:{the}\:{first}\:{four}\:{terms}\:{of}\:{the}\:{series} \\ $$$${for}\:{e}^{{x}} {sinhx} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170198    Answers: 1   Comments: 0

Find the first three term of the series for e^x ln(1+x) Mastermind

$${Find}\:{the}\:{first}\:{three}\:{term}\:{of}\:{the}\:{series} \\ $$$${for}\:{e}^{{x}} {ln}\left(\mathrm{1}+{x}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170197    Answers: 1   Comments: 0

Question Number 170196    Answers: 0   Comments: 0

Question Number 170311    Answers: 1   Comments: 0

5(dy/dx)=tan(2x+2y+6) Mastermind

$$\mathrm{5}\frac{{dy}}{{dx}}={tan}\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{6}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170189    Answers: 0   Comments: 2

Question Number 170185    Answers: 0   Comments: 1

Question Number 170184    Answers: 0   Comments: 0

Question Number 170183    Answers: 0   Comments: 0

Question Number 170182    Answers: 1   Comments: 1

lim_(x→0) [x∙sin(1/x)]=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[{x}\centerdot{sin}\frac{\mathrm{1}}{{x}}\right]=? \\ $$

Question Number 170181    Answers: 1   Comments: 0

Question Number 170166    Answers: 1   Comments: 1

lim_(x→0) ((1/(sin^2 x))−(1/x^2 ))=? please solve it describely.

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left(\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=? \\ $$$${please}\:{solve}\:{it}\:{describely}. \\ $$

Question Number 170187    Answers: 1   Comments: 3

Question Number 170159    Answers: 1   Comments: 0

lim_(x→4) ((e !x−24)/( (√x)−2))=?

$$\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{{e}\:!{x}−\mathrm{24}}{\:\sqrt{{x}}−\mathrm{2}}=? \\ $$

Question Number 170155    Answers: 1   Comments: 0

Given f(x)=x(√(1−x+(√(1−x)))) where 0≤x≤1 find max f(x)

$$\:\:{Given}\:{f}\left({x}\right)={x}\sqrt{\mathrm{1}−{x}+\sqrt{\mathrm{1}−{x}}} \\ $$$$\:{where}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\:{find}\:{max}\:{f}\left({x}\right) \\ $$

Question Number 170154    Answers: 0   Comments: 0

  Pg 463      Pg 464      Pg 465      Pg 466      Pg 467      Pg 468      Pg 469      Pg 470      Pg 471      Pg 472   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com