Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 465

Question Number 173150    Answers: 1   Comments: 0

let ∀n∈N: I_n (f(x))= the n^(th) antiderivate of f(x) with I_0 =f(x) find the formula for the constants a_n , b_n of I_n (ln x)=a_n x^n ln x +b_n x^n

$$\mathrm{let}\:\forall{n}\in\mathbb{N}:\:{I}_{{n}} \left({f}\left({x}\right)\right)=\:\mathrm{the}\:{n}^{\mathrm{th}} \:\mathrm{antiderivate} \\ $$$$\mathrm{of}\:{f}\left({x}\right)\:\mathrm{with}\:{I}_{\mathrm{0}} ={f}\left({x}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the}\:\mathrm{constants}\:{a}_{{n}} ,\:{b}_{{n}} \:\mathrm{of} \\ $$$${I}_{{n}} \left(\mathrm{ln}\:{x}\right)={a}_{{n}} {x}^{{n}} \mathrm{ln}\:{x}\:+{b}_{{n}} {x}^{{n}} \\ $$

Question Number 173149    Answers: 0   Comments: 1

∫_0 ^( ∞) (( dx)/( (√(1+x)) .(2+2x +x^( 2) )))=(1/σ) (π−ln(3+2(√3) )) σ = ? −− solution −− Ω=^((√(1+x)) =t) 2∫_0 ^( ∞) (dt/( 1+ t^( 4) )) = 2∫_0 ^( 1) (dt/(1 + t^( 4) )) Ψ = ∫_0 ^( 1) (( dt)/(1+t^( 4) )) = (1/2)∫_0 ^( 1) (( 1+t^( 2) −(t^( −2) −1))/(1+t^( 4) ))dt = (1/2) ∫_0 ^( 1) (( 1+ t^( 2) )/(1+t^( 4) )) dt +(1/2) ∫_0 ^( 1) ((1−t^( 2) )/(1+ t^( 4) )) dt Φ=∫_0 ^( 1) ((1 +t^( 2) )/(1+t^( 4) ))dt =∫_0 ^( 1) (( t^( −2) +1)/(t^( −2) + t^( 2) )) dt =∫_0 ^( 1) (( 1+t^( −2) )/(( t^ − t^( −1) )^( 2) +2)) =^(sub) [ (1/( (√2))) tan^( −1) (t −t^( −1) )]_0 ^1 =(π/(2(√2))) ∗ 𝛗 = ∫_0 ^( 1) (( 1−t^( 2) )/(1+t^( 4) )) dt = ∫_0 ^( 1) ((t^( −2) −1)/(( t +t^( −1) )^( 2) −2))dt =^(t +(1/t) =u) −∫_2 ^( ∞) (du/(( u−(√2) )(u+ (√2) ))) = ((−1)/(2(√2))) [ln(((u −(√2))/(u+(√2))))]_2 ^( ∞) =(1/(2(√2))) ln(((2−(√2))/(2+(√2))) ) 𝛗 =−(1/(2(√2))) ln( 3 +2(√2) ) ∗∗ (∗) & (∗∗):: Ω=2Ψ= (Φ + 𝛗) =(1/(2(√2))) ( π −ln( 3 +2(√2) ) ...■m.n

$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\:\infty} \frac{\:{dx}}{\:\sqrt{\mathrm{1}+{x}}\:.\left(\mathrm{2}+\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right)}=\frac{\mathrm{1}}{\sigma}\:\left(\pi−\mathrm{ln}\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sigma\:=\:? \\ $$$$\:\:\:\:\:\:\:\:−−\:\:\mathrm{solution}\:−− \\ $$$$\:\:\:\:\:\Omega\overset{\sqrt{\mathrm{1}+{x}}\:={t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \frac{{dt}}{\:\mathrm{1}+\:{t}^{\:\mathrm{4}} }\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dt}}{\mathrm{1}\:+\:{t}^{\:\mathrm{4}} } \\ $$$$\:\:\:\:\:\:\Psi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{dt}}{\mathrm{1}+{t}^{\:\mathrm{4}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}+{t}^{\:\mathrm{2}} −\left({t}^{\:−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{1}+{t}^{\:\mathrm{4}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}+\:{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }\:{dt}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{t}^{\:\mathrm{2}} }{\mathrm{1}+\:{t}^{\:\mathrm{4}} }\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}\:+{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }{dt}\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{t}^{\:−\mathrm{2}} +\mathrm{1}}{{t}^{\:−\mathrm{2}} +\:{t}^{\:\mathrm{2}} }\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{1}+{t}^{\:−\mathrm{2}} }{\left(\:{t}^{\:} −\:{t}^{\:−\mathrm{1}} \right)^{\:\mathrm{2}} +\mathrm{2}}\:\overset{{sub}} {=}\:\left[\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{tan}^{\:−\mathrm{1}} \left({t}\:−{t}^{\:−\mathrm{1}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\:\:\ast \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}−{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }\:{dt}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{t}^{\:−\mathrm{2}} −\mathrm{1}}{\left(\:{t}\:+{t}^{\:−\mathrm{1}} \right)^{\:\mathrm{2}} −\mathrm{2}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\overset{{t}\:+\frac{\mathrm{1}}{{t}}\:={u}} {=}−\int_{\mathrm{2}} ^{\:\infty} \frac{{du}}{\left(\:{u}−\sqrt{\mathrm{2}}\:\right)\left({u}+\:\sqrt{\mathrm{2}}\:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\:\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left[\mathrm{ln}\left(\frac{{u}\:−\sqrt{\mathrm{2}}}{{u}+\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{2}} ^{\:\infty} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mathrm{ln}\left(\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mathrm{ln}\left(\:\mathrm{3}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\right)\:\:\:\:\:\ast\ast \\ $$$$\:\:\:\left(\ast\right)\:\&\:\left(\ast\ast\right)::\:\:\:\:\:\:\:\Omega=\mathrm{2}\Psi=\:\:\left(\Phi\:+\:\boldsymbol{\phi}\right)\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left(\:\pi\:−\mathrm{ln}\left(\:\mathrm{3}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\right)\:\:...\blacksquare\mathrm{m}.\mathrm{n}\right. \\ $$$$ \\ $$

Question Number 173148    Answers: 1   Comments: 0

∫_0 ^1 ^n (√x) (arcsin x) dx

$$ \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{n}} \sqrt{\mathrm{x}}\:\left(\mathrm{arcsin}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 173132    Answers: 0   Comments: 5

U_n = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1) with U_0 =1 find U_(n ) in terms of n

$${U}_{{n}} \:=\:\left(\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }\right){U}_{{n}−\mathrm{1}} \:{with}\:{U}_{\mathrm{0}} =\mathrm{1} \\ $$$${find}\:{U}_{{n}\:} \:{in}\:{terms}\:{of}\:{n}\:\: \\ $$

Question Number 173129    Answers: 0   Comments: 0

Question Number 173124    Answers: 2   Comments: 2

Question Number 173123    Answers: 0   Comments: 1

Question Number 173121    Answers: 0   Comments: 2

Question Number 173116    Answers: 0   Comments: 1

let w=e^(iπ/4) =(1+i)/(√(2 )) show that: (1/(1+i))erf(wx(√(π/2)))=∫_0 ^x e^(−i t^2 π/2) dt=c(x)−is(x)

$${let}\:{w}={e}^{{i}\pi/\mathrm{4}} =\left(\mathrm{1}+{i}\right)/\sqrt{\mathrm{2}\:}\:{show}\:{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{i}}{erf}\left({wx}\sqrt{\frac{\pi}{\mathrm{2}}}\right)=\int_{\mathrm{0}} ^{{x}} {e}^{−{i}\:{t}^{\mathrm{2}} \:\pi/\mathrm{2}} \:{dt}={c}\left({x}\right)−{is}\left({x}\right) \\ $$

Question Number 173115    Answers: 0   Comments: 1

a+b=b+c=a+c=abc (a,b,c)=?

$$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}=\mathrm{a}+\mathrm{c}=\mathrm{abc} \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)=? \\ $$

Question Number 173098    Answers: 0   Comments: 0

Question Number 173139    Answers: 1   Comments: 0

Question Number 173082    Answers: 1   Comments: 0

Question Number 173078    Answers: 1   Comments: 0

Question Number 173072    Answers: 0   Comments: 0

Solve for complex numbers: { ((((∣x∣^2 )/3) + ((∣y∣^2 )/5) = ((∣x + y∣^2 )/8))),((10x + y = 7 + 14i)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\frac{\mid\mathrm{x}\mid^{\mathrm{2}} }{\mathrm{3}}\:\:+\:\:\frac{\mid\mathrm{y}\mid^{\mathrm{2}} }{\mathrm{5}}\:\:=\:\:\frac{\mid\mathrm{x}\:+\:\mathrm{y}\mid^{\mathrm{2}} }{\mathrm{8}}}\\{\mathrm{10x}\:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{7}\:\:+\:\:\mathrm{14}\boldsymbol{\mathrm{i}}}\end{cases} \\ $$

Question Number 173069    Answers: 2   Comments: 0

Θ =∫_0 ^( ∞) ∫_0 ^( ∞) xy e^( −(x+y)) cos(x+y )dxdy=(1/σ) find the value of ” σ ”.

$$ \\ $$$$ \\ $$$$\:\:\:\Theta\:=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} {xy}\:{e}^{\:−\left({x}+{y}\right)} {cos}\left({x}+{y}\:\right){dxdy}=\frac{\mathrm{1}}{\sigma} \\ $$$$\:\:\:\:\:\:\:\:{find}\:{the}\:\:{value}\:{of}\:\:''\:\sigma\:\:''. \\ $$$$ \\ $$

Question Number 173068    Answers: 2   Comments: 0

Question Number 173065    Answers: 1   Comments: 3

Question Number 173064    Answers: 0   Comments: 0

Question Number 173062    Answers: 0   Comments: 2

Question Number 173061    Answers: 0   Comments: 0

Calculate and factorize for m ∈ R, The caracteristic polynom of A= (((−2−m),( 5+m),( m)),(( 5),(−2−m),( −m)),(( −5),( 5),( 3)) )

$${Calculate}\:{and}\:{factorize}\:{for}\:{m}\:\in\:\mathbb{R},\: \\ $$$${The}\:{caracteristic}\:{polynom}\:{of} \\ $$$${A}=\begin{pmatrix}{−\mathrm{2}−{m}}&{\:\:\:\mathrm{5}+{m}}&{\:\:\:\:\:{m}}\\{\:\:\:\:\:\:\:\:\mathrm{5}}&{−\mathrm{2}−{m}}&{\:\:−{m}}\\{\:\:\:\:−\mathrm{5}}&{\:\:\:\:\:\:\mathrm{5}}&{\:\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$

Question Number 173058    Answers: 0   Comments: 0

Question Number 173054    Answers: 1   Comments: 3

Question Number 173053    Answers: 0   Comments: 0

Question Number 173051    Answers: 3   Comments: 0

solve (x−2)(x−3)(x−4)(x−6)=5x^2

$${solve} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{6}\right)=\mathrm{5}{x}^{\mathrm{2}} \\ $$

Question Number 173048    Answers: 1   Comments: 0

  Pg 460      Pg 461      Pg 462      Pg 463      Pg 464      Pg 465      Pg 466      Pg 467      Pg 468      Pg 469   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com