Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 465
Question Number 172065 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{Test}\:: \\ $$$$\:\:\mathrm{Q}\::\:\:\:\mathrm{If}\:,\:\:\mid\overset{\rightarrow} {\mathrm{a}}\:×\:\overset{\rightarrow} {\mathrm{b}}\mid\:=\:\sqrt{\mathrm{11}}\:\:\:,\:\:\:\mathrm{2}\overset{\rightarrow} {\mathrm{a}}\:+\:\mathrm{3}\overset{\rightarrow} {\mathrm{b}}=\:\overset{\rightarrow} {\mathrm{i}}+\:\mathrm{2}\overset{\rightarrow} {\mathrm{j}}+\:\mathrm{3}\overset{\rightarrow\:} {\mathrm{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{then}\:\:\::\:\:\:\mid\:\:\mathrm{2}\overset{\rightarrow} {\mathrm{a}}\:+\:\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\:+\:\mathrm{3}\overset{\rightarrow} {\mathrm{b}}\:\mid\:=\:? \\ $$$$\:\:\:\:\:\:\:\mathrm{1}\:::\:\:\:\:\:\:\:\mathrm{5}\:\:\:\Box\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:::\:\:\:\:\:\:\:\mathrm{3}\:\:\Box\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}::\:\:\:\:\:\:\:\:\:\mathrm{9}\:\Box\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}::\:\:\:\:\:\:\:\:\mathrm{7}\:\:\Box\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 172064 Answers: 2 Comments: 0
$${Calculate}\:\:::\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }=? \\ $$
Question Number 172202 Answers: 2 Comments: 1
Question Number 172062 Answers: 1 Comments: 0
Question Number 172050 Answers: 0 Comments: 2
Question Number 172031 Answers: 3 Comments: 0
$${solve}: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}\:\:+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}\:=\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}} \\ $$
Question Number 172030 Answers: 1 Comments: 0
$${solve}: \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}}\:}\:\:+\:\:\mathrm{2}\:\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}}\:=? \\ $$
Question Number 172029 Answers: 1 Comments: 5
$${solve}: \\ $$$${x}^{\mathrm{2}} =\mathrm{2}^{{x}} \\ $$
Question Number 172028 Answers: 1 Comments: 0
$${solve}: \\ $$$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }={log}_{\mathrm{2}} \mathrm{2} \\ $$
Question Number 172027 Answers: 1 Comments: 1
$${solve} \\ $$$$\frac{\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}=\frac{\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}}−\frac{\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{8}} \\ $$
Question Number 172026 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$${sin}^{\mathrm{2}} \alpha+\left(\mathrm{1}+{cos}\alpha\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right) \\ $$
Question Number 172014 Answers: 0 Comments: 2
$${using}\:{properties}\:{of}\:{determinats} \\ $$$${prove}\:{that} \\ $$$$\left[−{yz}\:\:\:\:\:\:{y}^{\mathrm{2}} +{yz}\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{yz}\right] \\ $$$$\left[{x}^{\mathrm{2}} +{xz}\:\:\:−{xz}\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{xy}\right]\:=\left({xy}+{yz}+{zx}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\left.\:{x}^{\mathrm{2}} +{xy}\:\:\:\:\:{y}^{\mathrm{2}} +{xy}\:\:\:\:\:\:\:\:−{xy}\right] \\ $$
Question Number 172013 Answers: 1 Comments: 0
$${find}: \\ $$$$\int{xe}^{−{ax}} {ax} \\ $$
Question Number 172012 Answers: 1 Comments: 0
$${find} \\ $$$$\int{e}^{{x}} {sinxdx} \\ $$
Question Number 172011 Answers: 1 Comments: 0
$${find}\:{integrate}: \\ $$$$\int{x}^{\mathrm{2}} {e}^{{x}} {dx} \\ $$
Question Number 172010 Answers: 1 Comments: 0
$${find}\:{integrate}: \\ $$$$\int{xe}^{{x}} {dx} \\ $$
Question Number 172009 Answers: 1 Comments: 0
$${solve}: \\ $$$${if}\:{x}=\mathrm{2017},{y}=\mathrm{2018}\:{and}\:{z}=\mathrm{2019},\: \\ $$$${find}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{xy}−{yz}−{zx} \\ $$
Question Number 172008 Answers: 0 Comments: 0
$${solve}: \\ $$$$\mathrm{15}\left(\mathrm{2}{n}\right)_{{C}_{\left({n}−\mathrm{1}\right)} } =\mathrm{28}\left(\mathrm{2}{n}−\mathrm{1}\right)_{{C}_{{n}} } .\:{find}\:{n} \\ $$
Question Number 172007 Answers: 1 Comments: 0
$${solve}: \\ $$$${x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:−{x}^{\mathrm{2}} =−\mathrm{6} \\ $$
Question Number 172006 Answers: 1 Comments: 0
$${solve}: \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{2}}\:−\sqrt{{x}^{\mathrm{2}} +\mathrm{5}\:}\:=\mathrm{1} \\ $$
Question Number 172005 Answers: 2 Comments: 0
$${find}\:{x}:\:\left({log}_{\mathrm{10}} {x}\right)^{\mathrm{2}} −{log}_{\mathrm{10}} {x}=\mathrm{0} \\ $$
Question Number 172023 Answers: 0 Comments: 0
$${if}:\: \\ $$$${bx}^{\mathrm{3}} −\left(\mathrm{3}{b}+\mathrm{2}\right){x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{5}{b}−\mathrm{3}\right){x}+\mathrm{20}=\mathrm{0} \\ $$$${find}\:{b}\:{in}\:{term}. \\ $$
Question Number 172022 Answers: 1 Comments: 0
$${find}\:{the}\:{cubic}\:{of} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}} \\ $$
Question Number 172021 Answers: 1 Comments: 0
$${solve}: \\ $$$$\mathrm{2}^{{x}^{\mathrm{2}} } ={x}^{\mathrm{2}{x}} \\ $$
Question Number 172024 Answers: 1 Comments: 0
$${let}\:\alpha\:{and}\:\beta\:{be}\:{the}\:{root}\:{of}\:{the}\:{equation} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}.\:{find}\:{the}\:{equation}\:{whose}\:{roots} \\ $$$${are}\:\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}\right)\:{and}\:\left(\frac{\mathrm{1}}{\alpha}−\frac{\mathrm{1}}{\beta}\right) \\ $$
Question Number 172002 Answers: 0 Comments: 0
$${if}\:{y}={bcoslog}\left(\frac{{x}}{{n}}\right)^{{n}} ,\:{then} \\ $$$$\frac{{dy}}{{dx}}=? \\ $$
Pg 460 Pg 461 Pg 462 Pg 463 Pg 464 Pg 465 Pg 466 Pg 467 Pg 468 Pg 469
Terms of Service
Privacy Policy
Contact: info@tinkutara.com