Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 465

Question Number 172631    Answers: 0   Comments: 3

Question Number 172628    Answers: 1   Comments: 2

Question Number 172613    Answers: 3   Comments: 0

min y=9 sin^2 x+ 4 csc^2 x + 3

$$\:\:\:{min}\:{y}=\mathrm{9}\:\mathrm{sin}\:^{\mathrm{2}} {x}+\:\mathrm{4}\:{csc}^{\mathrm{2}} {x}\:+\:\mathrm{3} \\ $$

Question Number 172612    Answers: 0   Comments: 0

Question Number 172611    Answers: 1   Comments: 0

Question Number 172610    Answers: 1   Comments: 0

Question Number 172609    Answers: 1   Comments: 0

Question Number 172608    Answers: 1   Comments: 0

Question Number 172607    Answers: 0   Comments: 0

Question Number 172606    Answers: 0   Comments: 0

Question Number 172605    Answers: 0   Comments: 0

Question Number 172604    Answers: 1   Comments: 0

Question Number 172603    Answers: 1   Comments: 0

Question Number 172602    Answers: 0   Comments: 0

Question Number 172601    Answers: 1   Comments: 0

Question Number 172600    Answers: 0   Comments: 0

Question Number 172599    Answers: 1   Comments: 0

Question Number 172595    Answers: 0   Comments: 0

Question Number 172584    Answers: 0   Comments: 0

Question Number 172583    Answers: 0   Comments: 4

Question Number 172575    Answers: 0   Comments: 0

Question Number 172564    Answers: 2   Comments: 0

find ∫_0 ^1 (√x)(√(1−(√x)))lnx dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}\sqrt{\mathrm{1}−\sqrt{{x}}}{lnx}\:{dx} \\ $$

Question Number 172560    Answers: 2   Comments: 1

prove for n∈N and n>1 (((n+1)/3))^n <n!<(((n+1)/2))^n

$${prove}\:{for}\:{n}\in{N}\:{and}\:{n}>\mathrm{1} \\ $$$$\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}} <{n}!<\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$

Question Number 172558    Answers: 1   Comments: 0

Question Number 172556    Answers: 3   Comments: 0

∫_ ln(1+x^2 )dx

$$\int_{} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 172555    Answers: 3   Comments: 3

∫_(1/5) ^5 ((arctan (x))/x) dx =?

$$\:\:\:\:\:\:\underset{\mathrm{1}/\mathrm{5}} {\overset{\mathrm{5}} {\int}}\:\frac{\mathrm{arctan}\:\left({x}\right)}{{x}}\:{dx}\:=? \\ $$

  Pg 460      Pg 461      Pg 462      Pg 463      Pg 464      Pg 465      Pg 466      Pg 467      Pg 468      Pg 469   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com