Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 465

Question Number 172065    Answers: 1   Comments: 0

Test : Q : If , ∣a^→ × b^→ ∣ = (√(11)) , 2a^→ + 3b^→ = i^→ + 2j^→ + 3k^(→ ) then : ∣ 2a^→ + a^→ ×b^→ + 3b^→ ∣ = ? 1 :: 5 □ 2 :: 3 □ 3:: 9 □ 4:: 7 □ −−−−−−−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\mathrm{Test}\:: \\ $$$$\:\:\mathrm{Q}\::\:\:\:\mathrm{If}\:,\:\:\mid\overset{\rightarrow} {\mathrm{a}}\:×\:\overset{\rightarrow} {\mathrm{b}}\mid\:=\:\sqrt{\mathrm{11}}\:\:\:,\:\:\:\mathrm{2}\overset{\rightarrow} {\mathrm{a}}\:+\:\mathrm{3}\overset{\rightarrow} {\mathrm{b}}=\:\overset{\rightarrow} {\mathrm{i}}+\:\mathrm{2}\overset{\rightarrow} {\mathrm{j}}+\:\mathrm{3}\overset{\rightarrow\:} {\mathrm{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{then}\:\:\::\:\:\:\mid\:\:\mathrm{2}\overset{\rightarrow} {\mathrm{a}}\:+\:\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\:+\:\mathrm{3}\overset{\rightarrow} {\mathrm{b}}\:\mid\:=\:? \\ $$$$\:\:\:\:\:\:\:\mathrm{1}\:::\:\:\:\:\:\:\:\mathrm{5}\:\:\:\Box\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:::\:\:\:\:\:\:\:\mathrm{3}\:\:\Box\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}::\:\:\:\:\:\:\:\:\:\mathrm{9}\:\Box\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}::\:\:\:\:\:\:\:\:\mathrm{7}\:\:\Box\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 172064    Answers: 2   Comments: 0

Calculate :: lim_(x→0^+ ) ((∫_1 ^x ((lnt)/(1+t))dt)/((x−1)^2 ))=?

$${Calculate}\:\:::\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }=? \\ $$

Question Number 172202    Answers: 2   Comments: 1

Question Number 172062    Answers: 1   Comments: 0

Question Number 172050    Answers: 0   Comments: 2

Question Number 172031    Answers: 3   Comments: 0

solve: (√(x^2 −4x+4)) +(√(x^2 +4x+4)) =(√(x^2 −6x+9))

$${solve}: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}\:\:+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}\:=\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}} \\ $$

Question Number 172030    Answers: 1   Comments: 0

solve: (√(((x^2 +4x+4)/(x^2 +5x+6)) )) + 2 (√((x^2 +5x+6)/(x^2 +4x+4))) =?

$${solve}: \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}}\:}\:\:+\:\:\mathrm{2}\:\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}}\:=? \\ $$

Question Number 172029    Answers: 1   Comments: 5

solve: x^2 =2^x

$${solve}: \\ $$$${x}^{\mathrm{2}} =\mathrm{2}^{{x}} \\ $$

Question Number 172028    Answers: 1   Comments: 0

solve: ((log_2 (9−2^(x)) )/(log_2 2^((3−x)) ))=log_2 2

$${solve}: \\ $$$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }={log}_{\mathrm{2}} \mathrm{2} \\ $$

Question Number 172027    Answers: 1   Comments: 1

solve (5/(x^2 +4x+2))=(3/(x^2 +4x+1))−(4/(x^2 +4x+8))

$${solve} \\ $$$$\frac{\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}=\frac{\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}}−\frac{\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{8}} \\ $$

Question Number 172026    Answers: 1   Comments: 0

show that sin^2 α+(1+cosα)^2 =2(1+cosα)

$${show}\:{that} \\ $$$${sin}^{\mathrm{2}} \alpha+\left(\mathrm{1}+{cos}\alpha\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right) \\ $$

Question Number 172014    Answers: 0   Comments: 2

using properties of determinats prove that [−yz y^2 +yz z^2 +yz] [x^2 +xz −xz z^2 +xy] =(xy+yz+zx)^2 x^2 +xy y^2 +xy −xy]

$${using}\:{properties}\:{of}\:{determinats} \\ $$$${prove}\:{that} \\ $$$$\left[−{yz}\:\:\:\:\:\:{y}^{\mathrm{2}} +{yz}\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{yz}\right] \\ $$$$\left[{x}^{\mathrm{2}} +{xz}\:\:\:−{xz}\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{xy}\right]\:=\left({xy}+{yz}+{zx}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\left.\:{x}^{\mathrm{2}} +{xy}\:\:\:\:\:{y}^{\mathrm{2}} +{xy}\:\:\:\:\:\:\:\:−{xy}\right] \\ $$

Question Number 172013    Answers: 1   Comments: 0

find: ∫xe^(−ax) ax

$${find}: \\ $$$$\int{xe}^{−{ax}} {ax} \\ $$

Question Number 172012    Answers: 1   Comments: 0

find ∫e^x sinxdx

$${find} \\ $$$$\int{e}^{{x}} {sinxdx} \\ $$

Question Number 172011    Answers: 1   Comments: 0

find integrate: ∫x^2 e^x dx

$${find}\:{integrate}: \\ $$$$\int{x}^{\mathrm{2}} {e}^{{x}} {dx} \\ $$

Question Number 172010    Answers: 1   Comments: 0

find integrate: ∫xe^x dx

$${find}\:{integrate}: \\ $$$$\int{xe}^{{x}} {dx} \\ $$

Question Number 172009    Answers: 1   Comments: 0

solve: if x=2017,y=2018 and z=2019, find x^2 +y^2 +z^2 −xy−yz−zx

$${solve}: \\ $$$${if}\:{x}=\mathrm{2017},{y}=\mathrm{2018}\:{and}\:{z}=\mathrm{2019},\: \\ $$$${find}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{xy}−{yz}−{zx} \\ $$

Question Number 172008    Answers: 0   Comments: 0

solve: 15(2n)_C_((n−1)) =28(2n−1)_C_n . find n

$${solve}: \\ $$$$\mathrm{15}\left(\mathrm{2}{n}\right)_{{C}_{\left({n}−\mathrm{1}\right)} } =\mathrm{28}\left(\mathrm{2}{n}−\mathrm{1}\right)_{{C}_{{n}} } .\:{find}\:{n} \\ $$

Question Number 172007    Answers: 1   Comments: 0

solve: x(√(x^2 +4)) −x^2 =−6

$${solve}: \\ $$$${x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:−{x}^{\mathrm{2}} =−\mathrm{6} \\ $$

Question Number 172006    Answers: 1   Comments: 0

solve: (√(x^2 +5x+2)) −(√(x^2 +5 )) =1

$${solve}: \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{2}}\:−\sqrt{{x}^{\mathrm{2}} +\mathrm{5}\:}\:=\mathrm{1} \\ $$

Question Number 172005    Answers: 2   Comments: 0

find x: (log_(10) x)^2 −log_(10) x=0

$${find}\:{x}:\:\left({log}_{\mathrm{10}} {x}\right)^{\mathrm{2}} −{log}_{\mathrm{10}} {x}=\mathrm{0} \\ $$

Question Number 172023    Answers: 0   Comments: 0

if: bx^3 −(3b+2)x^2 −2(5b−3)x+20=0 find b in term.

$${if}:\: \\ $$$${bx}^{\mathrm{3}} −\left(\mathrm{3}{b}+\mathrm{2}\right){x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{5}{b}−\mathrm{3}\right){x}+\mathrm{20}=\mathrm{0} \\ $$$${find}\:{b}\:{in}\:{term}. \\ $$

Question Number 172022    Answers: 1   Comments: 0

find the cubic of ((26+15(√3)))^(1/3) + ((26−15(√3)))^(1/3)

$${find}\:{the}\:{cubic}\:{of} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}} \\ $$

Question Number 172021    Answers: 1   Comments: 0

solve: 2^x^2 =x^(2x)

$${solve}: \\ $$$$\mathrm{2}^{{x}^{\mathrm{2}} } ={x}^{\mathrm{2}{x}} \\ $$

Question Number 172024    Answers: 1   Comments: 0

let α and β be the root of the equation ax^2 +bx+c=0. find the equation whose roots are ((1/α)+(1/β)) and ((1/α)−(1/β))

$${let}\:\alpha\:{and}\:\beta\:{be}\:{the}\:{root}\:{of}\:{the}\:{equation} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}.\:{find}\:{the}\:{equation}\:{whose}\:{roots} \\ $$$${are}\:\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}\right)\:{and}\:\left(\frac{\mathrm{1}}{\alpha}−\frac{\mathrm{1}}{\beta}\right) \\ $$

Question Number 172002    Answers: 0   Comments: 0

if y=bcoslog((x/n))^n , then (dy/dx)=?

$${if}\:{y}={bcoslog}\left(\frac{{x}}{{n}}\right)^{{n}} ,\:{then} \\ $$$$\frac{{dy}}{{dx}}=? \\ $$

  Pg 460      Pg 461      Pg 462      Pg 463      Pg 464      Pg 465      Pg 466      Pg 467      Pg 468      Pg 469   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com