Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 465
Question Number 162811 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}\:\right)}{\left(\:\mathrm{1}+{x}^{\:\mathrm{2}} \:\right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−−−−−−− \\ $$
Question Number 162809 Answers: 2 Comments: 0
$${if}\:{y}\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}._{._{._{._{.} } } } }}\:\:{find}\:{y}^{'} \\ $$
Question Number 162804 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$
Question Number 162794 Answers: 0 Comments: 0
Question Number 162792 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\:\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{x}\centerdot\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{x}\:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$
Question Number 162791 Answers: 3 Comments: 0
Question Number 162790 Answers: 1 Comments: 0
$${Calculate}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$
Question Number 162788 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\:>\:\mathrm{0} \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} \:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{P}\:=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{z}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{x}} \\ $$
Question Number 162787 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{happy}}\:\boldsymbol{\mathrm{new}}\:\boldsymbol{\mathrm{year}} \\ $$$$\left\{\boldsymbol{{a}};\boldsymbol{{b}};\boldsymbol{{c}}\right\}\in\mathbb{Z}−\left\{\mathrm{0}\right\} \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}}\:\:\:\: \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{a}}\right)=\mathrm{0} \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{b}}\right)=\mathrm{0} \\ $$$$\boldsymbol{{p}}\left(\mathrm{1}\right)=? \\ $$
Question Number 162783 Answers: 0 Comments: 0
Question Number 162782 Answers: 0 Comments: 0
Question Number 162776 Answers: 3 Comments: 0
$$\:\:\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\:{x}=? \\ $$
Question Number 162775 Answers: 2 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{a}\:\mathrm{sin}\:\mathrm{3}{x}\:−\:{b}\:\mathrm{sin}\:\mathrm{2}{x}\:}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{Find}\:{a}\:{and}\:{b}\:. \\ $$
Question Number 162785 Answers: 1 Comments: 0
Question Number 162747 Answers: 1 Comments: 0
Question Number 162744 Answers: 0 Comments: 0
Question Number 162734 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Happy}\:{New}\:{Year} \\ $$$$\left[\left(\mathrm{10}+\mathrm{9}\right)×\mathrm{8}×\left(\mathrm{7}+\mathrm{6}\right)+\left(\mathrm{5}+\mathrm{4}\right)×\left(\mathrm{3}+\mathrm{2}\right)+\mathrm{1}\right] \\ $$
Question Number 163110 Answers: 1 Comments: 0
Question Number 162728 Answers: 2 Comments: 2
Question Number 162726 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:{Calculate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tgx}^{{m}} }{\left(\mathrm{sin}\:{x}\right)^{{n}} },\:\:\left({m},\:{n}\in\: {N}\right) \\ $$$$\left.\mathrm{2}\right)\:{f}'\left({a}\right)\:{e}\mathrm{xiste},\:{calculate} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{x}\left[{f}\left({a}+\frac{{a}}{{x}}\right)−{f}\left({a}−\frac{\beta}{{x}}\right)\right],\: \\ $$$$\left(\alpha,\:\beta\:\in\: {R}\right) \\ $$
Question Number 162718 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\int_{\epsilon} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} \mathrm{dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} \mathrm{dx}}=?\:\:\:\:\:\:\:\left(\mathrm{0}<\epsilon<\mathrm{1}\right) \\ $$
Question Number 162702 Answers: 0 Comments: 0
$$\int\boldsymbol{{e}}^{−\mathrm{4}\boldsymbol{{x}}} \boldsymbol{{tg}}\left(\boldsymbol{{x}}\right)\boldsymbol{{ln}}\mid\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\mid\boldsymbol{{dx}}=? \\ $$
Question Number 162701 Answers: 1 Comments: 0
Question Number 164806 Answers: 1 Comments: 7
Question Number 162721 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\:\:\:{f}\:\left({x}\:\right)=\:\frac{\:\mathrm{1}}{\mathrm{4}\left(\mathrm{1}+{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\right)\:}\:+\frac{\mathrm{1}}{\mathrm{9}\left(\mathrm{1}−{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\right)}\:\:\left(\:{x}\:\neq\:\mathrm{2}{k}\:\pi\:,\:{k}\:\in\:\mathbb{Z}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{f}_{\:{min}} =\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{A}{dapted}\:\mathscr{F}{rom}\:\mathscr{I}{nstagram}\: \\ $$$$ \\ $$
Question Number 163178 Answers: 1 Comments: 0
Pg 460 Pg 461 Pg 462 Pg 463 Pg 464 Pg 465 Pg 466 Pg 467 Pg 468 Pg 469
Terms of Service
Privacy Policy
Contact: info@tinkutara.com