Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 465

Question Number 172181    Answers: 0   Comments: 0

Question Number 172180    Answers: 0   Comments: 0

Question Number 172179    Answers: 0   Comments: 0

Question Number 172178    Answers: 1   Comments: 0

Question Number 172177    Answers: 0   Comments: 0

Question Number 172176    Answers: 1   Comments: 0

solve: 2^n +n=4

$${solve}: \\ $$$$\mathrm{2}^{{n}} +{n}=\mathrm{4} \\ $$

Question Number 172171    Answers: 0   Comments: 0

Question Number 172152    Answers: 1   Comments: 0

Question Number 172151    Answers: 2   Comments: 0

3^x =10−log_2 x find x

$$\mathrm{3}^{{x}} =\mathrm{10}−{log}_{\mathrm{2}} {x} \\ $$$${find}\:{x} \\ $$

Question Number 181360    Answers: 3   Comments: 0

Calcul Σ_(k=0) ^n k((1/3))^k =...

$${Calcul} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{k}} =... \\ $$

Question Number 172144    Answers: 2   Comments: 0

Question Number 172124    Answers: 2   Comments: 2

if tanθ+secθ=x, show that sinθ=((x^2 −1)/(x^2 +1))

$${if}\:{tan}\theta+{sec}\theta={x},\:{show}\:{that}\: \\ $$$${sin}\theta=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$

Question Number 172467    Answers: 0   Comments: 0

Question Number 172111    Answers: 3   Comments: 1

solve 2^x =4x

$${solve} \\ $$$$\mathrm{2}^{{x}} =\mathrm{4}{x} \\ $$

Question Number 172099    Answers: 1   Comments: 0

The probability that Abiola will be late to office on a given day is(2/5) . in a given week of six days, find the 1) probability that he will be late of only 3 days 2) not be late in the week

$${The}\:{probability}\:{that}\:{Abiola}\:{will}\:{be} \\ $$$${late}\:{to}\:{office}\:{on}\:{a}\:{given}\:{day}\:{is}\frac{\mathrm{2}}{\mathrm{5}}\:.\:{in} \\ $$$${a}\:{given}\:{week}\:{of}\:{six}\:{days},\:{find}\:{the}\: \\ $$$$\left.\mathrm{1}\right)\:{probability}\:{that}\:{he}\:{will}\:{be}\:{late}\:{of} \\ $$$${only}\:\mathrm{3}\:{days} \\ $$$$\left.\mathrm{2}\right)\:{not}\:{be}\:{late}\:{in}\:{the}\:{week} \\ $$

Question Number 172089    Answers: 0   Comments: 2

Question Number 172088    Answers: 1   Comments: 0

Question Number 172084    Answers: 1   Comments: 0

solve ((√(5+(√(24)))))^x −10=((√(5−(√(24)))))^x

$${solve} \\ $$$$\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}\right)^{{x}} −\mathrm{10}=\left(\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}\right)^{{x}} \\ $$

Question Number 172082    Answers: 0   Comments: 1

solve log_(0.5) ^2 x+log_(0.5) x−2<_− 0

$${solve} \\ $$$${log}_{\mathrm{0}.\mathrm{5}} ^{\mathrm{2}} {x}+{log}_{\mathrm{0}.\mathrm{5}} {x}−\mathrm{2}\underset{−} {<}\mathrm{0} \\ $$

Question Number 172081    Answers: 0   Comments: 2

solve log_(1/3) (5x−1)>_− 0

$${solve} \\ $$$${log}_{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{5}{x}−\mathrm{1}\right)\underset{−} {>}\mathrm{0} \\ $$

Question Number 172078    Answers: 1   Comments: 0

solve ((2logx)/(log(5x−4)))=1

$${solve} \\ $$$$\frac{\mathrm{2}{logx}}{{log}\left(\mathrm{5}{x}−\mathrm{4}\right)}=\mathrm{1} \\ $$

Question Number 172077    Answers: 0   Comments: 1

solve log_4 (x+12).logx^2 =1

$${solve} \\ $$$${log}_{\mathrm{4}} \left({x}+\mathrm{12}\right).{logx}^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 172076    Answers: 2   Comments: 0

solve log(64(2^(x^2 −40x) )^(1/(24)) )=0

$${solve} \\ $$$${log}\left(\mathrm{64}\sqrt[{\mathrm{24}}]{\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{40}{x}} }\right)=\mathrm{0} \\ $$

Question Number 172085    Answers: 1   Comments: 0

solve (3^(x^3 −72x+39) −9(√3))×log(7−x)=0

$${solve} \\ $$$$\left(\mathrm{3}^{{x}^{\mathrm{3}} −\mathrm{72}{x}+\mathrm{39}} −\mathrm{9}\sqrt{\mathrm{3}}\right)×{log}\left(\mathrm{7}−{x}\right)=\mathrm{0} \\ $$

Question Number 172074    Answers: 1   Comments: 0

solve: 5^(logx) =50−x^(log5)

$${solve}: \\ $$$$\mathrm{5}^{{logx}} =\mathrm{50}−{x}^{{log}\mathrm{5}} \\ $$

Question Number 172086    Answers: 1   Comments: 5

solve 2^x^2 −40x=0

$${solve} \\ $$$$\mathrm{2}^{{x}^{\mathrm{2}} } −\mathrm{40}{x}=\mathrm{0} \\ $$

  Pg 460      Pg 461      Pg 462      Pg 463      Pg 464      Pg 465      Pg 466      Pg 467      Pg 468      Pg 469   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com