Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 465
Question Number 166541 Answers: 1 Comments: 0
$${fin}\:\int\:{sec}^{\mathrm{3}} {x}\:{dx}\:{with}\:{out}\:{using}\:{the}\:{bart}\:? \\ $$
Question Number 166539 Answers: 0 Comments: 2
$${solve}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{6}{x}^{\mathrm{2}} +{y}\: \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}={y}^{\mathrm{2}} \\ $$
Question Number 166531 Answers: 0 Comments: 2
Question Number 166530 Answers: 1 Comments: 0
Question Number 166526 Answers: 1 Comments: 0
Question Number 166522 Answers: 1 Comments: 1
Question Number 166520 Answers: 2 Comments: 2
Question Number 166516 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\:\mathrm{the}\:\:\mathrm{formula}\:\:\mathrm{of}\:\:\mathrm{this}\:\:\mathrm{expression} \\ $$$$\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left({n}−{k}\right)!\left({n}+{k}\right)!}\: \\ $$
Question Number 166515 Answers: 1 Comments: 0
$$\:\:\:\:{Given}\:{a}\:{function}\: \\ $$$$\:\:\:\left({x}+\mathrm{1}\right){f}\left(−{x}\right)+\frac{\mathrm{1}−{x}}{\mathrm{4}{x}}\:{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{100}\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{{x}} \\ $$$$\:{x}\neq\mathrm{0}\:,\:{x}\neq\mathrm{1} \\ $$$$\:{Find}\:{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+{f}\left(\mathrm{4}\right)+...+{f}\left(\mathrm{400}\right) \\ $$
Question Number 166511 Answers: 1 Comments: 0
$${is}\:{the}\:{function}\:{f}\left({x}\right)\:=\:{tan}^{−\mathrm{1}} \left({x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)\:+\:.....\: \\ $$$${converge}\:{or}\:{diverge}\:? \\ $$$$ \\ $$
Question Number 166496 Answers: 0 Comments: 1
$$\mathrm{Calculas}: \\ $$$$\frac{\mathrm{2}\:\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{5}}\:+\:\sqrt{\mathrm{3}}\:+\:\sqrt{\mathrm{2}}}\:-\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:-\:\sqrt{\mathrm{2}}}\:=\:? \\ $$
Question Number 166491 Answers: 0 Comments: 4
Question Number 166488 Answers: 1 Comments: 0
$$\:\:\:\mathrm{B}=\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{1}}{\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}}\:\mathrm{dx}\:=? \\ $$
Question Number 166481 Answers: 2 Comments: 1
Question Number 166480 Answers: 0 Comments: 0
Question Number 166475 Answers: 2 Comments: 5
$$\mathcal{F}{ind}\:{out}\:{n}\in\mathbb{N} \\ $$$$\:{such}\:{that} \\ $$$${n}^{\mathrm{2}} +{n}\:{is}\:{divisible}\:{by}\:\mathrm{30}. \\ $$
Question Number 166468 Answers: 2 Comments: 0
$$\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}−\mathrm{18}{x}^{\mathrm{2}} =\mathrm{6}{x}\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} } \\ $$$${solve}\:\:{in}\:{R} \\ $$
Question Number 166465 Answers: 1 Comments: 1
Question Number 166449 Answers: 1 Comments: 3
$$\:\:\:\mathrm{C}\:=\:\int\:\frac{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 166448 Answers: 0 Comments: 2
$${montrer}\:{q}\:\:\forall{n}\epsilon{N} \\ $$$${n}^{\mathrm{2}} +{n}\:{est}\:{divisible}\:{par}\:\mathrm{30} \\ $$
Question Number 166443 Answers: 2 Comments: 1
$${fog}_{\left(\mathrm{3}\right)} =\mathrm{10} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{4} \\ $$$${g}\left({x}\right)=? \\ $$
Question Number 166442 Answers: 2 Comments: 0
Question Number 166440 Answers: 0 Comments: 1
Question Number 166437 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{calculate}\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{ln}\left(\mathrm{1}−{x}\:\right).{ln}\left(\mathrm{1}+\:{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$$$\:\:\:\:\:\:−−−−−−− \\ $$
Question Number 166436 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathrm{S}{how}\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\:{n}} \:{H}_{\:{n}} }{{n}^{\:\mathrm{2}} }\:\:=\:−\frac{\mathrm{5}}{\mathrm{8}}\:\zeta\:\left(\mathrm{3}\:\right)\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:−−−−−−−−− \\ $$
Question Number 166435 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\mathscr{E}{quation}\:: \\ $$$$\:\:\:\:\:{Solve}\:{in}\:\:\mathbb{R}\: \\ $$$$\:\:\:\lfloor{x}\rfloor\:+\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\mathrm{1} \\ $$$$\:\:\:\:\:\:−−−−−−−−− \\ $$
Pg 460 Pg 461 Pg 462 Pg 463 Pg 464 Pg 465 Pg 466 Pg 467 Pg 468 Pg 469
Terms of Service
Privacy Policy
Contact: info@tinkutara.com