Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 459

Question Number 172839    Answers: 1   Comments: 0

I=∫(1/(lnx))dx=?

$$\mathrm{I}=\int\frac{\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}=? \\ $$

Question Number 172838    Answers: 2   Comments: 1

1.lim_(x→1) ((x−1−lnx)/(x^2 −2x+1)) = ?

$$\mathrm{1}.\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{x}−\mathrm{1}−\mathrm{lnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{1}}\:=\:? \\ $$

Question Number 172833    Answers: 0   Comments: 0

(a−b)÷b R=0 (4b−a)÷a R=? R=Reminder

$$\left({a}−{b}\right)\boldsymbol{\div}{b} \\ $$$${R}=\mathrm{0}\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{4}{b}−{a}\right)\boldsymbol{\div}{a}\:\:\:\:\:{R}=? \\ $$$${R}={Reminder}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 181382    Answers: 2   Comments: 1

Question Number 172824    Answers: 2   Comments: 2

Question Number 172823    Answers: 1   Comments: 0

Question Number 172822    Answers: 1   Comments: 0

Question Number 172821    Answers: 0   Comments: 1

Question Number 172820    Answers: 1   Comments: 0

Question Number 172819    Answers: 3   Comments: 0

Question Number 172818    Answers: 1   Comments: 0

Question Number 172817    Answers: 2   Comments: 0

Question Number 172816    Answers: 0   Comments: 0

Question Number 172802    Answers: 1   Comments: 0

Q: how many natural numbers less than 6000 , exist such as the sum of their digits equal to 8 ? choices: 155 165 164 158

$$ \\ $$$$\:\:\:\: \\ $$$$\:\mathrm{Q}:\:\:\:\:\mathrm{how}\:\mathrm{many}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{less}\:\mathrm{than} \\ $$$$\:\:\:\:\:\:\mathrm{6000}\:\:,\:\mathrm{exist}\:\mathrm{such}\:\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{their}\:\mathrm{digits}\:\:\mathrm{equal}\:\mathrm{to}\:\:\:\mathrm{8}\:? \\ $$$$\:\mathrm{choices}:\:\:\:\:\mathrm{155}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{165}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{164}\:\:\:\:\:\:\:\:\:\:\mathrm{158} \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 172798    Answers: 1   Comments: 0

a^( 2) −1 ≡^(10) 14a +6 a^( 2) +a ≡^(10) ? choices: 2 3 7 8

$$ \\ $$$$\:\:\:\:\:\mathrm{a}^{\:\mathrm{2}} −\mathrm{1}\:\overset{\mathrm{10}} {\equiv}\:\mathrm{14a}\:+\mathrm{6} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}^{\:\mathrm{2}} \:+\mathrm{a}\:\overset{\mathrm{10}} {\equiv}\:?\:\:\:\: \\ $$$$\:\:\mathrm{choices}:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\mathrm{8} \\ $$$$\: \\ $$$$ \\ $$$$ \\ $$

Question Number 172787    Answers: 0   Comments: 0

In AB^Δ C , prove that sin((A/2)).sin((B/2)).sin((C/2)) ≤ (1/8) −−−−−−−−

$$ \\ $$$$\:\:\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:,\:\mathrm{prove}\:\:\mathrm{that}\: \\ $$$$\:{sin}\left(\frac{\mathrm{A}}{\mathrm{2}}\right).{sin}\left(\frac{\mathrm{B}}{\mathrm{2}}\right).{sin}\left(\frac{\mathrm{C}}{\mathrm{2}}\right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\:\:\:−−−−−−−− \\ $$$$ \\ $$

Question Number 172785    Answers: 1   Comments: 0

Question Number 172784    Answers: 1   Comments: 0

Question Number 172775    Answers: 2   Comments: 0

Question Number 172770    Answers: 0   Comments: 0

Question Number 172767    Answers: 0   Comments: 2

Φ=∫_0 ^1 ((((−1)^(1/x) )/x))dx=?

$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} }{{x}}\right){dx}=? \\ $$

Question Number 172766    Answers: 0   Comments: 0

lim_(x→0) ((x!!−(√(2/π)))/(((1/1^2 )+(1/2^2 )+(1/3^3 )+∙∙∙)−Ψ_1 (x+1)))=? solve this pleas

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}!!−\sqrt{\frac{\mathrm{2}}{\pi}}}{\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\centerdot\centerdot\centerdot\right)−\Psi_{\mathrm{1}} \left({x}+\mathrm{1}\right)}=? \\ $$$${solve}\:{this}\:{pleas} \\ $$

Question Number 172764    Answers: 1   Comments: 0

∫_0 ^∞ (((ln(1−x))/x))^2 dx= ?

$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\right)^{\mathrm{2}} \:\mathrm{dx}=\:? \\ $$

Question Number 172763    Answers: 2   Comments: 0

Question Number 172762    Answers: 1   Comments: 0

Question Number 172758    Answers: 0   Comments: 0

  Pg 454      Pg 455      Pg 456      Pg 457      Pg 458      Pg 459      Pg 460      Pg 461      Pg 462      Pg 463   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com