Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 459
Question Number 192118 Answers: 0 Comments: 0
$$\mathrm{given}\:\mathrm{points}\:\left({a},{b}\right)\:\mathrm{where}\:{a},{b}\:\in\mathbb{R} \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{best}\:\mathrm{fit}\:\mathrm{parabola}\:\mathrm{that}\:\mathrm{go}\:\mathrm{through}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\mathrm{and}\:\mathrm{open}\:\mathrm{downward}\:\left(\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{negative}\right)? \\ $$
Question Number 173157 Answers: 1 Comments: 0
$$\mathrm{If}\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{3}} }\:. \\ $$
Question Number 173507 Answers: 0 Comments: 3
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${solve}\:\:\:{y}−\left({x}+\mathrm{1}\right)\:{y}'\:+\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\:\:\:\:\:{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{y}'\:+\left(\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\right)\:{y}\:=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173152 Answers: 2 Comments: 0
$$\mathrm{If}\:{x}\:=\:\mathrm{2}\:+\:\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$${x}^{\mathrm{3}} \:−\:\mathrm{6}{x}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:−\:\mathrm{2}\:=\:\mathrm{0}. \\ $$
Question Number 173150 Answers: 1 Comments: 0
$$\mathrm{let}\:\forall{n}\in\mathbb{N}:\:{I}_{{n}} \left({f}\left({x}\right)\right)=\:\mathrm{the}\:{n}^{\mathrm{th}} \:\mathrm{antiderivate} \\ $$$$\mathrm{of}\:{f}\left({x}\right)\:\mathrm{with}\:{I}_{\mathrm{0}} ={f}\left({x}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the}\:\mathrm{constants}\:{a}_{{n}} ,\:{b}_{{n}} \:\mathrm{of} \\ $$$${I}_{{n}} \left(\mathrm{ln}\:{x}\right)={a}_{{n}} {x}^{{n}} \mathrm{ln}\:{x}\:+{b}_{{n}} {x}^{{n}} \\ $$
Question Number 173149 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\:\infty} \frac{\:{dx}}{\:\sqrt{\mathrm{1}+{x}}\:.\left(\mathrm{2}+\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right)}=\frac{\mathrm{1}}{\sigma}\:\left(\pi−\mathrm{ln}\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sigma\:=\:? \\ $$$$\:\:\:\:\:\:\:\:−−\:\:\mathrm{solution}\:−− \\ $$$$\:\:\:\:\:\Omega\overset{\sqrt{\mathrm{1}+{x}}\:={t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \frac{{dt}}{\:\mathrm{1}+\:{t}^{\:\mathrm{4}} }\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dt}}{\mathrm{1}\:+\:{t}^{\:\mathrm{4}} } \\ $$$$\:\:\:\:\:\:\Psi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{dt}}{\mathrm{1}+{t}^{\:\mathrm{4}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}+{t}^{\:\mathrm{2}} −\left({t}^{\:−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{1}+{t}^{\:\mathrm{4}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}+\:{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }\:{dt}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{t}^{\:\mathrm{2}} }{\mathrm{1}+\:{t}^{\:\mathrm{4}} }\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}\:+{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }{dt}\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{t}^{\:−\mathrm{2}} +\mathrm{1}}{{t}^{\:−\mathrm{2}} +\:{t}^{\:\mathrm{2}} }\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{1}+{t}^{\:−\mathrm{2}} }{\left(\:{t}^{\:} −\:{t}^{\:−\mathrm{1}} \right)^{\:\mathrm{2}} +\mathrm{2}}\:\overset{{sub}} {=}\:\left[\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{tan}^{\:−\mathrm{1}} \left({t}\:−{t}^{\:−\mathrm{1}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\:\:\ast \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}−{t}^{\:\mathrm{2}} }{\mathrm{1}+{t}^{\:\mathrm{4}} }\:{dt}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{t}^{\:−\mathrm{2}} −\mathrm{1}}{\left(\:{t}\:+{t}^{\:−\mathrm{1}} \right)^{\:\mathrm{2}} −\mathrm{2}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\overset{{t}\:+\frac{\mathrm{1}}{{t}}\:={u}} {=}−\int_{\mathrm{2}} ^{\:\infty} \frac{{du}}{\left(\:{u}−\sqrt{\mathrm{2}}\:\right)\left({u}+\:\sqrt{\mathrm{2}}\:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\:\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left[\mathrm{ln}\left(\frac{{u}\:−\sqrt{\mathrm{2}}}{{u}+\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{2}} ^{\:\infty} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mathrm{ln}\left(\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mathrm{ln}\left(\:\mathrm{3}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\right)\:\:\:\:\:\ast\ast \\ $$$$\:\:\:\left(\ast\right)\:\&\:\left(\ast\ast\right)::\:\:\:\:\:\:\:\Omega=\mathrm{2}\Psi=\:\:\left(\Phi\:+\:\boldsymbol{\phi}\right)\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left(\:\pi\:−\mathrm{ln}\left(\:\mathrm{3}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\right)\:\:...\blacksquare\mathrm{m}.\mathrm{n}\right. \\ $$$$ \\ $$
Question Number 173148 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{n}} \sqrt{\mathrm{x}}\:\left(\mathrm{arcsin}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173132 Answers: 0 Comments: 5
$${U}_{{n}} \:=\:\left(\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }\right){U}_{{n}−\mathrm{1}} \:{with}\:{U}_{\mathrm{0}} =\mathrm{1} \\ $$$${find}\:{U}_{{n}\:} \:{in}\:{terms}\:{of}\:{n}\:\: \\ $$
Question Number 173129 Answers: 0 Comments: 0
Question Number 173124 Answers: 2 Comments: 2
Question Number 173123 Answers: 0 Comments: 1
Question Number 173121 Answers: 0 Comments: 2
Question Number 173116 Answers: 0 Comments: 1
$${let}\:{w}={e}^{{i}\pi/\mathrm{4}} =\left(\mathrm{1}+{i}\right)/\sqrt{\mathrm{2}\:}\:{show}\:{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{i}}{erf}\left({wx}\sqrt{\frac{\pi}{\mathrm{2}}}\right)=\int_{\mathrm{0}} ^{{x}} {e}^{−{i}\:{t}^{\mathrm{2}} \:\pi/\mathrm{2}} \:{dt}={c}\left({x}\right)−{is}\left({x}\right) \\ $$
Question Number 173115 Answers: 0 Comments: 1
$$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}=\mathrm{a}+\mathrm{c}=\mathrm{abc} \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)=? \\ $$
Question Number 173098 Answers: 0 Comments: 0
Question Number 173139 Answers: 1 Comments: 0
Question Number 173082 Answers: 1 Comments: 0
Question Number 173078 Answers: 1 Comments: 0
Question Number 173072 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\frac{\mid\mathrm{x}\mid^{\mathrm{2}} }{\mathrm{3}}\:\:+\:\:\frac{\mid\mathrm{y}\mid^{\mathrm{2}} }{\mathrm{5}}\:\:=\:\:\frac{\mid\mathrm{x}\:+\:\mathrm{y}\mid^{\mathrm{2}} }{\mathrm{8}}}\\{\mathrm{10x}\:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{7}\:\:+\:\:\mathrm{14}\boldsymbol{\mathrm{i}}}\end{cases} \\ $$
Question Number 173069 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\Theta\:=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} {xy}\:{e}^{\:−\left({x}+{y}\right)} {cos}\left({x}+{y}\:\right){dxdy}=\frac{\mathrm{1}}{\sigma} \\ $$$$\:\:\:\:\:\:\:\:{find}\:{the}\:\:{value}\:{of}\:\:''\:\sigma\:\:''. \\ $$$$ \\ $$
Question Number 173068 Answers: 2 Comments: 0
Question Number 173065 Answers: 1 Comments: 3
Question Number 173064 Answers: 0 Comments: 0
Question Number 173062 Answers: 0 Comments: 2
Question Number 173061 Answers: 0 Comments: 0
$${Calculate}\:{and}\:{factorize}\:{for}\:{m}\:\in\:\mathbb{R},\: \\ $$$${The}\:{caracteristic}\:{polynom}\:{of} \\ $$$${A}=\begin{pmatrix}{−\mathrm{2}−{m}}&{\:\:\:\mathrm{5}+{m}}&{\:\:\:\:\:{m}}\\{\:\:\:\:\:\:\:\:\mathrm{5}}&{−\mathrm{2}−{m}}&{\:\:−{m}}\\{\:\:\:\:−\mathrm{5}}&{\:\:\:\:\:\:\mathrm{5}}&{\:\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$
Question Number 173058 Answers: 0 Comments: 0
Pg 454 Pg 455 Pg 456 Pg 457 Pg 458 Pg 459 Pg 460 Pg 461 Pg 462 Pg 463
Terms of Service
Privacy Policy
Contact: info@tinkutara.com