Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 459
Question Number 174059 Answers: 2 Comments: 3
$${if}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{3}{xy}=\mathrm{1},\:{then}\:{x}+{y}=? \\ $$
Question Number 174057 Answers: 0 Comments: 1
Question Number 174056 Answers: 0 Comments: 0
Question Number 174036 Answers: 1 Comments: 0
$$\:\:\mathrm{Factorize}\:{x}^{\mathrm{2}} \:+\:\sqrt{\mathrm{2}{x}\:}+\:{x}\:+\:\mathrm{2} \\ $$
Question Number 174029 Answers: 1 Comments: 1
$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{5}} +{xy}+{y}^{\mathrm{5}} ={x}^{\mathrm{2}} {y}^{\mathrm{2}\:\:\:\:\:\:} \\ $$$${faind}\:{the}\:{volue}\:{of}\:\:\:{x}^{\mathrm{2022}} +{xy}+{y}^{\mathrm{2022}} =? \\ $$
Question Number 174023 Answers: 2 Comments: 1
Question Number 173997 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{3}}]{{x}}\:−\:\mathrm{3}\:=\:\sqrt[{\mathrm{3}}]{{x}−\mathrm{36}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{x}^{\:\mathrm{2}} −\mathrm{1}}{{x}}\:=\:?\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 173993 Answers: 1 Comments: 0
Question Number 173992 Answers: 1 Comments: 1
Question Number 173984 Answers: 0 Comments: 0
Question Number 173983 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\:{cos}\left({A}\:\right)}{{a}^{\:\mathrm{3}} }\:+\frac{{cos}\left({B}\right)}{{b}^{\:\mathrm{3}} }\:+\frac{{cos}\left({C}\right)}{{c}^{\:\mathrm{3}} }\:\geqslant\frac{\mathrm{81}}{\mathrm{16}{p}^{\:\mathrm{3}} } \\ $$$$\:\:\:{where}\::\:\:{p}=\:\left({a}+{b}\:+{c}\:\right)/\mathrm{2} \\ $$$$ \\ $$
Question Number 173981 Answers: 2 Comments: 0
Question Number 173978 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\mathrm{x}+\frac{\mathrm{3x}−\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\mathrm{y}−\frac{\mathrm{x}+\mathrm{3y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$$$ \\ $$
Question Number 173976 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{B}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx}\: \\ $$$$\:\:\:\:\:\:\:\Gamma\left({s}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{s}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$ \\ $$$$\:\:{Why}\:\:\:\:{B}\left({a},{b}\right)=\:\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}\:? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173972 Answers: 0 Comments: 0
Question Number 173971 Answers: 0 Comments: 2
Question Number 173970 Answers: 1 Comments: 3
Question Number 173975 Answers: 0 Comments: 0
$$ \\ $$$$\: \\ $$$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{y}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{y}\right)^{{b}} }\:{dy}\:\overset{{u}=\frac{\mathrm{1}}{\mathrm{1}+{y}}} {=}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{u}\right)^{{a}−\mathrm{1}} }{{u}^{{a}−\mathrm{1}} }\:{u}^{{b}} \:\:\frac{{du}}{{u}^{\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{{b}−{a}−\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{a}−\mathrm{1}} {du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{B}\left({b}−{a},{a}\right)=\frac{\Gamma\left({b}−{a}\right)\Gamma\left({a}\right)}{\Gamma\left({b}\right)} \\ $$$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173948 Answers: 1 Comments: 4
Question Number 173946 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{If}\:\mathrm{3}{sin}\left({x}\right)+\mathrm{4}{cos}\left({y}\right)−\mathrm{3}{sin}\left({y}\right)=\mathrm{8} \\ $$$$\:\:\:{then}\:..\:\:\:\:{sin}\left({x}\right)\:+\:{sin}\left({y}\right)=? \\ $$$$ \\ $$$$ \\ $$
Question Number 173933 Answers: 1 Comments: 1
Question Number 173958 Answers: 0 Comments: 0
Question Number 173926 Answers: 2 Comments: 3
$$ \\ $$$$\:\:\:\:\:{Q}: \\ $$$$\:\:\:\:\:\:\:{a}_{\:{n}\:} \:\:{is}\:{an}\:{arithmatic}\:{sequence}. \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}\:\left(\:{first}\:{term}\right)\:{and}\:\:{d}\:\left({difference}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{such}\:{that}\:,\:\:{a}_{\:{a}} \:+\:{a}_{\:{d}} \:=\:{a}_{\:{ad}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{find}\:\:\::\:\:\:\:{a}_{\:{n}} \:\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:{note}:\:\:{a}\:\:,\:\:{d}\:\:\:\in\:\mathbb{N}\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 173923 Answers: 1 Comments: 1
Question Number 173917 Answers: 0 Comments: 2
$${prove}: \\ $$$$\left(−\mathrm{1}\right)! \\ $$
Question Number 173908 Answers: 0 Comments: 6
$${find}\:{the}\:{value}\:{of}\:{b}\:{so}\:{that}\:{the}\:{line}\:{y}={b} \\ $$$${divides}\:{the}\:{region}\:{bound}\:{by}\:{the}\:{graphs}\:{of} \\ $$$${the}\:{two}\:{functinos}\:,\:{into}\:{two}\:{regions}\:{of}\:{equal} \\ $$$${area}. \\ $$$${f}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} \:{and}\:{g}\left({x}\right)=\mathrm{0} \\ $$
Pg 454 Pg 455 Pg 456 Pg 457 Pg 458 Pg 459 Pg 460 Pg 461 Pg 462 Pg 463
Terms of Service
Privacy Policy
Contact: [email protected]