Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 459

Question Number 173503    Answers: 0   Comments: 0

Question Number 173500    Answers: 2   Comments: 0

Find without any software: Ω = ∫ (x + (5/x))(1 − (5/x^2 ))sin(ln(x + (5/x)))dx

$$\mathrm{Find}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software}: \\ $$$$\Omega\:=\:\int\:\left(\mathrm{x}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\right)\left(\mathrm{1}\:−\:\frac{\mathrm{5}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{sin}\left(\mathrm{ln}\left(\mathrm{x}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\right)\right)\mathrm{dx} \\ $$

Question Number 173499    Answers: 0   Comments: 2

Question Number 173498    Answers: 1   Comments: 1

lim_(x→0) ((8cot (x)+9 sin ((1/x)))/(12 csc (x)−4sin ((1/x)))) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8cot}\:\left({x}\right)+\mathrm{9}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{12}\:\mathrm{csc}\:\left({x}\right)−\mathrm{4sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}\:=? \\ $$

Question Number 173497    Answers: 0   Comments: 0

Bonus du Mardi 12/07/2022 I= ∫_0 ^(Π/2) ((sin^2 (x))/(1+cos^2 (x)))dx = ? J = ∫_0 ^(Π/2) (dx/(1+cos^2 (x))) I = ∫_0 ^(Π/2) ((2−(1+cos^2 (x))/(1+cos^2 (x)))dx = 2∫_0 ^(Π/2) (dx/(1+cos^2 (x)))−∫_0 ^(Π/2) dx . = 2J−(Π/2) determinant (((J=∫_0 ^(Π/2) (dx/(1+cos^2 (x))))),((I=2J−(Π/2)))) e

$$\:\:\: \\ $$$$\:\:{Bonus}\:{du}\:{Mardi}\:\mathrm{12}/\mathrm{07}/\mathrm{2022} \\ $$$$\:\:\:\:{I}=\:\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)}{dx}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:{J}\:\:=\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)} \\ $$$$\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\mathrm{2}−\left(\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)\right.}{\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)}−\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:{dx}\:.\:\: \\ $$$$=\:\mathrm{2}{J}−\frac{\Pi}{\mathrm{2}} \\ $$$$ \\ $$$$\begin{array}{|c|c|}{{J}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({x}\right)}}\\{{I}=\mathrm{2}{J}−\frac{\Pi}{\mathrm{2}}}\\\hline\end{array} \\ $$$$\:{e}\: \\ $$

Question Number 173493    Answers: 1   Comments: 0

find lim_(x→0) tan(tanhx)−tanh(tanx)

$$\boldsymbol{{find}}\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\boldsymbol{{tan}}\left(\boldsymbol{{tanhx}}\right)−\boldsymbol{{tanh}}\left(\boldsymbol{{tanx}}\right) \\ $$

Question Number 173489    Answers: 3   Comments: 0

Question Number 173486    Answers: 0   Comments: 1

𝛗 = ∫_0 ^( ∞) ((cos (ax)− sin(bx))/x^( 2) )dx =? 𝛗=∫_0 ^( ∞) ((1−2sin^( 2) (((ax)/2))−(1−2sin^( 2) (((bx)/2))))/(x^2 ))dx =2 {∫_0 ^( ∞) (((sin(((bx)/2)))/x))^2 dx=Θ_1 }−2{∫_0 ^( ∞) (((sin(((ax)/2)))/x))^2 dx=Θ_2 } Θ_( 1) =^(((bx)/2)=t) (b/2)∫_0 ^( ∞) ((sin^( 2) (t))/t^( 2) )dt= ((πb)/4) similarly : Θ_( 2) =((πa)/4) ∴ 𝛗= (π/2)(∣b∣−∣a∣) Dirichlet′s integrals: ∫_0 ^( ∞) ((sin(x))/x)dx=(π/2)=∫_0 ^( ∞) ((sin^2 (x))/x^( 2) )dx

$$ \\ $$$$\:\:\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\:\left({ax}\right)−\:{sin}\left({bx}\right)}{{x}^{\:\mathrm{2}} }{dx}\:\:=? \\ $$$$\:\:\: \\ $$$$\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−\mathrm{2}{sin}^{\:\mathrm{2}} \left(\frac{{ax}}{\mathrm{2}}\right)−\left(\mathrm{1}−\mathrm{2}{sin}^{\:\mathrm{2}} \left(\frac{{bx}}{\mathrm{2}}\right)\right)}{{x}\:^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:=\mathrm{2}\:\left\{\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{sin}\left(\frac{{bx}}{\mathrm{2}}\right)}{{x}}\right)^{\mathrm{2}} {dx}=\Theta_{\mathrm{1}} \right\}−\mathrm{2}\left\{\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{sin}\left(\frac{{ax}}{\mathrm{2}}\right)}{{x}}\right)^{\mathrm{2}} {dx}=\Theta_{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\Theta_{\:\mathrm{1}} \overset{\frac{{bx}}{\mathrm{2}}={t}} {=}\:\frac{{b}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left({t}\right)}{{t}^{\:\mathrm{2}} }{dt}=\:\frac{\pi{b}}{\mathrm{4}}\: \\ $$$$\:\:\:\:\:\:\:\:{similarly}\::\:\:\Theta_{\:\mathrm{2}} =\frac{\pi{a}}{\mathrm{4}}\:\:\:\:\:\therefore\:\:\:\boldsymbol{\phi}=\:\frac{\pi}{\mathrm{2}}\left(\mid{b}\mid−\mid{a}\mid\right)\: \\ $$$$\:\:\:\:\:{Dirichlet}'{s}\:{integrals}:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$

Question Number 173485    Answers: 2   Comments: 0

Solve (x ∈ R ) x2^( (1/x)) +(1/x) 2^( x) = 4 −Source: L.Panaitopol

$$ \\ $$$$\:\:\:\:\:{Solve}\:\:\:\:\:\:\:\left({x}\:\in\:\mathbb{R}\:\right) \\ $$$$\:\:\:\:\:\:{x}\mathrm{2}^{\:\frac{\mathrm{1}}{{x}}} \:+\frac{\mathrm{1}}{{x}}\:\mathrm{2}^{\:{x}} =\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:−{Source}:\:{L}.{Panaitopol} \\ $$

Question Number 173484    Answers: 2   Comments: 0

1) lim_(x→0) ((x^(sinx) −(sinx)^x )/(x^(cosx) +1)) 2) lim_(x→∞) [x lnx − 2x ln(sin(1/( (√x)))) ] how can solve this proplem ?

$$\left.\mathrm{1}\right)\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\frac{\boldsymbol{{x}}^{\boldsymbol{{sinx}}} −\left(\boldsymbol{{sinx}}\right)^{\boldsymbol{{x}}} }{\boldsymbol{{x}}^{\boldsymbol{{cosx}}} +\mathrm{1}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left[\boldsymbol{{x}}\:\boldsymbol{{lnx}}\:−\:\mathrm{2}\boldsymbol{{x}}\:\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}}\right)\:\right] \\ $$$$ \\ $$$$\boldsymbol{{how}}\:\boldsymbol{{can}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{proplem}}\:? \\ $$

Question Number 173445    Answers: 4   Comments: 0

Question Number 173431    Answers: 1   Comments: 2

Question Number 173430    Answers: 0   Comments: 3

Question Number 173426    Answers: 0   Comments: 0

In △ABC the following relationship holds: (a^3 +b^3 +c^3 )(h_a ^3 +h_b ^3 +h_c ^3 ) ≥ 5832 (√3) r^6

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship} \\ $$$$\mathrm{holds}: \\ $$$$\left(\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \right)\left(\mathrm{h}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{3}} +\mathrm{h}_{\boldsymbol{\mathrm{b}}} ^{\mathrm{3}} +\mathrm{h}_{\boldsymbol{\mathrm{c}}} ^{\mathrm{3}} \right)\:\geqslant\:\mathrm{5832}\:\sqrt{\mathrm{3}}\:\mathrm{r}^{\mathrm{6}} \\ $$

Question Number 173424    Answers: 1   Comments: 0

prove that ∫_0 ^( ∞) (( sin(x))/(sinh(x))) dx = (π/2)tanh((π/2))

$$ \\ $$$$\:\:\:\:\mathrm{prove}\:\:\mathrm{that} \\ $$$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{sinh}\left(\mathrm{x}\right)}\:\mathrm{dx}\:=\:\frac{\pi}{\mathrm{2}}\mathrm{tanh}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$ \\ $$

Question Number 173421    Answers: 0   Comments: 0

In triangle ABC, AD is the bisector of ∠A meets BC at D, if 2∠C=∠B and AB=DC. Find ∠BAC

$$\mathrm{In}\:\mathrm{triangle}\:\:\mathrm{ABC},\:\mathrm{AD}\:\mathrm{is}\:\mathrm{the}\:\mathrm{bisector} \\ $$$$\mathrm{of}\:\:\angle\mathrm{A}\:\:\mathrm{meets}\:\:\mathrm{BC}\:\mathrm{at}\:\mathrm{D},\:\mathrm{if}\:\:\mathrm{2}\angle\mathrm{C}=\angle\mathrm{B} \\ $$$$\mathrm{and}\:\mathrm{AB}=\mathrm{DC}.\:\mathrm{Find}\:\angle\mathrm{BAC} \\ $$

Question Number 173420    Answers: 1   Comments: 0

Question Number 173418    Answers: 1   Comments: 0

Question Number 173417    Answers: 0   Comments: 1

Question Number 173447    Answers: 0   Comments: 4

Find tan (142.5°) without tables.

$${Find}\:\mathrm{tan}\:\left(\mathrm{142}.\mathrm{5}°\right)\:{without} \\ $$$${tables}. \\ $$

Question Number 173411    Answers: 1   Comments: 0

Q : ( 26 ! )^( 58) + k ≡^( 29) 0 and , k ∈ N , find: Min ( k )=?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Q}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{26}\:!\:\right)^{\:\mathrm{58}} \:+\:\mathrm{k}\:\overset{\:\mathrm{29}} {\equiv}\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{and}\:,\:\:\mathrm{k}\:\in\:\mathbb{N}\:,\:\:\mathrm{find}:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Min}\:\left(\:\mathrm{k}\:\right)=? \\ $$$$ \\ $$

Question Number 173408    Answers: 1   Comments: 1

Question Number 173406    Answers: 0   Comments: 0

Find: Ω =lim_(n→∞) ((√((1 + n!)^(n!) ))/(n ∙ (n!)!))

$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\left(\mathrm{1}\:+\:\mathrm{n}!\right)^{\boldsymbol{\mathrm{n}}!} }}{\mathrm{n}\:\centerdot\:\left(\mathrm{n}!\right)!} \\ $$

Question Number 173403    Answers: 0   Comments: 4

Question Number 173401    Answers: 0   Comments: 1

1.show that lim_(n→+∝) ((2^(2022) n^2 )/3^n )=0 ?

$$\mathrm{1}.\mathrm{show}\:\mathrm{that}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{2}^{\mathrm{2022}} \mathrm{n}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\mathrm{0}\:? \\ $$

Question Number 173396    Answers: 1   Comments: 0

Consider the statements: x: Birds fly y: The sky is blue Which of the following statements can be represented aa x⇔y? (i) When the sky is blue, the birds fly. (ii) Either the bird is flying or the sky is blue. (iii) Birds fly if and only if the sky is blue. (iv) When birds fly, the sky is blue.

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{statements}: \\ $$$${x}:\:\mathrm{Birds}\:\mathrm{fly} \\ $$$${y}:\:\mathrm{The}\:\mathrm{sky}\:\mathrm{is}\:\mathrm{blue} \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{statements}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{represented}\:\mathrm{aa}\:{x}\Leftrightarrow{y}? \\ $$$$\left({i}\right)\:\mathrm{When}\:\mathrm{the}\:\mathrm{sky}\:\mathrm{is}\:\mathrm{blue},\:\mathrm{the}\:\mathrm{birds}\:\mathrm{fly}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Either}\:\mathrm{the}\:\mathrm{bird}\:\mathrm{is}\:\mathrm{flying}\:\mathrm{or}\:\mathrm{the}\:\mathrm{sky}\:\mathrm{is}\:\mathrm{blue}. \\ $$$$\left({iii}\right)\:\mathrm{Birds}\:\mathrm{fly}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sky}\:\mathrm{is}\:\mathrm{blue}. \\ $$$$\left({iv}\right)\:\mathrm{When}\:\mathrm{birds}\:\mathrm{fly},\:\mathrm{the}\:\mathrm{sky}\:\mathrm{is}\:\mathrm{blue}. \\ $$

  Pg 454      Pg 455      Pg 456      Pg 457      Pg 458      Pg 459      Pg 460      Pg 461      Pg 462      Pg 463   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com