Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 454
Question Number 174095 Answers: 0 Comments: 0
$${prove}\:{the}\:{distance}\:{between}\:{object}\:{and} \\ $$$${image}\:{of}\:{glass}\:{slab}. \\ $$
Question Number 174084 Answers: 2 Comments: 1
Question Number 174074 Answers: 1 Comments: 1
Question Number 174071 Answers: 2 Comments: 0
Question Number 174069 Answers: 1 Comments: 1
Question Number 174092 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{ax}}^{\mathrm{2}} +\mathrm{14}\boldsymbol{{x}}−\mathrm{210}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{x}}_{\mathrm{1}} .\boldsymbol{{x}}_{\mathrm{2}} =\mathrm{22},\:\:\:\:\:\:\:\boldsymbol{{a}}=? \\ $$
Question Number 174062 Answers: 2 Comments: 3
$$\mathrm{find}\:\mathrm{all}\:\mathrm{prime}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\:\mathrm{such}\:\mathrm{that}\:\:\:\:\mathrm{p}^{\mathrm{2}} \:\:−\:\:\mathrm{p}\:\:\:\:=\:\:\:\mathrm{37q}^{\mathrm{2}} \:\:−\:\:\mathrm{q} \\ $$
Question Number 174059 Answers: 2 Comments: 3
$${if}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{3}{xy}=\mathrm{1},\:{then}\:{x}+{y}=? \\ $$
Question Number 174057 Answers: 0 Comments: 1
Question Number 174056 Answers: 0 Comments: 0
Question Number 174036 Answers: 1 Comments: 0
$$\:\:\mathrm{Factorize}\:{x}^{\mathrm{2}} \:+\:\sqrt{\mathrm{2}{x}\:}+\:{x}\:+\:\mathrm{2} \\ $$
Question Number 174029 Answers: 1 Comments: 1
$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{5}} +{xy}+{y}^{\mathrm{5}} ={x}^{\mathrm{2}} {y}^{\mathrm{2}\:\:\:\:\:\:} \\ $$$${faind}\:{the}\:{volue}\:{of}\:\:\:{x}^{\mathrm{2022}} +{xy}+{y}^{\mathrm{2022}} =? \\ $$
Question Number 174023 Answers: 2 Comments: 1
Question Number 173997 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{3}}]{{x}}\:−\:\mathrm{3}\:=\:\sqrt[{\mathrm{3}}]{{x}−\mathrm{36}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{x}^{\:\mathrm{2}} −\mathrm{1}}{{x}}\:=\:?\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 173993 Answers: 1 Comments: 0
Question Number 173992 Answers: 1 Comments: 1
Question Number 173984 Answers: 0 Comments: 0
Question Number 173983 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\:{cos}\left({A}\:\right)}{{a}^{\:\mathrm{3}} }\:+\frac{{cos}\left({B}\right)}{{b}^{\:\mathrm{3}} }\:+\frac{{cos}\left({C}\right)}{{c}^{\:\mathrm{3}} }\:\geqslant\frac{\mathrm{81}}{\mathrm{16}{p}^{\:\mathrm{3}} } \\ $$$$\:\:\:{where}\::\:\:{p}=\:\left({a}+{b}\:+{c}\:\right)/\mathrm{2} \\ $$$$ \\ $$
Question Number 173981 Answers: 2 Comments: 0
Question Number 173978 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\mathrm{x}+\frac{\mathrm{3x}−\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\mathrm{y}−\frac{\mathrm{x}+\mathrm{3y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$$$ \\ $$
Question Number 173976 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{B}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx}\: \\ $$$$\:\:\:\:\:\:\:\Gamma\left({s}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{s}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$ \\ $$$$\:\:{Why}\:\:\:\:{B}\left({a},{b}\right)=\:\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}\:? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173972 Answers: 0 Comments: 0
Question Number 173971 Answers: 0 Comments: 2
Question Number 173970 Answers: 1 Comments: 3
Question Number 173975 Answers: 0 Comments: 0
$$ \\ $$$$\: \\ $$$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{y}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{y}\right)^{{b}} }\:{dy}\:\overset{{u}=\frac{\mathrm{1}}{\mathrm{1}+{y}}} {=}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{u}\right)^{{a}−\mathrm{1}} }{{u}^{{a}−\mathrm{1}} }\:{u}^{{b}} \:\:\frac{{du}}{{u}^{\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{{b}−{a}−\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{a}−\mathrm{1}} {du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{B}\left({b}−{a},{a}\right)=\frac{\Gamma\left({b}−{a}\right)\Gamma\left({a}\right)}{\Gamma\left({b}\right)} \\ $$$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173948 Answers: 1 Comments: 4
Pg 449 Pg 450 Pg 451 Pg 452 Pg 453 Pg 454 Pg 455 Pg 456 Pg 457 Pg 458
Terms of Service
Privacy Policy
Contact: info@tinkutara.com