Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 454

Question Number 163902    Answers: 1   Comments: 0

(√(x!^(x!) )) + 2^(x!) = x!^3 + 10x! + 4 find: x = ?

$$\sqrt{\mathrm{x}!^{\boldsymbol{\mathrm{x}}!} }\:\:+\:\:\mathrm{2}^{\boldsymbol{\mathrm{x}}!} \:\:=\:\mathrm{x}!^{\mathrm{3}} \:\:+\:\:\mathrm{10x}!\:\:+\:\:\mathrm{4} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 163899    Answers: 2   Comments: 0

Find: 𝛀 = ∫_( 0) ^( 1) ((cos(ax))/( (√x) βˆ™ (√(1 - x)))) dx

$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\:\sqrt{\mathrm{x}}\:\centerdot\:\sqrt{\mathrm{1}\:-\:\mathrm{x}}}\:\mathrm{dx} \\ $$

Question Number 163897    Answers: 2   Comments: 0

if x^3 = 1 and x β‰  1 simplificar (((1/x^4 )/(1 + x^5 )))^3

$$\mathrm{if}\:\:\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{x}\:\neq\:\mathrm{1} \\ $$$$\mathrm{simplificar}\:\:\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} \\ $$

Question Number 163891    Answers: 2   Comments: 0

if f(x^3 + 1) = x^5 + 4x + 2 find ∫_( 0) ^( 1) f(x) dx = ?

$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{1}\right)\:=\:\mathrm{x}^{\mathrm{5}} \:+\:\mathrm{4x}\:+\:\mathrm{2} \\ $$$$\mathrm{find}\:\:\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$

Question Number 163888    Answers: 1   Comments: 1

prove∫((1βˆ’x^2 )/( (√(1βˆ’x^2 ))))dx = ∫(√(1βˆ’x^2 ))dx

$${prove}\int\frac{\mathrm{1}βˆ’{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}βˆ’{x}^{\mathrm{2}} }}{dx}\:=\:\int\sqrt{\mathrm{1}βˆ’{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 163886    Answers: 1   Comments: 2

Evaluate the following by using integration by parts formula: ∫xsin^(βˆ’1) (x)dx

$${Evaluate}\:{the}\:{following}\:{by}\:{using}\: \\ $$$$\:{integration}\:{by}\:{parts}\:{formula}: \\ $$$$\int{xsin}^{βˆ’\mathrm{1}} \left({x}\right){dx} \\ $$

Question Number 163885    Answers: 0   Comments: 0

preuve a)HH^(βˆ’1) =H b)HH=H c)H^(βˆ’1) =H

$${preuve} \\ $$$$\left.{a}\right){HH}^{βˆ’\mathrm{1}} ={H} \\ $$$$\left.{b}\right){HH}={H} \\ $$$$\left.{c}\right){H}^{βˆ’\mathrm{1}} ={H} \\ $$

Question Number 163881    Answers: 1   Comments: 0

16^(1βˆ’x) 32^(2x+1) =128^(2xβˆ’1) solve

$$\mathrm{16}^{\mathrm{1}βˆ’\mathrm{x}} \mathrm{32}^{\mathrm{2x}+\mathrm{1}} =\mathrm{128}^{\mathrm{2x}βˆ’\mathrm{1}} \:\:\:\:\mathrm{solve} \\ $$

Question Number 163865    Answers: 2   Comments: 0

Question Number 163861    Answers: 1   Comments: 0

Question Number 163860    Answers: 1   Comments: 0

Question Number 163856    Answers: 1   Comments: 0

Question Number 163858    Answers: 0   Comments: 2

which object or substance has the 2rd number velocity after light?

$${which}\:{object}\:{or}\:{substance}\:{has}\:\:{the}\: \\ $$$$\mathrm{2}{rd}\:{number}\:{velocity}\:{after}\:{light}? \\ $$

Question Number 163854    Answers: 1   Comments: 0

solution with residu theorem ∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=?

$$\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{residu}}\:\boldsymbol{\mathrm{theorem}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}}\boldsymbol{\mathrm{dx}}=?\:\:\:\: \\ $$

Question Number 163849    Answers: 1   Comments: 0

(1/(1 βˆ™ 2)) + (1/(2 βˆ™ 3)) + ... (1/(19 βˆ™ 20)) + (1/(20 βˆ™ 21)) = ?

$$\frac{\mathrm{1}}{\mathrm{1}\:\centerdot\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}\:\centerdot\:\mathrm{3}}\:+\:...\:\frac{\mathrm{1}}{\mathrm{19}\:\centerdot\:\mathrm{20}}\:+\:\frac{\mathrm{1}}{\mathrm{20}\:\centerdot\:\mathrm{21}}\:=\:? \\ $$

Question Number 163843    Answers: 0   Comments: 0

Question Number 163844    Answers: 0   Comments: 0

Question Number 163842    Answers: 1   Comments: 0

calculate Ξ© = ∫_0 ^( 1) ((( Arctanh (x))/x^ ))^( 2) dx =? βˆ’βˆ’ m.n βˆ’βˆ’

$$ \\ $$$$\:\:\:\:\:\:\:{calculate} \\ $$$$\:\:\:\: \\ $$$$\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\:\:\mathscr{A}{rctanh}\:\left({x}\right)}{{x}^{\:} }\right)^{\:\mathrm{2}} \:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:βˆ’βˆ’\:{m}.{n}\:βˆ’βˆ’ \\ $$

Question Number 163836    Answers: 0   Comments: 0

par recurence (4^n /(2n))<(_n ^k )<(4^n /2)

$${par}\:{recurence} \\ $$$$\frac{\mathrm{4}^{{n}} }{\mathrm{2}{n}}<\left(_{{n}} ^{{k}} \right)<\frac{\mathrm{4}^{{n}} }{\mathrm{2}} \\ $$

Question Number 163838    Answers: 0   Comments: 0

Question Number 163833    Answers: 1   Comments: 12

Question Number 163829    Answers: 3   Comments: 1

∫(1/(cos x))

$$\int\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$

Question Number 163828    Answers: 2   Comments: 0

∫(e^x /x)

$$\int\frac{{e}^{{x}} }{{x}} \\ $$

Question Number 163825    Answers: 2   Comments: 0

lim_(xβ†’0) ((tan 2xβˆ’2x)/(sin 3xβˆ’3x)) =?

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{2}{x}βˆ’\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{3}{x}βˆ’\mathrm{3}{x}}\:=?\: \\ $$

Question Number 163834    Answers: 0   Comments: 0

∫_0 ^∞ ((t(e^(4t) βˆ’1)(ln(i)+t))/e^(2t) )dt=? by M.A

$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}\left(\boldsymbol{{e}}^{\mathrm{4}\boldsymbol{{t}}} βˆ’\mathrm{1}\right)\left(\boldsymbol{{ln}}\left(\boldsymbol{{i}}\right)+\boldsymbol{{t}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{t}}} }\boldsymbol{{dt}}=? \\ $$$$\boldsymbol{{by}}\:\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$

Question Number 163822    Answers: 2   Comments: 0

sin(4x) βˆ’ sin(3x) = sin(2x) find x ?

$${sin}\left(\mathrm{4}{x}\right)\:βˆ’\:{sin}\left(\mathrm{3}{x}\right)\:=\:{sin}\left(\mathrm{2}{x}\right)\:{find}\:{x}\:? \\ $$

  Pg 449      Pg 450      Pg 451      Pg 452      Pg 453      Pg 454      Pg 455      Pg 456      Pg 457      Pg 458   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com