Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 454
Question Number 173000 Answers: 0 Comments: 1
Question Number 172999 Answers: 1 Comments: 0
Question Number 172996 Answers: 1 Comments: 0
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {xdx} \\ $$$$\left.\mathrm{1}\right){lim}\:{U}_{{n}} ? \\ $$$$\left.\mathrm{2}\right){equivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$
Question Number 181403 Answers: 1 Comments: 0
$${Refer}\:{to}\:\mathrm{Q181319} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}{dx} \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}=\mathrm{1}+\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{4}}×\frac{\left(\mathrm{2}{x}−\mathrm{1}\right)+\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}×\left[\mathrm{log}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)\right]^{'} −\frac{\mathrm{1}}{\mathrm{4}}×\left(\frac{\mathrm{1}}{\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \right]+\mathrm{1}}\right) \\ $$$$−\left(\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{log}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\right]^{'} +\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right]^{\mathrm{2}} +\mathrm{1}\right.}\right)\right) \\ $$$${first}\:{with}\:\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right]={u}\:\:\:\int\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}{du}={arctg}\left({u}\right) \\ $$$${and}\:{v}=\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\:\right)\right]=\mathrm{v}\:\:\:\int\frac{{dv}}{\mathrm{1}+{v}^{\mathrm{2}} }={arctg}\left({v}\right) \\ $$$$............... \\ $$
Question Number 172991 Answers: 2 Comments: 0
Question Number 172989 Answers: 1 Comments: 0
$${calcul}:\:{R}=+{oo}\: \\ $$$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\mathrm{2}{n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{x}^{{n}} \\ $$
Question Number 172984 Answers: 1 Comments: 0
Question Number 181400 Answers: 0 Comments: 2
Question Number 172973 Answers: 1 Comments: 0
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{1}}{\left(\mathrm{1}+\:{x}^{\:\mathrm{4}} \right)\:\left(\mathrm{1}+\:{x}^{\:\mathrm{6}} \right)}{dx}=\frac{{p}\sqrt{\mathrm{2}}\:−{q}}{\mathrm{12}}\:\pi \\ $$$$\:\:\:{p}\:,\:\:{q}=? \\ $$$$ \\ $$
Question Number 181394 Answers: 1 Comments: 0
Question Number 172956 Answers: 0 Comments: 2
Question Number 172953 Answers: 2 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{lnx}\:{dx} \\ $$
Question Number 172949 Answers: 0 Comments: 0
Question Number 172948 Answers: 1 Comments: 6
Question Number 172947 Answers: 1 Comments: 0
Question Number 172944 Answers: 1 Comments: 1
$$\int\int_{{d}} {dxdy}\:\:\:\:\:\:{x}={y}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\:\:{x}=\mathrm{1}−{y} \\ $$$${D}=? \\ $$
Question Number 172929 Answers: 0 Comments: 1
$$\mathrm{A}\:\mathrm{man}\:\mathrm{purchased}\:\mathrm{180}\:\mathrm{copies}\:\mathrm{of}\:\mathrm{a}\:\mathrm{book} \\ $$$$\mathrm{at}\:\$\mathrm{250}.\mathrm{00}\:\boldsymbol{\mathrm{each}}.\:\mathrm{He}\:\mathrm{sold}\:{y}\:\mathrm{copies}\:\mathrm{at}\:\$\mathrm{300}.\mathrm{00} \\ $$$$\mathrm{each}\:\mathrm{and}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{at}\:\mathrm{a}\:\mathrm{discount}\:\mathrm{of}\:\mathrm{5}\:\mathrm{cents}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{dollar}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cost}\:\mathrm{price}.\:\mathrm{If}\:\mathrm{he}\:\mathrm{made}\:\mathrm{a}\:\mathrm{profit} \\ $$$$\mathrm{of}\:\$\mathrm{7},\mathrm{125}.\mathrm{00},\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{y}? \\ $$
Question Number 172923 Answers: 0 Comments: 0
Question Number 172918 Answers: 0 Comments: 9
Question Number 172915 Answers: 3 Comments: 1
Question Number 172913 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}−\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\:\right)^{{x}} \:=? \\ $$
Question Number 172912 Answers: 1 Comments: 0
Question Number 172910 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{e}−\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}} }{\mathrm{x}−\mathrm{1}}=? \\ $$
Question Number 172901 Answers: 0 Comments: 10
$${have}\:{you}\:{noticed}? \\ $$$${recently} \\ $$$${the}\:\boldsymbol{{Euclid}}\:{was}\:{here}. \\ $$$${the}\:{small}\:\boldsymbol{{Einstein}}\:{was}\:{here}. \\ $$$$\boldsymbol{{Euler}}\:{the}\:{second}\:{was}\:{here}. \\ $$$${the}\:{small}\:\boldsymbol{{Laplace}}\:{was}\:{here}. \\ $$$${who}\:{else}? \\ $$
Question Number 172899 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{e}^{{x}} } \sqrt{{x}}\:{dx}=? \\ $$
Question Number 172891 Answers: 0 Comments: 4
Pg 449 Pg 450 Pg 451 Pg 452 Pg 453 Pg 454 Pg 455 Pg 456 Pg 457 Pg 458
Terms of Service
Privacy Policy
Contact: info@tinkutara.com