Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 447

Question Number 174514    Answers: 3   Comments: 1

a+b+c=1 a^2 +b^2 +c^2 =2 a^3 +b^3 +c^3 =3 then a^5 +b^5 +c^5 ?

$${a}+{b}+{c}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{3} \\ $$$${then}\:{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} \:? \\ $$

Question Number 174512    Answers: 1   Comments: 0

how many integer a,b∈z^+ a^5 −b^5 =10(b+1)^2 −9

$${how}\:{many}\:{integer}\:{a},{b}\in{z}^{+} \\ $$$${a}^{\mathrm{5}} −{b}^{\mathrm{5}} =\mathrm{10}\left({b}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{9} \\ $$$$ \\ $$

Question Number 174507    Answers: 1   Comments: 0

Determine the numerical value of the following expression without the use of a calculator log[log(3)∙(log(2)∙((((√3)−2sin((π/3)))/(π^3 +1))+1))−log(2)log(3)+(−1)^(100) ] Mastermind

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{following}\:\mathrm{expression}\:\mathrm{without}\:\mathrm{the}\:\mathrm{use} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{calculator} \\ $$$$\mathrm{log}\left[\mathrm{log}\left(\mathrm{3}\right)\centerdot\left(\mathrm{log}\left(\mathrm{2}\right)\centerdot\left(\frac{\sqrt{\mathrm{3}}−\mathrm{2sin}\left(\frac{\pi}{\mathrm{3}}\right)}{\pi^{\mathrm{3}} +\mathrm{1}}+\mathrm{1}\right)\right)−\mathrm{log}\left(\mathrm{2}\right)\mathrm{log}\left(\mathrm{3}\right)+\left(−\mathrm{1}\right)^{\mathrm{100}} \right] \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174500    Answers: 1   Comments: 0

Find the values of the following infinite sum: 1+(3/π)+(3/π^2 )+(3/π^3 )+(3/π^4 )+(3/π^5 )+... Mastermind

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{infinite} \\ $$$$\mathrm{sum}: \\ $$$$\mathrm{1}+\frac{\mathrm{3}}{\pi}+\frac{\mathrm{3}}{\pi^{\mathrm{2}} }+\frac{\mathrm{3}}{\pi^{\mathrm{3}} }+\frac{\mathrm{3}}{\pi^{\mathrm{4}} }+\frac{\mathrm{3}}{\pi^{\mathrm{5}} }+... \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174495    Answers: 2   Comments: 2

What are the roots of the function f(x)=(log(3^x )−2log(3))∙(x^2 −1) with x∈R? Mastermind

$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)−\mathrm{2log}\left(\mathrm{3}\right)\right)\centerdot\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{with} \\ $$$$\mathrm{x}\in\mathrm{R}? \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174492    Answers: 0   Comments: 1

lim_(x→∞) ((3x tan (2/x) − 2x sin (3/x))/(cos (1/x) − cos (2/x))) = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}{x}\:\mathrm{tan}\:\frac{\mathrm{2}}{{x}}\:−\:\mathrm{2}{x}\:\mathrm{sin}\:\frac{\mathrm{3}}{{x}}}{\mathrm{cos}\:\frac{\mathrm{1}}{{x}}\:−\:\mathrm{cos}\:\frac{\mathrm{2}}{{x}}}\:=\:\:? \\ $$

Question Number 174490    Answers: 0   Comments: 1

A die is rolled 57 times, what is the probability that the sum of its outcome is 100?

$$\mathrm{A}\:\mathrm{die}\:\mathrm{is}\:\mathrm{rolled}\:\mathrm{57}\:\mathrm{times},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\:\mathrm{outcome} \\ $$$$\mathrm{is}\:\mathrm{100}? \\ $$

Question Number 174489    Answers: 0   Comments: 0

The points A, B and C have position vectors a, b and c respectively reffrred to an origin O. i. Given that the point X lie on AB produced so that AB : BX=2:1, find x, the position vector of X in terms of b and c. ii. if Y lies on BC, between B and C so that BY : YC = 1:3, find y, the position vector of Y in terms of b and c. iii. Given that Z is the mid point of AC, show that X, Y and Z are collinear.

$$\mathrm{The}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{have}\:\mathrm{position}\:\mathrm{vectors} \\ $$$$\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\mathrm{respectively}\:\mathrm{reffrred}\:\mathrm{to}\:\mathrm{an}\:\mathrm{origin}\:\mathrm{O}. \\ $$$$\mathrm{i}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:\mathrm{X}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{AB}\:\mathrm{produced} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{AB}\::\:\mathrm{BX}=\mathrm{2}:\mathrm{1},\:\mathrm{find}\:{x},\:\mathrm{the}\:\mathrm{position} \\ $$$$\mathrm{vector}\:\mathrm{of}\:\mathrm{X}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\boldsymbol{\mathrm{b}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}. \\ $$$$\mathrm{ii}.\:\mathrm{if}\:\mathrm{Y}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{BC},\:\mathrm{between}\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{BY}\::\:\mathrm{YC}\:=\:\mathrm{1}:\mathrm{3},\:\mathrm{find}\:{y},\:\mathrm{the}\:\mathrm{position}\:\mathrm{vector} \\ $$$$\mathrm{of}\:\mathrm{Y}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\boldsymbol{\mathrm{b}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}. \\ $$$$\mathrm{iii}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{Z}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{of}\:\mathrm{AC},\: \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{X},\:\mathrm{Y}\:\mathrm{and}\:\mathrm{Z}\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Question Number 174487    Answers: 1   Comments: 0

Question Number 174486    Answers: 0   Comments: 0

Question Number 174485    Answers: 0   Comments: 0

Question Number 174508    Answers: 1   Comments: 0

L(sin^n (x))=?

$$ \\ $$$$\mathscr{L}\left(\boldsymbol{\mathrm{sin}}^{\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)\right)=? \\ $$

Question Number 174479    Answers: 0   Comments: 1

Question Number 174477    Answers: 1   Comments: 0

Question Number 174476    Answers: 0   Comments: 0

Question Number 174472    Answers: 0   Comments: 0

let f, g be continuous at [a,b], with f(x)≥0 at [a,b]. Prove that exists some θ∈[a,b] such that ∫_a ^b f(x)g(x)dx=g(θ)∫_a ^b f(x)dx

$$\mathrm{let}\:\mathrm{f},\:\mathrm{g}\:\mathrm{be}\:\mathrm{continuous}\:\mathrm{at}\:\left[\mathrm{a},\mathrm{b}\right],\:\mathrm{with}\:\mathrm{f}\left(\mathrm{x}\right)\geqslant\mathrm{0}\:\mathrm{at}\:\left[\mathrm{a},\mathrm{b}\right]. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{exists}\:\mathrm{some}\:\theta\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{such}\:\mathrm{that} \\ $$$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{g}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{g}\left(\theta\right)\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 174469    Answers: 1   Comments: 0

f(x)=(x+1)(x+2)....(x+n) 1)calculate f^′ (x) (n≥1) 2)decompose F=(1/f)

$${f}\left({x}\right)=\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right)\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){decompose}\:{F}=\frac{\mathrm{1}}{{f}} \\ $$

Question Number 174464    Answers: 0   Comments: 0

In △ABC R∈(AB) , P∈(BC) , Q∈(CA) AR=3 , RB=1 , BP=6 , PC=2 , CQ=5 , QA=4 Prove that: PQ + QR + RP > ((21)/2)

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{R}\in\left(\mathrm{AB}\right)\:,\:\mathrm{P}\in\left(\mathrm{BC}\right)\:,\:\mathrm{Q}\in\left(\mathrm{CA}\right) \\ $$$$\mathrm{AR}=\mathrm{3}\:,\:\mathrm{RB}=\mathrm{1}\:,\:\mathrm{BP}=\mathrm{6}\:,\:\mathrm{PC}=\mathrm{2}\:,\:\mathrm{CQ}=\mathrm{5}\:,\:\mathrm{QA}=\mathrm{4} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{PQ}\:+\:\mathrm{QR}\:+\:\mathrm{RP}\:>\:\frac{\mathrm{21}}{\mathrm{2}} \\ $$

Question Number 174459    Answers: 0   Comments: 0

Question Number 174451    Answers: 0   Comments: 0

please help If x is directly porportional to z and y is also directly porportional to z then what is the value of xy propotional to ?

$${please}\:{help} \\ $$$${If}\:{x}\:{is}\:{directly}\:{porportional}\:{to}\:{z}\:\:{and}\: \\ $$$${y}\:{is}\:{also}\:{directly}\:{porportional}\:{to}\:{z} \\ $$$$\:{then}\:{what}\:{is} \\ $$$${the}\:{value}\:{of}\:\:{xy}\:{propotional}\:{to}\:\:? \\ $$$$ \\ $$

Question Number 174443    Answers: 0   Comments: 2

Question Number 174442    Answers: 1   Comments: 0

Question Number 174440    Answers: 0   Comments: 3

1+(√3^x )=2^x x=?

$$\mathrm{1}+\sqrt{\mathrm{3}^{{x}} }=\mathrm{2}^{{x}} \:\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 174439    Answers: 1   Comments: 0

x∈ ( 0 , 1 ) , k ∈ N prove that : kx^( k) < (x/(1−x)) (math analysis)

$$ \\ $$$$\:\:\:\:\:{x}\in\:\left(\:\mathrm{0}\:,\:\mathrm{1}\:\right)\:,\:{k}\:\in\:\mathbb{N} \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:{kx}^{\:{k}} \:<\:\frac{{x}}{\mathrm{1}−{x}}\:\:\left({math}\:\:{analysis}\right) \\ $$$$ \\ $$

Question Number 174430    Answers: 1   Comments: 0

Question Number 174427    Answers: 3   Comments: 0

solve for x ∈ R : ((12+4x^ −x^( 2) ))^(1/4) +(√(1+8x−2x^( 2) )) = 2x^( 2) −8x +13 ■

$$ \\ $$$$\:\:\:{solve}\:\:{for}\:\:\:{x}\:\in\:\mathbb{R}\:: \\ $$$$ \\ $$$$\:\sqrt[{\mathrm{4}}]{\mathrm{12}+\mathrm{4}{x}^{\:} −{x}^{\:\mathrm{2}} }\:+\sqrt{\mathrm{1}+\mathrm{8}{x}−\mathrm{2}{x}^{\:\mathrm{2}} }\:=\:\mathrm{2}{x}^{\:\mathrm{2}} −\mathrm{8}{x}\:+\mathrm{13}\:\:\blacksquare \\ $$$$ \\ $$$$ \\ $$

  Pg 442      Pg 443      Pg 444      Pg 445      Pg 446      Pg 447      Pg 448      Pg 449      Pg 450      Pg 451   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com