Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 447
Question Number 173032 Answers: 1 Comments: 0
Question Number 173028 Answers: 2 Comments: 0
Question Number 173027 Answers: 0 Comments: 0
Question Number 173026 Answers: 1 Comments: 0
Question Number 173025 Answers: 1 Comments: 0
Question Number 173024 Answers: 0 Comments: 0
$$\mathrm{Find}\:\:\mathrm{A},\mathrm{B}\subset\mathbb{N}^{\ast} \\ $$$$\mathrm{Such}\:\mathrm{that}\:\:\mathrm{A}\cap\mathrm{B}=\varnothing\:,\:\mathrm{cardB}=\mathrm{cardA}+\mathrm{1}\geqslant\mathrm{8} \\ $$$$\mathrm{and}\:\:\underset{\boldsymbol{\mathrm{x}}\in\boldsymbol{\mathrm{A}}} {\sum}\:\mathrm{x}^{\mathrm{3}} \:=\:\underset{\boldsymbol{\mathrm{x}}\in\boldsymbol{\mathrm{B}}} {\sum}\:\mathrm{x}^{\mathrm{3}} \\ $$
Question Number 173018 Answers: 0 Comments: 0
Question Number 173014 Answers: 0 Comments: 0
$$ \\ $$
Question Number 173008 Answers: 2 Comments: 0
Question Number 173007 Answers: 0 Comments: 1
Question Number 173005 Answers: 0 Comments: 1
Question Number 173004 Answers: 0 Comments: 1
Question Number 173003 Answers: 0 Comments: 0
Question Number 173002 Answers: 1 Comments: 1
Question Number 173001 Answers: 2 Comments: 0
Question Number 173000 Answers: 0 Comments: 1
Question Number 172999 Answers: 1 Comments: 0
Question Number 172996 Answers: 1 Comments: 0
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {xdx} \\ $$$$\left.\mathrm{1}\right){lim}\:{U}_{{n}} ? \\ $$$$\left.\mathrm{2}\right){equivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$
Question Number 181403 Answers: 1 Comments: 0
$${Refer}\:{to}\:\mathrm{Q181319} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}{dx} \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}+\mathrm{2}}=\mathrm{1}+\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{4}}×\frac{\left(\mathrm{2}{x}−\mathrm{1}\right)+\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}×\left[\mathrm{log}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)\right]^{'} −\frac{\mathrm{1}}{\mathrm{4}}×\left(\frac{\mathrm{1}}{\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \right]+\mathrm{1}}\right) \\ $$$$−\left(\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{log}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\right]^{'} +\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right]^{\mathrm{2}} +\mathrm{1}\right.}\right)\right) \\ $$$${first}\:{with}\:\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right]={u}\:\:\:\int\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}{du}={arctg}\left({u}\right) \\ $$$${and}\:{v}=\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\:\right)\right]=\mathrm{v}\:\:\:\int\frac{{dv}}{\mathrm{1}+{v}^{\mathrm{2}} }={arctg}\left({v}\right) \\ $$$$............... \\ $$
Question Number 172991 Answers: 2 Comments: 0
Question Number 172989 Answers: 1 Comments: 0
$${calcul}:\:{R}=+{oo}\: \\ $$$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\mathrm{2}{n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{x}^{{n}} \\ $$
Question Number 172984 Answers: 1 Comments: 0
Question Number 181400 Answers: 0 Comments: 2
Question Number 172973 Answers: 1 Comments: 0
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{1}}{\left(\mathrm{1}+\:{x}^{\:\mathrm{4}} \right)\:\left(\mathrm{1}+\:{x}^{\:\mathrm{6}} \right)}{dx}=\frac{{p}\sqrt{\mathrm{2}}\:−{q}}{\mathrm{12}}\:\pi \\ $$$$\:\:\:{p}\:,\:\:{q}=? \\ $$$$ \\ $$
Question Number 181394 Answers: 1 Comments: 0
Question Number 172956 Answers: 0 Comments: 2
Pg 442 Pg 443 Pg 444 Pg 445 Pg 446 Pg 447 Pg 448 Pg 449 Pg 450 Pg 451
Terms of Service
Privacy Policy
Contact: info@tinkutara.com