Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 447

Question Number 174871    Answers: 1   Comments: 0

Question Number 174863    Answers: 1   Comments: 3

Question Number 174859    Answers: 1   Comments: 1

Question Number 174855    Answers: 1   Comments: 0

Find the number of ways a committee of 4 people can be chosen from a group of 5 men and 7 women when it contains people of both sexes and there are at least as many women as men.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\: \\ $$$$\mathrm{a}\:\mathrm{committee}\:\mathrm{of}\:\mathrm{4}\:\mathrm{people}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{chosen}\:\mathrm{from}\:\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{5}\:\mathrm{men} \\ $$$$\mathrm{and}\:\mathrm{7}\:\mathrm{women}\:\mathrm{when}\:\mathrm{it}\:\mathrm{contains} \\ $$$$\mathrm{people}\:\mathrm{of}\:\mathrm{both}\:\mathrm{sexes}\:\mathrm{and} \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least}\:\mathrm{as}\:\mathrm{many} \\ $$$$\mathrm{women}\:\mathrm{as}\:\mathrm{men}. \\ $$

Question Number 174853    Answers: 0   Comments: 2

By first principle, solve cos^2 x + sin^2 x=1

$$\mathrm{By}\:\mathrm{first}\:\mathrm{principle},\:\mathrm{solve}\:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:+\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}=\mathrm{1} \\ $$

Question Number 174844    Answers: 1   Comments: 1

Question Number 174849    Answers: 0   Comments: 0

Question Number 174841    Answers: 1   Comments: 0

lim_(x→0) ((xsin(sinx)−sin^2 x )/x^6 )

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\mathrm{sin}\left(\mathrm{sin}{x}\right)−\mathrm{sin}^{\mathrm{2}} {x}\:\:}{{x}^{\mathrm{6}} } \\ $$

Question Number 174838    Answers: 2   Comments: 0

calculate Ω = ∫_0 ^( (π/2)) (( x^( 2) )/(( sin(x)+cos(x))^( 2) ))dx=?

$$ \\ $$$$\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{x}^{\:\mathrm{2}} }{\left(\:{sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\:\mathrm{2}} }{dx}=? \\ $$$$ \\ $$

Question Number 174837    Answers: 0   Comments: 0

sin(A)+ sin(B )+ sin(C)≤ ((3(√3))/2) ≻ Solution ≺ ( A+B +C =π ) l.h.s = 2sin(((A+B)/2) )cos(((A−B)/2))+2sin((C/2))cos((C/2)) = 2cos ((C/2)){2cos(A/2) .cos((B/2) )} = 4cos((A/2)).cos((B/2)).cos((C/2)) l.h.s ≤_(post) ^(previoue) 4 (((3(√3))/8) )=((3(√3))/2) note: { (( I : cos(a)+cos(b)=2cos(((a+b)/2))cos(((a−b)/2)))),(( II: sin(a)+sin(b)=2sin(((a+b)/2))cos(((a−b)/2) ))),(( { (( cos((π/2) −α)=sin(α))),(( sin((π/2) −α)= cos(α))) :})) :}

$$ \\ $$$$\:\:\:\:\:{sin}\left({A}\right)+\:{sin}\left({B}\:\right)+\:{sin}\left({C}\right)\leqslant\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\succ\:\:\:{Solution}\:\prec\:\:\:\:\:\:\left(\:{A}+{B}\:+{C}\:=\pi\:\right) \\ $$$$\:\:\:\:\:\:{l}.{h}.{s}\:=\:\mathrm{2}{sin}\left(\frac{{A}+{B}}{\mathrm{2}}\:\right){cos}\left(\frac{{A}−{B}}{\mathrm{2}}\right)+\mathrm{2}{sin}\left(\frac{{C}}{\mathrm{2}}\right){cos}\left(\frac{{C}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}{cos}\:\left(\frac{{C}}{\mathrm{2}}\right)\left\{\mathrm{2}{cos}\frac{{A}}{\mathrm{2}}\:.{cos}\left(\frac{{B}}{\mathrm{2}}\:\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{4}{cos}\left(\frac{{A}}{\mathrm{2}}\right).{cos}\left(\frac{{B}}{\mathrm{2}}\right).{cos}\left(\frac{{C}}{\mathrm{2}}\right)\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{l}.{h}.{s}\:\underset{{post}} {\overset{{previoue}} {\leqslant}}\:\mathrm{4}\:\left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\:\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{note}:\:\begin{cases}{\:{I}\::\:\:{cos}\left({a}\right)+{cos}\left({b}\right)=\mathrm{2}{cos}\left(\frac{{a}+{b}}{\mathrm{2}}\right){cos}\left(\frac{{a}−{b}}{\mathrm{2}}\right)}\\{\:{II}:\:{sin}\left({a}\right)+{sin}\left({b}\right)=\mathrm{2}{sin}\left(\frac{{a}+{b}}{\mathrm{2}}\right){cos}\left(\frac{{a}−{b}}{\mathrm{2}}\:\right)}\\{\:\:\:\begin{cases}{\:{cos}\left(\frac{\pi}{\mathrm{2}}\:−\alpha\right)={sin}\left(\alpha\right)}\\{\:\:{sin}\left(\frac{\pi}{\mathrm{2}}\:−\alpha\right)=\:{cos}\left(\alpha\right)}\end{cases}}\end{cases} \\ $$

Question Number 174823    Answers: 1   Comments: 1

Question Number 174816    Answers: 3   Comments: 1

Question Number 174811    Answers: 0   Comments: 2

Question Number 174807    Answers: 0   Comments: 0

We know that vertex form of parabola is given as y = a(x−h)^2 +k From the given diagram of bridge that resembles a parabola, we have a vertex points of (0, 30) and other points due to towers that supports the parabolic−shape cable, which is (200, 150). ∴ y = a(x−0)^2 +30 = ax^2 +30 To find the value of ′a′, let′s use the given points other than vertex 150 = a(200)^2 + 30 150−30 = 40000a a = ((120)/(40,000)) = (3/(1000)) ∴ y = ((3x^2 )/(1000)) +30 Also, since we′re asked to find a function that gives a length of metal rod needed relative to its distance from the midpoint of the bridge, with each rods have an equal distance to each other, then we must consider another variable ′d′ that represents the equal distance of metal rods relative to its decided quantity and variable ′n′ given as positive integer that divides the distance of midpoint to tower. d = ((200)/n) ⇒ nd = 200 Example: Engineers decided to use 8 metal rodus, then we have d = ((200)/8) = 25 To calculate the length of each rods, let′s use the formula above First rod: y = ((3(0∙25)^2 )/(1000)) +30 = 30 ft. Second rod: y = ((3(1∙25)^2 )/(1000)) +30 = 31.875 ft. Third rod: y = ((3(2∙25)^2 )/(1000)) +30 = 37.5 ft. Fourth rod: y = ((3(3∙25)^2 )/(1000)) +30 = 46.875 ft.

$$\:\mathrm{We}\:\mathrm{know}\:\mathrm{that}\:\mathrm{vertex}\:\mathrm{form}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as} \\ $$$$\:\mathrm{y}\:=\:\mathrm{a}\left(\mathrm{x}−\mathrm{h}\right)^{\mathrm{2}} +\mathrm{k} \\ $$$$\: \\ $$$$\:\mathrm{From}\:\mathrm{the}\:\mathrm{given}\:\mathrm{diagram}\:\mathrm{of}\:\mathrm{bridge}\:\mathrm{that}\:\mathrm{resembles}\:\mathrm{a}\:\mathrm{parabola}, \\ $$$$\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{vertex}\:\mathrm{points}\:\mathrm{of}\:\left(\mathrm{0},\:\mathrm{30}\right)\:\mathrm{and}\:\mathrm{other}\:\mathrm{points}\:\mathrm{due}\:\mathrm{to}\:\mathrm{towers} \\ $$$$\:\mathrm{that}\:\mathrm{supports}\:\mathrm{the}\:\mathrm{parabolic}−\mathrm{shape}\:\mathrm{cable},\:\mathrm{which}\:\mathrm{is}\:\left(\mathrm{200},\:\mathrm{150}\right). \\ $$$$\: \\ $$$$\:\therefore\:\:\mathrm{y}\:=\:\mathrm{a}\left(\mathrm{x}−\mathrm{0}\right)^{\mathrm{2}} +\mathrm{30}\:=\:\mathrm{ax}^{\mathrm{2}} +\mathrm{30} \\ $$$$\: \\ $$$$\:\mathrm{To}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:'\mathrm{a}',\:\mathrm{let}'\mathrm{s}\:\mathrm{use}\:\mathrm{the}\:\mathrm{given}\:\mathrm{points}\:\mathrm{other}\:\mathrm{than}\:\mathrm{vertex} \\ $$$$\:\mathrm{150}\:=\:\mathrm{a}\left(\mathrm{200}\right)^{\mathrm{2}} \:+\:\mathrm{30} \\ $$$$\:\mathrm{150}−\mathrm{30}\:=\:\mathrm{40000a} \\ $$$$\:\mathrm{a}\:=\:\frac{\mathrm{120}}{\mathrm{40},\mathrm{000}}\:=\:\frac{\mathrm{3}}{\mathrm{1000}} \\ $$$$\: \\ $$$$\:\therefore\:\:\mathrm{y}\:=\:\frac{\mathrm{3x}^{\mathrm{2}} }{\mathrm{1000}}\:+\mathrm{30} \\ $$$$\: \\ $$$$\:\mathrm{Also},\:\mathrm{since}\:\mathrm{we}'\mathrm{re}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{function}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{a}\:\mathrm{length}\:\mathrm{of}\:\mathrm{metal}\:\mathrm{rod} \\ $$$$\:\mathrm{needed}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{its}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bridge},\:\mathrm{with}\:\mathrm{each}\:\mathrm{rods} \\ $$$$\:\mathrm{have}\:\mathrm{an}\:\mathrm{equal}\:\mathrm{distance}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other},\:\mathrm{then}\:\mathrm{we}\:\mathrm{must}\:\mathrm{consider}\:\mathrm{another}\:\mathrm{variable}\:'\mathrm{d}' \\ $$$$\:\mathrm{that}\:\mathrm{represents}\:\mathrm{the}\:\mathrm{equal}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{metal}\:\mathrm{rods}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{its}\:\mathrm{decided}\:\mathrm{quantity}\:\mathrm{and} \\ $$$$\:\mathrm{variable}\:'\mathrm{n}'\:\mathrm{given}\:\mathrm{as}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{divides}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{midpoint}\:\mathrm{to}\:\mathrm{tower}. \\ $$$$\: \\ $$$$\:\mathrm{d}\:=\:\frac{\mathrm{200}}{\mathrm{n}}\:\:\Rightarrow\:\:\mathrm{nd}\:=\:\mathrm{200} \\ $$$$\: \\ $$$$\:\mathrm{Example}: \\ $$$$\:\mathrm{Engineers}\:\mathrm{decided}\:\mathrm{to}\:\mathrm{use}\:\mathrm{8}\:\mathrm{metal}\:\mathrm{rodus},\:\mathrm{then}\:\mathrm{we}\:\mathrm{have}\:\mathrm{d}\:=\:\frac{\mathrm{200}}{\mathrm{8}}\:=\:\mathrm{25} \\ $$$$\:\mathrm{To}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{each}\:\mathrm{rods},\:\mathrm{let}'\mathrm{s}\:\mathrm{use}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{above} \\ $$$$\:\mathrm{First}\:\mathrm{rod}:\:\:\mathrm{y}\:=\:\frac{\mathrm{3}\left(\mathrm{0}\centerdot\mathrm{25}\right)^{\mathrm{2}} }{\mathrm{1000}}\:+\mathrm{30}\:=\:\mathrm{30}\:\mathrm{ft}. \\ $$$$\:\mathrm{Second}\:\mathrm{rod}:\:\:\mathrm{y}\:=\:\frac{\mathrm{3}\left(\mathrm{1}\centerdot\mathrm{25}\right)^{\mathrm{2}} }{\mathrm{1000}}\:+\mathrm{30}\:=\:\mathrm{31}.\mathrm{875}\:\mathrm{ft}. \\ $$$$\:\mathrm{Third}\:\mathrm{rod}:\:\:\mathrm{y}\:=\:\frac{\mathrm{3}\left(\mathrm{2}\centerdot\mathrm{25}\right)^{\mathrm{2}} }{\mathrm{1000}}\:+\mathrm{30}\:=\:\mathrm{37}.\mathrm{5}\:\mathrm{ft}. \\ $$$$\:\mathrm{Fourth}\:\mathrm{rod}:\:\:\mathrm{y}\:=\:\frac{\mathrm{3}\left(\mathrm{3}\centerdot\mathrm{25}\right)^{\mathrm{2}} }{\mathrm{1000}}\:+\mathrm{30}\:=\:\mathrm{46}.\mathrm{875}\:\mathrm{ft}. \\ $$$$\: \\ $$

Question Number 174806    Answers: 1   Comments: 1

Given f(x)=x^4 +ax^3 +bx^2 +cx+d where a,b,c and d are real number suppose the graph f(x) intersects the graph of y=2x−1 at x=1,2,3. Find the value of f(0)+f(4).

$${Given}\:{f}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${where}\:{a},{b},{c}\:{and}\:{d}\:{are}\:{real}\:{number} \\ $$$${suppose}\:{the}\:{graph}\:{f}\left({x}\right)\:{intersects} \\ $$$${the}\:{graph}\:{of}\:{y}=\mathrm{2}{x}−\mathrm{1}\:{at}\:{x}=\mathrm{1},\mathrm{2},\mathrm{3}. \\ $$$$\:{Find}\:{the}\:{value}\:{of}\:\:{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right). \\ $$

Question Number 174804    Answers: 0   Comments: 4

Please solve .

$${Please}\:{solve}\:. \\ $$

Question Number 174800    Answers: 1   Comments: 0

For which value of x this cubic equation will be 0 ? a^3 − 16a − 3

$$\mathrm{For}\:\mathrm{which}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{this}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{0}\:?\:{a}^{\mathrm{3}} \:−\:\mathrm{16}{a}\:−\:\mathrm{3} \\ $$

Question Number 174799    Answers: 1   Comments: 0

Question Number 174790    Answers: 3   Comments: 1

Question Number 174785    Answers: 0   Comments: 0

Question Number 174779    Answers: 1   Comments: 2

Question Number 174776    Answers: 1   Comments: 0

Question Number 174775    Answers: 1   Comments: 0

Question Number 174770    Answers: 1   Comments: 0

∫(((sinx)/( (√x))))dx Mastermind

$$\int\left(\frac{\mathrm{sinx}}{\:\sqrt{\mathrm{x}}}\right)\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174769    Answers: 2   Comments: 0

Question Number 174767    Answers: 1   Comments: 0

  Pg 442      Pg 443      Pg 444      Pg 445      Pg 446      Pg 447      Pg 448      Pg 449      Pg 450      Pg 451   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com