Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 447
Question Number 173830 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{multiples}\:\mathrm{of}\:\mathrm{2431} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{7}^{\mathrm{a}} −\mathrm{7}^{\mathrm{b}} \\ $$$$\mathrm{where}\:\boldsymbol{{a}}\:\mathrm{and}\:\boldsymbol{{b}}\:\mathrm{are}\:\mathrm{integer}\:\mathrm{such}\:\mathrm{that}\:\mathrm{0}\leqslant\boldsymbol{{b}}\leqslant\boldsymbol{{a}}\leqslant\mathrm{2022}\: \\ $$
Question Number 173829 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\:{If}\:\:,\:{x}\in\:\left[\mathrm{0}\:,\:\mathrm{1}\right]\: \\ $$$$\:\:\:\:\:\:,\:\:\:\:\mid\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:−{ax}−{b}\:\mid\leqslant\:\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:{find}\:{the}\:{values}\:{of}\:\:\left(\:{a}\:,\:{b}\:\right) \\ $$$$\:\:\:{a}\:,\:{b}\in\:\mathbb{R}. \\ $$$$ \\ $$
Question Number 173827 Answers: 0 Comments: 0
Question Number 173825 Answers: 0 Comments: 2
Question Number 173826 Answers: 0 Comments: 0
Question Number 173820 Answers: 0 Comments: 0
$$ \\ $$ Prove $$ \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{cos}\frac{\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{7}\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{8}\pi}{\mathrm{19}}}+\sqrt[{\mathrm{3}}]{\mathrm{cos}\frac{\mathrm{2}\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{3}\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{5}\pi}{\mathrm{19}}}− \\ $$$$−\sqrt[{\mathrm{3}}]{\mathrm{cos}\frac{\mathrm{4}\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{6}\pi}{\mathrm{19}}\mathrm{cos}\frac{\mathrm{9}\pi}{\mathrm{19}}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt[{\mathrm{3}}]{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{19}}−\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 173815 Answers: 0 Comments: 2
$${prove}\: \\ $$$$\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}} <{n}! \\ $$
Question Number 173807 Answers: 1 Comments: 0
Question Number 173798 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\left(\:\varphi^{\:\mathrm{5}} +\:\varphi^{\:\mathrm{4}} +\:\mathrm{1}\right)^{\:\mathrm{2}} =\:{m}\varphi\:+\:{n} \\ $$$$\:\:\:\:\:\:\:\:\:{m},{n}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........ \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 173795 Answers: 1 Comments: 1
$$\:\:\:\:\mathrm{Soient}\:{a}\:\mathrm{et}\:{b}\:\mathrm{deux}\:\mathrm{r}\acute {\mathrm{e}els}.\:\mathrm{Pour}\:\mathrm{tout}\:{n}\:\in\:\mathbb{N}\:\mathrm{on}\:\mathrm{pose} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{u}_{{n}} =\sqrt{{n}}+{a}\sqrt{{n}+\mathrm{1}}+{b}\sqrt{{n}+\mathrm{2}}. \\ $$$$\:\:\mathrm{1}.\:\:\mathrm{V}\acute {\mathrm{e}rifier}\:\mathrm{que}\:\mathrm{la}\:\mathrm{suite}\:\left({u}_{{n}} \right)\:\mathrm{tend}\:\mathrm{vers}\:\mathrm{0}\:\mathrm{si}\:\mathrm{et}\:\mathrm{seulement}\:\mathrm{si}\:{a}+{b}=−\mathrm{1}. \\ $$$$\:\:\mathrm{2}.\:\:\mathrm{D}\acute {\mathrm{e}terminer}\:{a}\:\mathrm{et}\:{b}\:\mathrm{pour}\:\mathrm{que}\:\mathrm{la}\:\mathrm{s}\acute {\mathrm{e}rie}\:\Sigma{u}_{{n}} \:\mathrm{soit}\:\mathrm{convergente}.\:\: \\ $$
Question Number 173787 Answers: 2 Comments: 11
$$\:\mathrm{4}{sin}^{\:\mathrm{2}} \left({x}\right)−\:\mathrm{4}{sin}\left({x}\right)={cos}^{\:\mathrm{2}} \left({x}\right)−\mathrm{2}{cos}\left({x}\right) \\ $$$$\:\:\:,\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}}\:.\:\:\:{Find}\:\:\:\:\:\:\:{sin}\left({x}\right)=? \\ $$
Question Number 173776 Answers: 2 Comments: 0
Question Number 173767 Answers: 0 Comments: 2
$${prouve}\:,{n}\epsilon{N} \\ $$$$\int_{{a}} ^{{a}} \left({t}−{a}\right)\left({t}−{b}\right)=\frac{\left({b}−{a}\right)^{{n}+\mathrm{2}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)} \\ $$
Question Number 173765 Answers: 4 Comments: 0
Question Number 176804 Answers: 0 Comments: 1
Question Number 173736 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{2xy}\:\:\:+\:\:\:\mathrm{3y}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{1},\:\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{differential}\:\mathrm{equation}\:\:\:\:\:\left(\mathrm{x}\:\:\:+\:\:\:\mathrm{3y}\right)^{\mathrm{2}} \:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:\:\:\:+\:\:\:\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{2xy}\:\:\:+\:\:\:\mathrm{2y}^{\mathrm{3}} \right)\:\:\:=\:\:\:\mathrm{0} \\ $$
Question Number 173734 Answers: 1 Comments: 0
$$ \\ $$$$\:\mathrm{lim}_{\:{n}\rightarrow\infty} \:\left({n}\:+\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}^{\:{n}} \:\mathrm{ln}\left(\:\mathrm{1}+{x}\:\right){dx}=? \\ $$$$ \\ $$
Question Number 173733 Answers: 0 Comments: 3
$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\mathrm{x}^{\mathrm{3}} \:\:+\:\:\mathrm{y}^{\mathrm{3}} \:\:=\:\:\mathrm{1}\:\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\:\:\:\mathrm{20x}^{\mathrm{3}} \:\:\:+\:\:\:\mathrm{3y}^{\mathrm{2}} \:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:\:\:+\:\:\:\mathrm{6y}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:\:\:=\:\:\:\:\mathrm{0} \\ $$
Question Number 173732 Answers: 4 Comments: 1
$${solve}\:{for}\:{x}\in{R} \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}+\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}={x}^{\mathrm{2}} \\ $$
Question Number 173729 Answers: 2 Comments: 0
$${Evaluate} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{x}−\frac{\mathrm{1}}{\:\sqrt{{x}}−{x}}+\mathrm{1}}{{x}^{\mathrm{2}} +\frac{\sqrt{{x}}}{\:\sqrt{{x}}−\mathrm{1}}−\mathrm{1}} \\ $$
Question Number 173768 Answers: 0 Comments: 0
$${Total}\:{factors}\:\:{of}\:\:\mathrm{20}!\:=\:? \\ $$
Question Number 173721 Answers: 1 Comments: 0
Question Number 173709 Answers: 0 Comments: 0
$$\mathrm{In}\:\mathrm{triangle}\:\bigtriangleup\mathrm{ABC}\:\mathrm{prove}: \\ $$$$\mathrm{cos}\left(\measuredangle\frac{\mathrm{A}}{\mathrm{2}}\right)>\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{\mathrm{2a}+\mathrm{b}+\mathrm{c}}{\:\sqrt{\mathrm{R}\left(\mathrm{R}+\mathrm{2r}_{\mathrm{a}} \right)}} \\ $$
Question Number 173707 Answers: 3 Comments: 0
$$\mathrm{Let}\:\mathrm{x},\mathrm{y}\in\mathbb{R}\:\mathrm{such}\:\mathrm{that}\:\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}^{\mathrm{2}} =\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{and} \\ $$$$\mathrm{maximum}\:\mathrm{of}\:\mathrm{expression}: \\ $$$$\mathrm{P}=\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} +\mathrm{x}−\mathrm{2y} \\ $$
Question Number 173706 Answers: 2 Comments: 1
Question Number 173697 Answers: 1 Comments: 0
Pg 442 Pg 443 Pg 444 Pg 445 Pg 446 Pg 447 Pg 448 Pg 449 Pg 450 Pg 451
Terms of Service
Privacy Policy
Contact: info@tinkutara.com