Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 445

Question Number 174620    Answers: 0   Comments: 1

Question Number 174619    Answers: 2   Comments: 0

Question Number 174613    Answers: 1   Comments: 0

In a mixture of Skettles and M&M′s, 80% of the pieces are M&M′s. A fourth of this mixture is replaced by a second mixture, resulting in combination which contain 16% Skittles in total. What was the percentage of Skittles in the second mixture?

$$\mathrm{In}\:\mathrm{a}\:\mathrm{mixture}\:\mathrm{of}\:\:\mathrm{Skettles}\:\mathrm{and}\:\mathrm{M\&M}'\mathrm{s}, \\ $$$$\mathrm{80\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pieces}\:\mathrm{are}\:\mathrm{M\&M}'\mathrm{s}.\:\mathrm{A}\:\mathrm{fourth} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{mixture}\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{by}\:\mathrm{a}\:\mathrm{second} \\ $$$$\mathrm{mixture},\:\mathrm{resulting}\:\mathrm{in}\:\mathrm{combination} \\ $$$$\mathrm{which}\:\mathrm{contain}\:\mathrm{16\%}\:\mathrm{Skittles}\:\mathrm{in}\:\mathrm{total}. \\ $$$$\mathrm{What}\:\mathrm{was}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{Skittles} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{second}\:\mathrm{mixture}? \\ $$

Question Number 174612    Answers: 0   Comments: 1

Question Number 174611    Answers: 0   Comments: 2

Find the expected payback for a game in which you bet $8.00 on any number from 0 to 99 and if your number comes up, you win $2,000.00

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{expected}\:\mathrm{payback}\:\mathrm{for}\:\mathrm{a}\: \\ $$$$\mathrm{game}\:\mathrm{in}\:\mathrm{which}\:\mathrm{you}\:\mathrm{bet}\:\$\mathrm{8}.\mathrm{00}\:\mathrm{on}\:\mathrm{any} \\ $$$$\mathrm{number}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{99}\:\mathrm{and}\:\mathrm{if}\:\mathrm{your} \\ $$$$\mathrm{number}\:\mathrm{comes}\:\mathrm{up},\:\mathrm{you}\:\mathrm{win}\:\$\mathrm{2},\mathrm{000}.\mathrm{00} \\ $$

Question Number 174610    Answers: 0   Comments: 0

find the value of this integral: I=∫_0 ^∞ ((tan^(−1) (x))/(1+x+x^2 )) dx

$${find}\:{the}\:{value}\:{of}\:{this}\:{integral}: \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 174599    Answers: 0   Comments: 0

Question Number 174594    Answers: 1   Comments: 0

Let σ(n) be the sum of all positive divisors of the integer n and let p be any prime number. show that σ(n)<2n holds true for all n of the form n=p^2 . Mastermind

$$\mathrm{Let}\:\sigma\left(\mathrm{n}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{positive} \\ $$$$\mathrm{divisors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{and}\:\mathrm{let}\:\mathrm{p}\:\mathrm{be} \\ $$$$\mathrm{any}\:\mathrm{prime}\:\mathrm{number}.\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\sigma\left(\mathrm{n}\right)<\mathrm{2n}\:\mathrm{holds}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{form}\:\mathrm{n}=\mathrm{p}^{\mathrm{2}} . \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174630    Answers: 1   Comments: 0

lim_(n→∞) Σ_(r=1) ^∞ (r/(n^2 +r))

$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{r}}{{n}^{\mathrm{2}} +{r}} \\ $$

Question Number 174591    Answers: 1   Comments: 0

The drawing below shows two equilateral triangles with side length a. The triangle are horizontally shifted by (a/2). Find the intersection area A of the two triangles (grey area).

$$\mathrm{The}\:\mathrm{drawing}\:\mathrm{below}\:\mathrm{shows}\:\mathrm{two}\: \\ $$$$\mathrm{equilateral}\:\mathrm{triangles}\:\mathrm{with}\:\mathrm{side}\:\mathrm{length} \\ $$$$\boldsymbol{\mathrm{a}}.\:\mathrm{The}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{horizontally}\:\mathrm{shifted} \\ $$$$\mathrm{by}\:\frac{\mathrm{a}}{\mathrm{2}}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{area}\:\mathrm{A}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{triangles}\:\left(\mathrm{grey}\:\mathrm{area}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 174587    Answers: 0   Comments: 2

Question Number 174583    Answers: 0   Comments: 0

Your friend makes 6 field goals and 2 free throws. You make twice as many field goals as your friend and half the number of free throws. How many points do you have. explain the order of operation you followed

$$\:\mathrm{Your}\:\mathrm{friend}\:\mathrm{makes}\:\mathrm{6}\:\mathrm{field}\:\mathrm{goals}\:\mathrm{and}\: \\ $$$$\:\:\mathrm{2}\:\mathrm{free}\:\mathrm{throws}.\:\mathrm{You}\:\mathrm{make}\:\mathrm{twice}\:\mathrm{as} \\ $$$$\:\mathrm{many}\:\mathrm{field}\:\mathrm{goals}\:\mathrm{as}\:\mathrm{your}\:\mathrm{friend}\:\mathrm{and}\: \\ $$$$\:\mathrm{half}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{free}\:\mathrm{throws}.\:\mathrm{How} \\ $$$$\mathrm{many}\:\mathrm{points}\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}.\:\mathrm{explain}\:\mathrm{the} \\ $$$$\mathrm{order}\:\mathrm{of}\:\mathrm{operation}\:\mathrm{you}\:\mathrm{followed} \\ $$$$\:\:\:\:\: \\ $$

Question Number 174582    Answers: 0   Comments: 0

Your friend makes 4 field goals . you make three times as many field goals as your friend plus one field goals. how many points do you have. Explain the order of operation you followed

$$\:\mathrm{Your}\:\mathrm{friend}\:\mathrm{makes}\:\mathrm{4}\:\mathrm{field}\:\mathrm{goals}\:.\:\mathrm{you} \\ $$$$\:\mathrm{make}\:\mathrm{three}\:\mathrm{times}\:\mathrm{as}\:\mathrm{many}\:\mathrm{field}\:\mathrm{goals} \\ $$$$\mathrm{as}\:\mathrm{your}\:\mathrm{friend}\:\mathrm{plus}\:\mathrm{one}\:\mathrm{field}\:\mathrm{goals}. \\ $$$$\:\mathrm{how}\:\mathrm{many}\:\mathrm{points}\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}.\: \\ $$$$\mathrm{Explain}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{operation}\:\mathrm{you}\: \\ $$$$\mathrm{followed} \\ $$

Question Number 174581    Answers: 1   Comments: 0

3^3^3^3 find last two digits

$$\mathrm{3}^{\mathrm{3}^{\mathrm{3}^{\mathrm{3}} } } \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{digits}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 174579    Answers: 0   Comments: 0

find minimum value of: ((a^2 (b−1)^2 +2ab+(a−1)^2 )/(a(ab+1))) [all∈R]

$$\:\:\:\:{find}\:{minimum}\:{value}\:{of}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} \left(\boldsymbol{{b}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\boldsymbol{{ab}}+\left(\boldsymbol{{a}}−\mathrm{1}\right)^{\mathrm{2}} }{\boldsymbol{{a}}\left(\boldsymbol{{ab}}+\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\left[\boldsymbol{{all}}\in\boldsymbol{{R}}\right] \\ $$

Question Number 174578    Answers: 0   Comments: 0

Question Number 174576    Answers: 1   Comments: 0

Question Number 174570    Answers: 1   Comments: 1

{ ((f((x/(x^2 +1)))=(x^2 /(x^4 +2x^2 +1)))),((f((√3) )=?)) :}

$$\:\:\:\:\:\:\begin{cases}{\boldsymbol{{f}}\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\right)=\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}}\\{\boldsymbol{{f}}\left(\sqrt{\mathrm{3}}\:\right)=?}\end{cases} \\ $$

Question Number 174569    Answers: 0   Comments: 0

{ ((x+z=0)),((y+t+xz=−2b)),((xt+yz=1)),((yt=b^2 −a)) :} [ all∈R] solve for : x, y ,z, t .

$$\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{0}}\\{\boldsymbol{{y}}+\boldsymbol{{t}}+\boldsymbol{{xz}}=−\mathrm{2}\boldsymbol{{b}}}\\{\boldsymbol{{xt}}+\boldsymbol{{yz}}=\mathrm{1}}\\{\boldsymbol{{yt}}=\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{a}}}\end{cases}\:\:\:\:\:\:\left[\:\:\boldsymbol{{all}}\in\boldsymbol{{R}}\right] \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\:\::\:\:\:\boldsymbol{{x}},\:\boldsymbol{{y}}\:,\boldsymbol{{z}},\:\boldsymbol{{t}}\:\:\:\:\:\:\:\:\:\:. \\ $$

Question Number 174568    Answers: 1   Comments: 0

If (1/a) + (1/b) + (1/c) = (1/(a + b + c)) then (1/a^3 ) + (1/(b^3 )) + (1/c^3 ) = ?

$$\mathrm{If}\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:\mathrm{then}\: \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{3}} \:}\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{3}} }\:=\:? \\ $$

Question Number 174567    Answers: 0   Comments: 0

Question Number 174566    Answers: 1   Comments: 0

Question Number 174560    Answers: 2   Comments: 0

Ω=∫_0 ^( 1) (( dx)/( (√(8+3x−(√(1+( x^( 2) +3x +2)(x^( 2) +7x+12)))))))

$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}−\sqrt{\mathrm{1}+\left(\:{x}^{\:\mathrm{2}} +\mathrm{3}{x}\:+\mathrm{2}\right)\left({x}^{\:\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right)}}} \\ $$$$ \\ $$

Question Number 174556    Answers: 2   Comments: 1

Question Number 174552    Answers: 2   Comments: 3

Question Number 174548    Answers: 1   Comments: 0

Evaluate . 𝛀 = ∫_0 ^( 2) (( e^( x) )/(e^( 1−x) + e^( x−1) )) dx= ?

$$ \\ $$$$\boldsymbol{{Evaluate}}\:. \\ $$$$\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \frac{\:\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}} }{\boldsymbol{{e}}^{\:\mathrm{1}−\boldsymbol{{x}}} +\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}−\mathrm{1}} }\:\boldsymbol{{dx}}=\:? \\ $$$$\:\:\:\: \\ $$

  Pg 440      Pg 441      Pg 442      Pg 443      Pg 444      Pg 445      Pg 446      Pg 447      Pg 448      Pg 449   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com