Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 445

Question Number 174583    Answers: 0   Comments: 0

Your friend makes 6 field goals and 2 free throws. You make twice as many field goals as your friend and half the number of free throws. How many points do you have. explain the order of operation you followed

$$\:\mathrm{Your}\:\mathrm{friend}\:\mathrm{makes}\:\mathrm{6}\:\mathrm{field}\:\mathrm{goals}\:\mathrm{and}\: \\ $$$$\:\:\mathrm{2}\:\mathrm{free}\:\mathrm{throws}.\:\mathrm{You}\:\mathrm{make}\:\mathrm{twice}\:\mathrm{as} \\ $$$$\:\mathrm{many}\:\mathrm{field}\:\mathrm{goals}\:\mathrm{as}\:\mathrm{your}\:\mathrm{friend}\:\mathrm{and}\: \\ $$$$\:\mathrm{half}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{free}\:\mathrm{throws}.\:\mathrm{How} \\ $$$$\mathrm{many}\:\mathrm{points}\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}.\:\mathrm{explain}\:\mathrm{the} \\ $$$$\mathrm{order}\:\mathrm{of}\:\mathrm{operation}\:\mathrm{you}\:\mathrm{followed} \\ $$$$\:\:\:\:\: \\ $$

Question Number 174582    Answers: 0   Comments: 0

Your friend makes 4 field goals . you make three times as many field goals as your friend plus one field goals. how many points do you have. Explain the order of operation you followed

$$\:\mathrm{Your}\:\mathrm{friend}\:\mathrm{makes}\:\mathrm{4}\:\mathrm{field}\:\mathrm{goals}\:.\:\mathrm{you} \\ $$$$\:\mathrm{make}\:\mathrm{three}\:\mathrm{times}\:\mathrm{as}\:\mathrm{many}\:\mathrm{field}\:\mathrm{goals} \\ $$$$\mathrm{as}\:\mathrm{your}\:\mathrm{friend}\:\mathrm{plus}\:\mathrm{one}\:\mathrm{field}\:\mathrm{goals}. \\ $$$$\:\mathrm{how}\:\mathrm{many}\:\mathrm{points}\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}.\: \\ $$$$\mathrm{Explain}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{operation}\:\mathrm{you}\: \\ $$$$\mathrm{followed} \\ $$

Question Number 174581    Answers: 1   Comments: 0

3^3^3^3 find last two digits

$$\mathrm{3}^{\mathrm{3}^{\mathrm{3}^{\mathrm{3}} } } \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{digits}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 174579    Answers: 0   Comments: 0

find minimum value of: ((a^2 (b−1)^2 +2ab+(a−1)^2 )/(a(ab+1))) [all∈R]

$$\:\:\:\:{find}\:{minimum}\:{value}\:{of}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} \left(\boldsymbol{{b}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\boldsymbol{{ab}}+\left(\boldsymbol{{a}}−\mathrm{1}\right)^{\mathrm{2}} }{\boldsymbol{{a}}\left(\boldsymbol{{ab}}+\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\left[\boldsymbol{{all}}\in\boldsymbol{{R}}\right] \\ $$

Question Number 174578    Answers: 0   Comments: 0

Question Number 174576    Answers: 1   Comments: 0

Question Number 174570    Answers: 1   Comments: 1

{ ((f((x/(x^2 +1)))=(x^2 /(x^4 +2x^2 +1)))),((f((√3) )=?)) :}

$$\:\:\:\:\:\:\begin{cases}{\boldsymbol{{f}}\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\right)=\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}}\\{\boldsymbol{{f}}\left(\sqrt{\mathrm{3}}\:\right)=?}\end{cases} \\ $$

Question Number 174569    Answers: 0   Comments: 0

{ ((x+z=0)),((y+t+xz=−2b)),((xt+yz=1)),((yt=b^2 −a)) :} [ all∈R] solve for : x, y ,z, t .

$$\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{0}}\\{\boldsymbol{{y}}+\boldsymbol{{t}}+\boldsymbol{{xz}}=−\mathrm{2}\boldsymbol{{b}}}\\{\boldsymbol{{xt}}+\boldsymbol{{yz}}=\mathrm{1}}\\{\boldsymbol{{yt}}=\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{a}}}\end{cases}\:\:\:\:\:\:\left[\:\:\boldsymbol{{all}}\in\boldsymbol{{R}}\right] \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\:\::\:\:\:\boldsymbol{{x}},\:\boldsymbol{{y}}\:,\boldsymbol{{z}},\:\boldsymbol{{t}}\:\:\:\:\:\:\:\:\:\:. \\ $$

Question Number 174568    Answers: 1   Comments: 0

If (1/a) + (1/b) + (1/c) = (1/(a + b + c)) then (1/a^3 ) + (1/(b^3 )) + (1/c^3 ) = ?

$$\mathrm{If}\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:\mathrm{then}\: \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{3}} \:}\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{3}} }\:=\:? \\ $$

Question Number 174567    Answers: 0   Comments: 0

Question Number 174566    Answers: 1   Comments: 0

Question Number 174560    Answers: 2   Comments: 0

Ω=∫_0 ^( 1) (( dx)/( (√(8+3x−(√(1+( x^( 2) +3x +2)(x^( 2) +7x+12)))))))

$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}−\sqrt{\mathrm{1}+\left(\:{x}^{\:\mathrm{2}} +\mathrm{3}{x}\:+\mathrm{2}\right)\left({x}^{\:\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right)}}} \\ $$$$ \\ $$

Question Number 174556    Answers: 2   Comments: 1

Question Number 174552    Answers: 2   Comments: 3

Question Number 174548    Answers: 1   Comments: 0

Evaluate . 𝛀 = ∫_0 ^( 2) (( e^( x) )/(e^( 1−x) + e^( x−1) )) dx= ?

$$ \\ $$$$\boldsymbol{{Evaluate}}\:. \\ $$$$\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \frac{\:\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}} }{\boldsymbol{{e}}^{\:\mathrm{1}−\boldsymbol{{x}}} +\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}−\mathrm{1}} }\:\boldsymbol{{dx}}=\:? \\ $$$$\:\:\:\: \\ $$

Question Number 174538    Answers: 1   Comments: 3

what is the maximum and minimum value of “x” if x+y+z = 6, x^2 +y^2 +z^2 = 18, for real values of “x,y and z”

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:``\mathrm{x}''\:\mathrm{if} \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}\:=\:\mathrm{6},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{18}, \\ $$$$\mathrm{for}\:\mathrm{real}\:\mathrm{values}\:\mathrm{of}\:``\mathrm{x},\mathrm{y}\:\mathrm{and}\:\mathrm{z}'' \\ $$

Question Number 174534    Answers: 0   Comments: 0

Question Number 174533    Answers: 1   Comments: 0

Question Number 174532    Answers: 0   Comments: 0

Question Number 174528    Answers: 1   Comments: 0

Question Number 174519    Answers: 1   Comments: 2

Question Number 174522    Answers: 0   Comments: 0

Let σ(n) be the sum of all positive divisors of the integer n and let p be any prime number. Show that σ(n)<2n holds true for all n of the form n=p^2 . Mastermind

$$\mathrm{Let}\:\sigma\left(\mathrm{n}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{divisors} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{and}\:\mathrm{let}\:\mathrm{p}\:\mathrm{be}\:\mathrm{any}\:\mathrm{prime} \\ $$$$\mathrm{number}.\:\mathrm{Show}\:\mathrm{that}\:\sigma\left(\mathrm{n}\right)<\mathrm{2n}\:\mathrm{holds}\:\mathrm{true} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{n}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:\mathrm{n}=\mathrm{p}^{\mathrm{2}} . \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174514    Answers: 3   Comments: 1

a+b+c=1 a^2 +b^2 +c^2 =2 a^3 +b^3 +c^3 =3 then a^5 +b^5 +c^5 ?

$${a}+{b}+{c}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{3} \\ $$$${then}\:{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} \:? \\ $$

Question Number 174512    Answers: 1   Comments: 0

how many integer a,b∈z^+ a^5 −b^5 =10(b+1)^2 −9

$${how}\:{many}\:{integer}\:{a},{b}\in{z}^{+} \\ $$$${a}^{\mathrm{5}} −{b}^{\mathrm{5}} =\mathrm{10}\left({b}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{9} \\ $$$$ \\ $$

Question Number 174507    Answers: 1   Comments: 0

Determine the numerical value of the following expression without the use of a calculator log[log(3)∙(log(2)∙((((√3)−2sin((π/3)))/(π^3 +1))+1))−log(2)log(3)+(−1)^(100) ] Mastermind

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{following}\:\mathrm{expression}\:\mathrm{without}\:\mathrm{the}\:\mathrm{use} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{calculator} \\ $$$$\mathrm{log}\left[\mathrm{log}\left(\mathrm{3}\right)\centerdot\left(\mathrm{log}\left(\mathrm{2}\right)\centerdot\left(\frac{\sqrt{\mathrm{3}}−\mathrm{2sin}\left(\frac{\pi}{\mathrm{3}}\right)}{\pi^{\mathrm{3}} +\mathrm{1}}+\mathrm{1}\right)\right)−\mathrm{log}\left(\mathrm{2}\right)\mathrm{log}\left(\mathrm{3}\right)+\left(−\mathrm{1}\right)^{\mathrm{100}} \right] \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174500    Answers: 1   Comments: 0

Find the values of the following infinite sum: 1+(3/π)+(3/π^2 )+(3/π^3 )+(3/π^4 )+(3/π^5 )+... Mastermind

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{infinite} \\ $$$$\mathrm{sum}: \\ $$$$\mathrm{1}+\frac{\mathrm{3}}{\pi}+\frac{\mathrm{3}}{\pi^{\mathrm{2}} }+\frac{\mathrm{3}}{\pi^{\mathrm{3}} }+\frac{\mathrm{3}}{\pi^{\mathrm{4}} }+\frac{\mathrm{3}}{\pi^{\mathrm{5}} }+... \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

  Pg 440      Pg 441      Pg 442      Pg 443      Pg 444      Pg 445      Pg 446      Pg 447      Pg 448      Pg 449   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com