Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 445
Question Number 181437 Answers: 2 Comments: 0
Question Number 181435 Answers: 0 Comments: 0
$$\:\:\:\frac{\boldsymbol{\delta}^{\mathrm{2}} \boldsymbol{\mathrm{u}}}{\boldsymbol{\delta\mathrm{t}}^{\mathrm{2}} }\:=\:\mathrm{4}\:\frac{\boldsymbol{\delta}^{\mathrm{2}} \boldsymbol{\mathrm{u}}}{\boldsymbol{\delta\mathrm{x}}^{\mathrm{2}} }\:\:\:;\:\:\boldsymbol{\mathrm{u}}\mid_{\boldsymbol{\mathrm{t}}=\mathrm{0}} =\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)\:\:\:;\:\:\:\frac{\boldsymbol{\delta\mathrm{u}}}{\boldsymbol{\delta\mathrm{t}}}\mid_{\boldsymbol{\mathrm{t}}=\mathrm{0}} =\boldsymbol{\mathrm{x}} \\ $$
Question Number 181432 Answers: 1 Comments: 5
Question Number 174096 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:{f}\left({x}\right)=\:{ax}^{\:\mathrm{2}} +\:{bx}\:+{c}\:\:{is}\:{given} \\ $$$$\:\:\:\:\:\:{a}\:\neq\:{b}\:\neq\:{c}\:\:,\:{a}\:,\:{b}\:,\:{c}\:\in\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:{a}\neq\mathrm{0}\:\:\:{and}\:\:\:: \\ $$$$\:\:\:\:\:\:\:\:{f}\left({ax}\:+\:{b}\:\right)={f}\:\left({bx}\:+\:{c}\right) \\ $$$$\:\:\:\:\:\:{find}\::\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\left({f}\left({b}\right)\:\:−\:{f}\left({a}\:\right)\right)=? \\ $$
Question Number 174094 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{8}{y}+\mathrm{13}=\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{by}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\: \\ $$$$\mathrm{congruent}.\:\mathrm{If}\:\mathrm{they}\:\mathrm{are}\:\mathrm{2}\sqrt{\mathrm{10}}\:\mathrm{units}\: \\ $$$$\mathrm{apart},\:\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of} \\ $$$${a}\:\mathrm{and}\:{b}. \\ $$
Question Number 174095 Answers: 0 Comments: 0
$${prove}\:{the}\:{distance}\:{between}\:{object}\:{and} \\ $$$${image}\:{of}\:{glass}\:{slab}. \\ $$
Question Number 174084 Answers: 2 Comments: 1
Question Number 174074 Answers: 1 Comments: 1
Question Number 174071 Answers: 2 Comments: 0
Question Number 174069 Answers: 1 Comments: 1
Question Number 174092 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{ax}}^{\mathrm{2}} +\mathrm{14}\boldsymbol{{x}}−\mathrm{210}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{x}}_{\mathrm{1}} .\boldsymbol{{x}}_{\mathrm{2}} =\mathrm{22},\:\:\:\:\:\:\:\boldsymbol{{a}}=? \\ $$
Question Number 174062 Answers: 2 Comments: 3
$$\mathrm{find}\:\mathrm{all}\:\mathrm{prime}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\:\mathrm{such}\:\mathrm{that}\:\:\:\:\mathrm{p}^{\mathrm{2}} \:\:−\:\:\mathrm{p}\:\:\:\:=\:\:\:\mathrm{37q}^{\mathrm{2}} \:\:−\:\:\mathrm{q} \\ $$
Question Number 174059 Answers: 2 Comments: 3
$${if}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{3}{xy}=\mathrm{1},\:{then}\:{x}+{y}=? \\ $$
Question Number 174057 Answers: 0 Comments: 1
Question Number 174056 Answers: 0 Comments: 0
Question Number 174036 Answers: 1 Comments: 0
$$\:\:\mathrm{Factorize}\:{x}^{\mathrm{2}} \:+\:\sqrt{\mathrm{2}{x}\:}+\:{x}\:+\:\mathrm{2} \\ $$
Question Number 174029 Answers: 1 Comments: 1
$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{5}} +{xy}+{y}^{\mathrm{5}} ={x}^{\mathrm{2}} {y}^{\mathrm{2}\:\:\:\:\:\:} \\ $$$${faind}\:{the}\:{volue}\:{of}\:\:\:{x}^{\mathrm{2022}} +{xy}+{y}^{\mathrm{2022}} =? \\ $$
Question Number 174023 Answers: 2 Comments: 1
Question Number 173997 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{3}}]{{x}}\:−\:\mathrm{3}\:=\:\sqrt[{\mathrm{3}}]{{x}−\mathrm{36}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{x}^{\:\mathrm{2}} −\mathrm{1}}{{x}}\:=\:?\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 173993 Answers: 1 Comments: 0
Question Number 173992 Answers: 1 Comments: 1
Question Number 173984 Answers: 0 Comments: 0
Question Number 173983 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\:{cos}\left({A}\:\right)}{{a}^{\:\mathrm{3}} }\:+\frac{{cos}\left({B}\right)}{{b}^{\:\mathrm{3}} }\:+\frac{{cos}\left({C}\right)}{{c}^{\:\mathrm{3}} }\:\geqslant\frac{\mathrm{81}}{\mathrm{16}{p}^{\:\mathrm{3}} } \\ $$$$\:\:\:{where}\::\:\:{p}=\:\left({a}+{b}\:+{c}\:\right)/\mathrm{2} \\ $$$$ \\ $$
Question Number 173981 Answers: 2 Comments: 0
Question Number 173978 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\mathrm{x}+\frac{\mathrm{3x}−\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\mathrm{y}−\frac{\mathrm{x}+\mathrm{3y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$$$ \\ $$
Question Number 173976 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{B}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx}\: \\ $$$$\:\:\:\:\:\:\:\Gamma\left({s}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{s}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$ \\ $$$$\:\:{Why}\:\:\:\:{B}\left({a},{b}\right)=\:\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}\:? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Pg 440 Pg 441 Pg 442 Pg 443 Pg 444 Pg 445 Pg 446 Pg 447 Pg 448 Pg 449
Terms of Service
Privacy Policy
Contact: info@tinkutara.com