Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 44
Question Number 219798 Answers: 0 Comments: 0
$$\mathrm{solve}\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)={y}^{\left(\mathrm{1}\right)} \left({t}\right){e}^{−{y}\left({t}\right)} \\ $$
Question Number 219797 Answers: 0 Comments: 0
$$\mathrm{solve} \\ $$$$\left({y}^{\left(\mathrm{2}\right)} \left({t}\right)\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{y}\left({t}\right)} \\ $$
Question Number 219796 Answers: 0 Comments: 0
$$\mathrm{Solve} \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left({y}\left({t}\right)\right)^{\mathrm{2}} −{ay}^{\left(\mathrm{1}\right)} \left({t}\right)−{by}\left({t}\right) \\ $$
Question Number 219795 Answers: 1 Comments: 0
$$\int_{\mathcal{D}=\left[\mathrm{0},\mathrm{1}\right]^{{N}} } \:\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \mathrm{d}{x}_{{h}} \\ $$
Question Number 219794 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{Y}_{\mathrm{0}} \left({t}\right){e}^{−\mathrm{3}{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$
Question Number 219793 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=? \\ $$
Question Number 219792 Answers: 1 Comments: 0
$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{{J}_{\mathrm{1}} \left({z}\right)}{{Y}_{\mathrm{0}} \left({z}\right)} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{z}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} −\mathrm{cos}\left(\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\right)}{{z}^{\mathrm{4}} } \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{J}_{\nu} \left({z}+{h}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right)}{{h}}\: \\ $$
Question Number 219789 Answers: 1 Comments: 4
Question Number 219787 Answers: 2 Comments: 0
Question Number 219786 Answers: 1 Comments: 0
Question Number 219785 Answers: 3 Comments: 0
Question Number 219784 Answers: 8 Comments: 0
Question Number 219871 Answers: 1 Comments: 0
$${F}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{sin}\left({t}\right)}{{t}^{\mathrm{2}} +\alpha^{\mathrm{2}} }{e}^{−{st}} \:\mathrm{d}{t} \\ $$$$\mathrm{F}\left(\mathrm{3}\right)=?? \\ $$
Question Number 219770 Answers: 1 Comments: 3
Question Number 219769 Answers: 2 Comments: 1
Question Number 219763 Answers: 3 Comments: 0
Question Number 219761 Answers: 2 Comments: 0
Question Number 219733 Answers: 2 Comments: 0
Question Number 219732 Answers: 1 Comments: 0
Question Number 219731 Answers: 1 Comments: 0
Question Number 219730 Answers: 0 Comments: 0
$${f}\left({w}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\theta\left({s}−\mathrm{1}\right)}{{s}\left({s}−\mathrm{1}\right)^{\alpha} }{e}^{−{sw}} \:\mathrm{d}{s} \\ $$$$\hat {\theta}\left({s}\right)=\begin{cases}{\mathrm{0}\:\:{s}<\mathrm{0}}\\{\mathrm{1}\:\:{s}>\mathrm{0}}\end{cases} \\ $$
Question Number 219725 Answers: 0 Comments: 1
Question Number 219724 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{prove}; \\ $$$$\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{3}\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{2}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:=\:\frac{\pi}{\mathrm{6}} \\ $$$$ \\ $$
Question Number 219723 Answers: 2 Comments: 0
Question Number 219722 Answers: 2 Comments: 0
Question Number 219721 Answers: 5 Comments: 0
Pg 39 Pg 40 Pg 41 Pg 42 Pg 43 Pg 44 Pg 45 Pg 46 Pg 47 Pg 48
Terms of Service
Privacy Policy
Contact: info@tinkutara.com