Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 44

Question Number 219869    Answers: 1   Comments: 0

Question Number 219868    Answers: 1   Comments: 0

Prove that; (d/dx) (((sin^( 2) x)/(1+cot x)) + ((cos^( 2) x)/(1+tan x))) = −cos 2x

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\frac{{d}}{{dx}}\:\left(\frac{\mathrm{sin}^{\:\mathrm{2}} {x}}{\mathrm{1}+\mathrm{cot}\:{x}}\:+\:\frac{\mathrm{cos}^{\:\mathrm{2}} {x}}{\mathrm{1}+\mathrm{tan}\:{x}}\right)\:=\:−\mathrm{cos}\:\mathrm{2}{x}\:\:\:\: \\ $$$$ \\ $$

Question Number 219866    Answers: 1   Comments: 0

Prove that; ∫^( π/2) _( 0) sin^(2x−1) θ cos^(2y−1) θ dθ = (1/2) ((Γ(x)Γ(y))/(Γ(x)+Γ(y)))

$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi/\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}{x}−\mathrm{1}} \theta\:\mathrm{cos}\:^{\mathrm{2}{y}−\mathrm{1}} \theta\:{d}\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma\left({x}\right)\Gamma\left({y}\right)}{\Gamma\left({x}\right)+\Gamma\left({y}\right)}\:\:\:\:\: \\ $$$$\: \\ $$

Question Number 219865    Answers: 1   Comments: 0

Prove that; ∫_( 0) ^( 1) lnΓ(x)dx = ln (√(2π))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{ln}\Gamma\left({x}\right){dx}\:=\:{ln}\:\sqrt{\mathrm{2}\pi} \\ $$$$ \\ $$

Question Number 219864    Answers: 1   Comments: 0

Prove that; ∫_( 0) ^( 1) (x^( n+1) /(x+1)) dx < (1/(2(n+1)))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}^{\:{n}+\mathrm{1}} }{{x}+\mathrm{1}}\:{dx}\:<\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$ \\ $$

Question Number 219863    Answers: 1   Comments: 0

Prove that; ∫^( ∞) _( 0) ((ln x)/(x^3 + x(√x) + 1)) dx = −((32π)/(81))sin(π/(18))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\infty} \:\frac{{ln}\:{x}}{{x}^{\mathrm{3}} +\:{x}\sqrt{{x}}\:+\:\mathrm{1}}\:{dx}\:=\:−\frac{\mathrm{32}\pi}{\mathrm{81}}{sin}\frac{\pi}{\mathrm{18}}\:\:\:\: \\ $$$$ \\ $$

Question Number 219853    Answers: 1   Comments: 0

If 0<a≤b Then prove that ∫_a ^( b) (sinx)^(2sin^2 x) ∙ (1−sin^2 x)^(1−sin^2 x) dx ≥ ((b−a)/2)

$$\mathrm{If}\:\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \left(\mathrm{sinx}\right)^{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\centerdot\:\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{1}−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:\geqslant\:\frac{\mathrm{b}−\mathrm{a}}{\mathrm{2}} \\ $$

Question Number 219849    Answers: 0   Comments: 0

Question Number 219846    Answers: 1   Comments: 0

If f:[a,b]→R 0<a≤b f - continuous Then prove that ((b^(4047) − a^(4047) )/(4047)) + ∫_a ^( b) f^2 (x^(2024) ) dx ≥ (1/(1012)) ∫_a^(2024) ^( b^(2024) ) f(x) dx

$$\mathrm{If}\:\:\:\mathrm{f}:\left[\mathrm{a},\mathrm{b}\right]\rightarrow\mathbb{R} \\ $$$$\:\:\:\:\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b} \\ $$$$\mathrm{f}\:-\:\mathrm{continuous} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{b}^{\mathrm{4047}} \:−\:\mathrm{a}^{\mathrm{4047}} }{\mathrm{4047}}\:+\:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\mathrm{f}\:^{\mathrm{2}} \:\left(\mathrm{x}^{\mathrm{2024}} \right)\:\mathrm{dx}\:\geqslant\:\frac{\mathrm{1}}{\mathrm{1012}}\:\int_{\boldsymbol{\mathrm{a}}^{\mathrm{2024}} } ^{\:\boldsymbol{\mathrm{b}}^{\mathrm{2024}} } \:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 219844    Answers: 2   Comments: 0

Question Number 219843    Answers: 0   Comments: 0

If a,b,c,d > 0 a^2 +b^2 +c^2 +d^2 = 4 Then prove that (1/((1+ab)^3 )) + (1/((1+ac)^3 )) + (1/((1+ad)^3 )) + (1/((1+bc)^3 )) + (1/((1+bd)^3 )) + (1/((1+cd)^3 )) ≥ (3/4)

$$\mathrm{If}\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:>\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ab}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ac}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ad}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{bc}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{bd}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{cd}\right)^{\mathrm{3}} }\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Question Number 219839    Answers: 1   Comments: 0

Question Number 219833    Answers: 0   Comments: 0

Question Number 219832    Answers: 1   Comments: 0

lim_(n→∞) n((1/(1+n)) +(1/(2+n)) +...+(1/(2n)) −ln(2))=?

$$ \\ $$$$\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \:{n}\left(\frac{\mathrm{1}}{\mathrm{1}+{n}}\:+\frac{\mathrm{1}}{\mathrm{2}+{n}}\:+...+\frac{\mathrm{1}}{\mathrm{2}{n}}\:−{ln}\left(\mathrm{2}\right)\right)=? \\ $$$$ \\ $$

Question Number 219831    Answers: 1   Comments: 0

prove lim_(h→0) (((g(z+h))/(g(z))))^(1/h) =e^(((d )/dz) ln (g(z))) =e^((g^((1)) (z))/(g(z)))

$$\mathrm{prove} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{g}\left({z}+{h}\right)}{\mathrm{g}\left({z}\right)}\right)^{\frac{\mathrm{1}}{{h}}} ={e}^{\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\:\mathrm{ln}\:\left(\mathrm{g}\left({z}\right)\right)} ={e}^{\frac{\mathrm{g}^{\left(\mathrm{1}\right)} \left({z}\right)}{\mathrm{g}\left({z}\right)}} \\ $$

Question Number 219806    Answers: 2   Comments: 0

lim_(h→0) (((cos(x+h))/(cos(x))))^(1/h) =??

$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{cos}\left({x}+{h}\right)}{\mathrm{cos}\left({x}\right)}\right)^{\frac{\mathrm{1}}{{h}}} =?? \\ $$

Question Number 219801    Answers: 1   Comments: 0

lim_(h→∞) h^ν J_ν (h)=??

$$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:{h}^{\nu} {J}_{\nu} \left({h}\right)=?? \\ $$

Question Number 219800    Answers: 0   Comments: 0

y^((2)) (t)=(1−e^t )y(t)+y^((1)) (t)

$${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left(\mathrm{1}−{e}^{{t}} \right){y}\left({t}\right)+{y}^{\left(\mathrm{1}\right)} \left({t}\right) \\ $$

Question Number 219799    Answers: 0   Comments: 0

y^((2)) (t)+y(t)=cos(t)

$${y}^{\left(\mathrm{2}\right)} \left({t}\right)+{y}\left({t}\right)=\mathrm{cos}\left({t}\right) \\ $$

Question Number 219798    Answers: 0   Comments: 0

solve y^((2)) (t)=y^((1)) (t)e^(−y(t))

$$\mathrm{solve}\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)={y}^{\left(\mathrm{1}\right)} \left({t}\right){e}^{−{y}\left({t}\right)} \\ $$

Question Number 219797    Answers: 0   Comments: 0

solve (y^((2)) (t))^2 =(1/(1+y(t)))

$$\mathrm{solve} \\ $$$$\left({y}^{\left(\mathrm{2}\right)} \left({t}\right)\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{y}\left({t}\right)} \\ $$

Question Number 219796    Answers: 0   Comments: 0

Solve y^((2)) (t)=(y(t))^2 −ay^((1)) (t)−by(t)

$$\mathrm{Solve} \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left({y}\left({t}\right)\right)^{\mathrm{2}} −{ay}^{\left(\mathrm{1}\right)} \left({t}\right)−{by}\left({t}\right) \\ $$

Question Number 219795    Answers: 1   Comments: 0

∫_(D=[0,1]^N ) Π_(h=1) ^N e^(−(1/2)x_h ) dx_h

$$\int_{\mathcal{D}=\left[\mathrm{0},\mathrm{1}\right]^{{N}} } \:\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \mathrm{d}{x}_{{h}} \\ $$

Question Number 219794    Answers: 0   Comments: 0

∫_0 ^( ∞) ((Y_0 (t)e^(−3t) )/(t^2 +1)) dt

$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{Y}_{\mathrm{0}} \left({t}\right){e}^{−\mathrm{3}{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$

Question Number 219793    Answers: 1   Comments: 0

∫_0 ^( ∞) (e^(−t) /(t^2 +1)) dt=?

$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=? \\ $$

Question Number 219792    Answers: 1   Comments: 0

lim_(z→∞) ((J_1 (z))/(Y_0 (z))) lim_(z→0) z((1−(1/2)z^2 −cos((z/(1−z^2 ))))/z^4 ) lim_(z→0) ((J_ν (z+h)Y_ν (z)−J_ν (z)Y_ν (z))/h)

$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{{J}_{\mathrm{1}} \left({z}\right)}{{Y}_{\mathrm{0}} \left({z}\right)} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{z}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} −\mathrm{cos}\left(\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\right)}{{z}^{\mathrm{4}} } \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{J}_{\nu} \left({z}+{h}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right)}{{h}}\: \\ $$

  Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com