Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 439
Question Number 181484 Answers: 0 Comments: 6
$${If}\:{a}\:{hen}\:{and}\:{a}\:{half} \\ $$$${lay}\:{an}\:{egg}\:{and}\:{a}\:{half} \\ $$$${in}\:{a}\:{day}\:{and}\:{a}\:{half} \\ $$$${how}\:{many}\:{eggs}\:{would} \\ $$$${one}\:{hen}\:{lay}\:{in}\:{one} \\ $$$${day}? \\ $$
Question Number 175240 Answers: 1 Comments: 1
Question Number 175230 Answers: 1 Comments: 0
Question Number 175221 Answers: 2 Comments: 0
Question Number 175218 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\lfloor\:\:\left(\:\mathrm{1}\:+\:\sqrt{\mathrm{5}}\:\right)^{\:\mathrm{8}} \:\rfloor\:=\:? \\ $$$$\:\:\: \\ $$
Question Number 175217 Answers: 0 Comments: 1
$$ \\ $$$$\:\:{lim}_{\:{x}\rightarrow\mathrm{0}} \left\{\:\lfloor\:\frac{{cos}\left({x}\right)}{{x}}\:\rfloor\:−\lfloor\frac{\mathrm{1}+{cos}\left({x}\right)}{\mathrm{1}−{cos}\left({x}\right)}\:\rfloor\right\} \\ $$
Question Number 175213 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{by}\:\mathrm{Method}\:\mathrm{of}\:\mathrm{variation}\:\mathrm{parameter} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }−\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sinx} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 175211 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Assume}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sequence}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{tend}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{constant}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{{u}},\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{as}} \\ $$$$\boldsymbol{\mathrm{n}}\rightarrow\infty,\:\boldsymbol{{u}}_{\boldsymbol{{n}}−\mathrm{1}} \rightarrow\boldsymbol{{u}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{u}}_{\boldsymbol{{n}}} \rightarrow\boldsymbol{{u}}. \\ $$$$\:\left(\boldsymbol{\mathrm{i}}\right)\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\:\boldsymbol{{u}}^{\mathrm{2}} +\boldsymbol{{u}}−\mathrm{1}=\mathrm{0} \\ $$$$\:\left(\boldsymbol{\mathrm{ii}}\right)\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+.....}}}}=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Question Number 175210 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:{y}'{x}\:+\:{y}\:=\:{y}^{\:\mathrm{2}} {ln}\left({x}\right) \\ $$$$\:\:\:\:{u}={y}^{\:−\mathrm{1}} \:\Rightarrow\:{u}'\:=−{y}'{y}^{\:−\mathrm{2}} \\ $$$$\:\:\:\:\:−{y}'{y}^{\:−\mathrm{2}} {x}\:−{y}^{−\mathrm{1}} =\:−{ln}\left({x}\right) \\ $$$$\:\:\:\:\:\:\:{u}'{x}\:−{u}\:=\:−{ln}\left({x}\right) \\ $$$$\:\:\:\:{u}'−\frac{\mathrm{1}}{{x}}\:{u}\:=\frac{−{ln}\left({x}\right)}{{x}}\: \\ $$$$\:\:\:\:\:{u}\:=\:{e}^{\:−\int−\frac{\mathrm{1}}{{x}}{dx}} \left(\:\int−\frac{{ln}\left({x}\right)}{{x}}{e}^{\:−\int\frac{\mathrm{1}}{{x}}{dx}} {dx}\:+{C}\right) \\ $$$$\:\:=\:\:{x}\:\left(−\int\:\frac{{ln}\left({x}\right)}{{x}^{\:\mathrm{2}} }{dx}\:+{C}\right) \\ $$$$\:\:\:\:{ln}\left({x}\right)={t} \\ $$$$\:\:\:\:\:\:\int{te}^{\:−{t}} {dt}=\:\left[\:−{e}^{\:−{t}} .{t}\:+\int{e}^{−{t}} {dt}\right] \\ $$$$\:\:\:\:\:\:=\:−\frac{\mathrm{1}}{{x}}{ln}\left({x}\right)\:−\frac{\mathrm{1}}{{x}} \\ $$$$\:\:\:\:\:\:{u}=\:−{ln}\left({x}\right)\:−{Cx}\:−\mathrm{1} \\ $$$$\:\:\:\:\:\:{y}\:=\:\frac{\mathrm{1}}{−{ln}\left({x}\right)−{Cx}−\mathrm{1}}\:\checkmark \\ $$
Question Number 175199 Answers: 1 Comments: 0
Question Number 175193 Answers: 2 Comments: 0
Question Number 175191 Answers: 2 Comments: 1
$$\int\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}{dx}=? \\ $$
Question Number 175188 Answers: 1 Comments: 0
Question Number 175180 Answers: 3 Comments: 0
$${a}_{{n}} \:{is}\:{an}\:{AP}\:{and}\:{S}_{{n}} \:{is}\:{sum}\:{of}\:{n}\:{terms} \\ $$$${of}\:{this}\:{AP}. \\ $$$${Given}\:{that}\:{S}_{\mathrm{11}} −{S}_{\mathrm{7}} =\mathrm{72},\:{determine} \\ $$$${a}_{\mathrm{6}} +{a}_{\mathrm{13}} . \\ $$
Question Number 175176 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\: \\ $$$$\mathrm{points}\:\mathrm{equidistant}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point} \\ $$$${A}\left(\mathrm{4},\:−\mathrm{1}\right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:{x}−{y}+\mathrm{2}=\mathrm{0}. \\ $$
Question Number 175175 Answers: 1 Comments: 0
Question Number 175174 Answers: 0 Comments: 0
Question Number 175173 Answers: 0 Comments: 0
Question Number 175172 Answers: 0 Comments: 0
Question Number 175166 Answers: 1 Comments: 0
Question Number 175160 Answers: 1 Comments: 1
Question Number 175154 Answers: 1 Comments: 1
Question Number 175149 Answers: 1 Comments: 0
Question Number 175148 Answers: 0 Comments: 1
Question Number 175147 Answers: 1 Comments: 0
$$\:\:\:\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{in}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\:\:\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\underset{{m}\rightarrow\infty\:} {\mathrm{lim}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\mathrm{1}+\mathrm{cos}^{\mathrm{2}{m}} \left({n}!\pi{x}\right)\right]\: \\ $$
Question Number 175137 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{5}}]{\mathrm{5}{x}−\mathrm{9}}\:\sqrt[{\mathrm{4}}]{\mathrm{4}{x}−\mathrm{7}}\:\sqrt[{\mathrm{3}}]{\mathrm{3}{x}−\mathrm{5}}\:\sqrt{\mathrm{2}{x}−\mathrm{3}}−\mathrm{1}}{{x}−\mathrm{2}}=? \\ $$
Pg 434 Pg 435 Pg 436 Pg 437 Pg 438 Pg 439 Pg 440 Pg 441 Pg 442 Pg 443
Terms of Service
Privacy Policy
Contact: info@tinkutara.com