Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 439

Question Number 169048    Answers: 0   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^2 −x+2))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{{x}^{\mathrm{2}} −{x}+\mathrm{2}}{dx} \\ $$

Question Number 169044    Answers: 1   Comments: 0

does the series Σ_(n=1) ^∞ e^(−2(n−1)) sin(((nπ)/2)) is converge or diverge ?

$${does}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\left({n}−\mathrm{1}\right)} \:{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$

Question Number 169038    Answers: 2   Comments: 1

Question Number 169042    Answers: 0   Comments: 0

Question Number 169013    Answers: 2   Comments: 1

Question Number 169009    Answers: 1   Comments: 10

Question Number 169004    Answers: 1   Comments: 3

lim_(x→(π/2)) (((sinx−1)/(x−(π/2))))=?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\frac{{sinx}−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}\right)=? \\ $$

Question Number 169000    Answers: 1   Comments: 0

Question Number 168982    Answers: 1   Comments: 1

Question Number 168980    Answers: 0   Comments: 7

Question Number 168979    Answers: 0   Comments: 0

f(x,y,z) = (3x^2 y,x^3 +y^3 , 2z) prove that the function has a potential to be determined.

$${f}\left({x},{y},{z}\right)\:=\:\left(\mathrm{3}{x}^{\mathrm{2}} {y},{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ,\:\mathrm{2}{z}\right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{potential} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$

Question Number 168978    Answers: 1   Comments: 0

Evaluate (a) ∫((t−2)/(t−3(√(2t−4)) +2)) dt (b) ∫((3z)/((1−4z−2z^2 )^2 )) dz

$$\mathrm{Evaluate}\: \\ $$$$\left(\mathrm{a}\right)\:\int\frac{{t}−\mathrm{2}}{{t}−\mathrm{3}\sqrt{\mathrm{2}{t}−\mathrm{4}}\:+\mathrm{2}}\:{dt}\: \\ $$$$\left(\mathrm{b}\right)\:\int\frac{\mathrm{3}{z}}{\left(\mathrm{1}−\mathrm{4}{z}−\mathrm{2}{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dz} \\ $$

Question Number 168977    Answers: 0   Comments: 0

check that the function u(x,t) = exp{−((n^2 α^2 π^2 )/L^2 )t} sin((nπx)/L) n = 1,2,... satisfy the heat equation heat equation α^2 (∂^2 u/∂x^2 ) = (∂u/∂t), 0 < x < L

$$\mathrm{check}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function} \\ $$$${u}\left({x},{t}\right)\:=\:\mathrm{exp}\left\{−\frac{{n}^{\mathrm{2}} \alpha^{\mathrm{2}} \pi^{\mathrm{2}} }{{L}^{\mathrm{2}} }{t}\right\}\:\mathrm{sin}\frac{{n}\pi{x}}{{L}} \\ $$$${n}\:=\:\mathrm{1},\mathrm{2},...\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{heat}\:\mathrm{equation} \\ $$$$\boldsymbol{\mathrm{heat}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\alpha^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }\:=\:\frac{\partial{u}}{\partial{t}},\:\mathrm{0}\:<\:{x}\:<\:{L} \\ $$

Question Number 168952    Answers: 1   Comments: 0

Question Number 168948    Answers: 1   Comments: 0

Question Number 168946    Answers: 2   Comments: 1

Question Number 168942    Answers: 0   Comments: 2

Question Number 168956    Answers: 4   Comments: 0

solve ⌊ x ⌋ + ⌊ (x/6) ⌋ =(2/3) x

$$ \\ $$$$\:\:\:\:{solve} \\ $$$$\:\:\lfloor\:{x}\:\rfloor\:+\:\lfloor\:\frac{{x}}{\mathrm{6}}\:\rfloor\:=\frac{\mathrm{2}}{\mathrm{3}}\:{x} \\ $$$$ \\ $$

Question Number 168937    Answers: 1   Comments: 0

Determine m & n such that: digit-sum(m^2 )=n_(&_(digit-sum(n^2 )=m) ) ^■ digit-sum(abc..^(−) .)=a+b+c+...

$$ \\ $$$$\underline{\mathcal{D}{etermine}\:{m}\:\&\:{n}\:{such}\:{that}:} \\ $$$$\:\:\underset{\underset{{digit}-{sum}\left({n}^{\mathrm{2}} \right)={m}} {\&}} {\:{digit}-{sum}\left({m}^{\mathrm{2}} \right)={n}} \\ $$$$\:^{\blacksquare} {digit}-{sum}\left(\overline {{abc}..}.\right)={a}+{b}+{c}+...\:\:\:\:\:\:\:\: \\ $$

Question Number 168968    Answers: 0   Comments: 0

Question Number 168966    Answers: 2   Comments: 0

lim_(x→0) ((∫_0 ^( x) (∫_0 ^( u^2 ) tan^(−1) (1+t)dt)dt )/(x−x cos x)) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\int_{\mathrm{0}} ^{\:{x}} \:\left(\int_{\mathrm{0}} ^{\:{u}^{\mathrm{2}} } \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}+{t}\right){dt}\right){dt}\:}{{x}−{x}\:\mathrm{cos}\:{x}}\:=? \\ $$

Question Number 168964    Answers: 2   Comments: 0

lim_(x→0) ∫_0 ^x ((sin 2t)/( (√(4+t^2 )) ∫_0 ^x ((√(1+t))−1)dt)) dt =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{2}{t}}{\:\sqrt{\mathrm{4}+{t}^{\mathrm{2}} }\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\left(\sqrt{\mathrm{1}+{t}}−\mathrm{1}\right){dt}}\:{dt}\:=?\: \\ $$

Question Number 168926    Answers: 2   Comments: 2

Question Number 168921    Answers: 1   Comments: 0

Question Number 168911    Answers: 1   Comments: 1

Question Number 168910    Answers: 0   Comments: 3

Resolve 1) (x−y)ydx−x^2 dy=0 2)(2x−y)dx+(4x−2y+3)dy=0

$${Resolve} \\ $$$$\left.\mathrm{1}\right)\:\left({x}−{y}\right){ydx}−{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\left(\mathrm{2}{x}−{y}\right){dx}+\left(\mathrm{4}{x}−\mathrm{2}{y}+\mathrm{3}\right){dy}=\mathrm{0} \\ $$

  Pg 434      Pg 435      Pg 436      Pg 437      Pg 438      Pg 439      Pg 440      Pg 441      Pg 442      Pg 443   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com