Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 439

Question Number 174763    Answers: 2   Comments: 0

Question Number 174758    Answers: 1   Comments: 3

where am i wrong ?

$${where}\:{am}\:{i}\:{wrong}\:?\: \\ $$$$ \\ $$

Question Number 174755    Answers: 0   Comments: 1

Question Number 174754    Answers: 0   Comments: 0

Question Number 174751    Answers: 0   Comments: 0

Question Number 174742    Answers: 0   Comments: 0

≪_• ^• I THINK...^ ^(−) _•^• _(−) ≫ One question per post, IDEAL 👍👍👍 Two questions per post,OK (BEARABLE) (👎+👍)/2 Three or more questions:NO, NO, NO! 👎👎👎

$$\:\:\:\:\:\ll_{\bullet} ^{\bullet} \underset{−} {\overline {\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{THINK}}...^{} }}\:_{\bullet} ^{\bullet} \gg \\ $$$$\boldsymbol{\mathrm{One}}\:\boldsymbol{\mathrm{question}}\:\boldsymbol{\mathrm{per}}\:\boldsymbol{\mathrm{post}},\:\boldsymbol{\mathrm{IDEAL}} \\ $$👍👍👍 $$\boldsymbol{\mathrm{Two}}\:\boldsymbol{\mathrm{questions}}\:\boldsymbol{\mathrm{per}}\:\boldsymbol{\mathrm{post}},\boldsymbol{\mathrm{OK}}\:\left(\boldsymbol{\mathrm{BEARABLE}}\right) \\ $$(👎+👍)/2 $$\boldsymbol{\mathrm{Three}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{more}}\:\boldsymbol{\mathrm{questions}}:\boldsymbol{\mathrm{NO}},\:\boldsymbol{\mathrm{NO}},\:\boldsymbol{\mathrm{NO}}! \\ $$👎👎👎

Question Number 174737    Answers: 1   Comments: 0

A graduating student keeps applying for a job until she gets an offer. The probability of getting an offer at any trial is 0.35. What is the expected number of applications?

$$\mathrm{A}\:\mathrm{graduating}\:\mathrm{student}\:\mathrm{keeps}\:\mathrm{applying} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{job}\:\mathrm{until}\:\mathrm{she}\:\mathrm{gets}\:\mathrm{an}\:\mathrm{offer}.\:\mathrm{The} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{getting}\:\mathrm{an}\:\mathrm{offer}\:\mathrm{at}\:\mathrm{any} \\ $$$$\mathrm{trial}\:\mathrm{is}\:\mathrm{0}.\mathrm{35}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{expected}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{applications}? \\ $$

Question Number 174735    Answers: 0   Comments: 0

Question Number 174732    Answers: 1   Comments: 0

Question Number 174728    Answers: 1   Comments: 3

Question Number 174727    Answers: 1   Comments: 0

∫_0 ^∞ (e^(−x^2 ) /((x^2 +a^2 )^2 ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 174719    Answers: 1   Comments: 0

Question Number 174715    Answers: 2   Comments: 0

lim_(x→∞) cos((π/4))cos((π/8)) ... cos((π/2^(n+1) ))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\left(\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}\right)\:...\:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)\: \\ $$

Question Number 174709    Answers: 1   Comments: 3

Question Number 174708    Answers: 1   Comments: 1

Question Number 174696    Answers: 3   Comments: 0

prove that : 𝛀 = ∫_0 ^( ∞) ( (( x)/( sinh (x))) )^( 3) dx =(𝛑^( 2) /(16)) (12− 𝛑^( 2) ) written and prepared by : m.n

$$ \\ $$$$\:\:\:\:\:\boldsymbol{{prove}}\:\:\boldsymbol{{that}}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\infty} \left(\:\frac{\:\boldsymbol{{x}}}{\:\boldsymbol{{sinh}}\:\left(\boldsymbol{{x}}\right)}\:\right)^{\:\mathrm{3}} \boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}^{\:\mathrm{2}} }{\mathrm{16}}\:\left(\mathrm{12}−\:\boldsymbol{\pi}^{\:\mathrm{2}} \right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{written}}\:\:\boldsymbol{{and}}\:\boldsymbol{{prepared}}\:\boldsymbol{{by}}\::\:\:\boldsymbol{{m}}.\boldsymbol{{n}}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 174689    Answers: 0   Comments: 3

Question Number 174685    Answers: 1   Comments: 0

prove that : Ω = ∫_0 ^( ∞) (( x^( 2) )/(cosh(x ))) dx = (π^( 3) /( 8))

$$ \\ $$$$\:\:\:\:\:{prove}\:{that}\:: \\ $$$$\: \\ $$$$\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\:{x}^{\:\mathrm{2}} }{{cosh}\left({x}\:\right)}\:{dx}\:=\:\frac{\pi^{\:\mathrm{3}} }{\:\mathrm{8}} \\ $$$$ \\ $$

Question Number 174683    Answers: 2   Comments: 0

lim_(x→0) [(x^2 /(sinx tanx ))] [∙] greatest integer function

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{{x}^{\mathrm{2}} }{\mathrm{sin}{x}\:\mathrm{tan}{x}\:}\right] \\ $$$$\left[\centerdot\right]\:{greatest}\:{integer}\:{function} \\ $$

Question Number 174684    Answers: 1   Comments: 0

Q: I , J are two ideals of commutative ring , ( R ,⊕, ) .prove that : (√( I ∩ J )) =^? (√( I )) ∩ (√( J )) m.n note : (√(I )) = { x ∈ R ∣ ∃ n∈ N , x^( n) ∈ I }

$$ \\ $$$$\boldsymbol{\mathrm{Q}}:\:\:\boldsymbol{\mathrm{I}}\:,\:\boldsymbol{\mathrm{J}}\:\:\boldsymbol{{are}}\:\boldsymbol{{two}}\:\boldsymbol{{ideals}}\:\boldsymbol{{of}}\:\:\boldsymbol{{commutative}}\: \\ $$$$\:\:\:\:\boldsymbol{{ring}}\:,\:\left(\:\boldsymbol{\mathrm{R}}\:,\oplus,\: \:\right)\:.\boldsymbol{{prove}}\:\boldsymbol{{that}}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\sqrt{\:\boldsymbol{\mathrm{I}}\:\cap\:\boldsymbol{\mathrm{J}}\:}\:\:\overset{?} {=}\:\sqrt{\:\boldsymbol{\mathrm{I}}\:}\:\:\cap\:\:\sqrt{\:\boldsymbol{\mathrm{J}}\:}\:\:\:\:\:\boldsymbol{{m}}.\boldsymbol{{n}} \\ $$$$\:\:\:\:\boldsymbol{{note}}\::\:\sqrt{\boldsymbol{\mathrm{I}}\:}\:=\:\left\{\:\boldsymbol{{x}}\:\in\:\boldsymbol{\mathrm{R}}\:\mid\:\exists\:\boldsymbol{{n}}\in\:\mathbb{N}\:,\:\boldsymbol{{x}}^{\:\boldsymbol{{n}}} \:\in\:\boldsymbol{\mathrm{I}}\:\right\}\: \\ $$$$\: \\ $$

Question Number 174681    Answers: 0   Comments: 0

In a game of lotto, balls are numbered 1 through to 90. They are placed in a barrel and five balls are drawn out without replacement. The balls are of the same size and are equally like to be drawn. The first five balls drawn out are 28 - 06 - 27 - 54 - 86. What is the probability that the next ball drawn out will be number 18?

In a game of lotto, balls are numbered 1 through to 90. They are placed in a barrel and five balls are drawn out without replacement. The balls are of the same size and are equally like to be drawn. The first five balls drawn out are 28 - 06 - 27 - 54 - 86. What is the probability that the next ball drawn out will be number 18?

Question Number 174677    Answers: 0   Comments: 1

Question Number 174674    Answers: 0   Comments: 0

In △ABC the following relationship holds: a^4 < (b^2 + c^2 )^2 + 9R^4

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\mathrm{a}^{\mathrm{4}} \:<\:\left(\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\:\mathrm{9R}^{\mathrm{4}} \\ $$

Question Number 174673    Answers: 0   Comments: 0

Question Number 174672    Answers: 1   Comments: 0

for what values a and b is the function differentiable at x=2? 4x−2x^(2 ) x≤2 ax^(3 ) +bx,x>2

$${for}\:{what}\:{values}\:{a}\:{and}\:{b}\:{is}\:{the}\: \\ $$$${function}\:{differentiable}\:{at}\:{x}=\mathrm{2}? \\ $$$$\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}\:} {x}\leqslant\mathrm{2} \\ $$$${ax}^{\mathrm{3}\:} +{bx},{x}>\mathrm{2} \\ $$

Question Number 174668    Answers: 1   Comments: 0

  Pg 434      Pg 435      Pg 436      Pg 437      Pg 438      Pg 439      Pg 440      Pg 441      Pg 442      Pg 443   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com