Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 436

Question Number 175800    Answers: 1   Comments: 0

Find prime numbers of 3 digits such that equal to sum of 3 diffrent numbers of prime

$$\:\mathrm{Find}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{3}\:\mathrm{digits}\:\mathrm{such}\:\mathrm{that}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\:\mathrm{sum}\:\mathrm{of}\:\mathrm{3}\:\mathrm{diffrent}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{prime} \\ $$

Question Number 175793    Answers: 0   Comments: 2

if xy+y^2 +zx = 48; where x,y,z are three positive real numbers then find the maximum possible value of the product (xyz)

$$\:\:\mathrm{if}\:\mathrm{xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{zx}\:=\:\mathrm{48};\:\mathrm{where}\:\mathrm{x},\mathrm{y},\mathrm{z} \\ $$$$\:\:\mathrm{are}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible} \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{product}\:\left(\mathrm{xyz}\right) \\ $$

Question Number 175799    Answers: 2   Comments: 0

For x ,y ε Z^+ such that 7x+9y=405. Find max value of x−y.

$$\:\:\mathrm{For}\:\mathrm{x}\:,\mathrm{y}\:\varepsilon\:\mathbb{Z}^{+} \:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\mathrm{7x}+\mathrm{9y}=\mathrm{405}.\:\mathrm{Find}\:\mathrm{max}\:\mathrm{value} \\ $$$$\:\:\mathrm{of}\:\mathrm{x}−\mathrm{y}. \\ $$

Question Number 175785    Answers: 2   Comments: 3

Question Number 175780    Answers: 0   Comments: 0

find the range of the function f(x) = cosx{sinx + (√(sin^2 x + sin^2 α )) }

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{cosx}\left\{\mathrm{sin}{x}\:+\:\sqrt{\mathrm{sin}^{\mathrm{2}} {x}\:+\:\mathrm{sin}^{\mathrm{2}} \alpha\:\:}\:\right\}\:\: \\ $$

Question Number 175770    Answers: 0   Comments: 0

P_n = e^( ((1/1) −(1/2)) +((1/3) −(1/4)) +...+((1/(n−1)) −(1/n))) = e^( (1−(1/2) +(1/3) −(1/4) +...+(1/(n−1)) −(1/n))) = e^( Σ_(k=1) ^n (( (−1 )^( k+1) )/k)) ∴ P = lim_( n→∞) (e^( Σ_(k=1) ^n (((−1)^( k+1) )/k)) ) = e^( lim_( n→∞) ( Σ_(k=1) ^n (((−1)^(k+1) )/k))) = e^( ln(2)) = 2

$$ \\ $$$$\:\:\:\mathrm{P}_{{n}} \:=\:{e}^{\:\left(\frac{\mathrm{1}}{\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\left(\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\right)\:+...+\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\:+...+\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\:\left(−\mathrm{1}\:\right)^{\:{k}+\mathrm{1}} }{{k}}} \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:\:\mathrm{P}\:=\:{lim}_{\:{n}\rightarrow\infty} \left({e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{k}+\mathrm{1}} }{{k}}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{lim}_{\:{n}\rightarrow\infty} \left(\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{ln}\left(\mathrm{2}\right)} =\:\mathrm{2} \\ $$

Question Number 175766    Answers: 1   Comments: 1

Number of even composite factors of 2520?

$${Number}\:{of}\:\:{even}\:{composite}\:{factors}\:{of}\:\mathrm{2520}? \\ $$

Question Number 175765    Answers: 1   Comments: 0

lim_(x→∞) (1+(2/x))^(−x) =?

$${li}\underset{{x}\rightarrow\infty} {{m}}\left(\mathrm{1}+\frac{\mathrm{2}}{{x}}\right)^{−{x}} =? \\ $$

Question Number 175762    Answers: 0   Comments: 0

lim_(x→0) ([((nsinx )/x)]+[((ntanx )/x)]) , where [:] denotes the greatest integer function and n∈I−{0}

$$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\left(\left[\frac{\boldsymbol{\mathrm{nsinx}}\:}{\boldsymbol{\mathrm{x}}}\right]+\left[\frac{\boldsymbol{\mathrm{ntanx}}\:}{\boldsymbol{\mathrm{x}}}\right]\right)\:,\:\boldsymbol{\mathrm{where}}\:\left[:\right]\:\boldsymbol{\mathrm{denotes}} \\ $$$$\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{greatest}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{function}}\:\:\boldsymbol{\mathrm{and}}\: \\ $$$$\:\:\boldsymbol{\mathrm{n}}\in\mathbb{I}−\left\{\mathrm{0}\right\} \\ $$

Question Number 175758    Answers: 1   Comments: 0

Question Number 175756    Answers: 2   Comments: 1

Question Number 175750    Answers: 1   Comments: 0

Question Number 175746    Answers: 1   Comments: 0

Solve the differential equation 2(2xy+4y−3)dx+(x+2)^2 dy=0 Mastermind

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{2}\left(\mathrm{2xy}+\mathrm{4y}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 175740    Answers: 3   Comments: 0

Question Number 175739    Answers: 0   Comments: 2

x^3 −5x−6=0 x=?

$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{5x}−\mathrm{6}=\mathrm{0} \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 175734    Answers: 0   Comments: 0

form a differential equation from the following 1) x^2 +y^2 −2ax+1=0 a=constant 2) y=Aϱ^(3x) +Bϱ^(−2x)

$${form}\:{a}\:{differential}\:{equation}\:{from}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{1}=\mathrm{0}\:\:{a}={constant} \\ $$$$\left.\mathrm{2}\right)\:{y}={A}\varrho^{\mathrm{3}{x}} +{B}\varrho^{−\mathrm{2}{x}} \\ $$

Question Number 175731    Answers: 0   Comments: 0

Question Number 175715    Answers: 2   Comments: 1

how is the solution of this qution (√((x)(x+1)(x+2)(x+3)+1)) when determinant (((x=50))) determinant ((),())

$${how}\:{is}\:{the}\:{solution}\:{of}\:{this}\:{qution} \\ $$$$ \\ $$$$\sqrt{\left({x}\right)\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)+\mathrm{1}} \\ $$$${when}\:\:\:\:\:\begin{array}{|c|}{{x}=\mathrm{50}}\\\hline\end{array}\begin{array}{|c|c|}\\\\\hline\end{array} \\ $$

Question Number 175717    Answers: 1   Comments: 0

Question Number 175709    Answers: 2   Comments: 0

Question Number 175706    Answers: 2   Comments: 1

Question Number 175697    Answers: 2   Comments: 0

∫_( 0) ^( 1) ((3x^3 − x^2 + 2x − 4)/( (√(x^2 − 3x + 2)))) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{2}}}\:\mathrm{dx} \\ $$

Question Number 175685    Answers: 2   Comments: 0

3^5^x = 5^3^x solve for x

$$\mathrm{3}^{\mathrm{5}^{{x}} } =\:\mathrm{5}^{\mathrm{3}^{{x}} } \\ $$$${solve}\:{for}\:{x} \\ $$

Question Number 175674    Answers: 2   Comments: 0

Question Number 175672    Answers: 0   Comments: 0

Question Number 175669    Answers: 0   Comments: 0

∫(([cos^(−1) x{(√((1−x^2 )))}]^(−1) )/(log_e {1+(((sin[2x(√((1−x^2 ))) ])/π) }))dx

$$\:\:\int\frac{\left[\mathrm{cos}^{−\mathrm{1}} {x}\left\{\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\right\}\right]^{−\mathrm{1}} }{\mathrm{log}_{{e}} \left\{\mathrm{1}+\left(\frac{\mathrm{sin}\left[\mathrm{2}{x}\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\:\right]}{\pi}\:\right\}\right.}{dx} \\ $$

  Pg 431      Pg 432      Pg 433      Pg 434      Pg 435      Pg 436      Pg 437      Pg 438      Pg 439      Pg 440   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com