Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 436
Question Number 174677 Answers: 0 Comments: 1
Question Number 174674 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\mathrm{a}^{\mathrm{4}} \:<\:\left(\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\:\mathrm{9R}^{\mathrm{4}} \\ $$
Question Number 174673 Answers: 0 Comments: 0
Question Number 174672 Answers: 1 Comments: 0
$${for}\:{what}\:{values}\:{a}\:{and}\:{b}\:{is}\:{the}\: \\ $$$${function}\:{differentiable}\:{at}\:{x}=\mathrm{2}? \\ $$$$\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}\:} {x}\leqslant\mathrm{2} \\ $$$${ax}^{\mathrm{3}\:} +{bx},{x}>\mathrm{2} \\ $$
Question Number 174668 Answers: 1 Comments: 0
Question Number 174666 Answers: 1 Comments: 0
Question Number 174665 Answers: 0 Comments: 0
$${find}\:{the}\:{domain}\:{and}\:{range}\:{of}\:{tbe}\:{following} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{y}\:=\:{cot}\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{y}\:=\:{sin}\mid{x}\mid \\ $$$$\left.\mathrm{3}\right)\:\mid{y}\mid\:=\:{cosx} \\ $$$$\left.\mathrm{4}\right)\:{y}\:=\:{cos}\left({cosx}\right) \\ $$$$\left.\mathrm{5}\right)\:{y}\:=\mid{cscx}\mid\:−\mathrm{1} \\ $$$$\left.\mathrm{6}\right)\:{y}\:=\:{sin}\left({sinx}\right) \\ $$
Question Number 174664 Answers: 1 Comments: 0
Question Number 174661 Answers: 1 Comments: 0
$$\mathrm{After}\:\mathrm{being}\:\mathrm{marked}\:\mathrm{down}\:\mathrm{20}\:\mathrm{percent}. \\ $$$$\mathrm{a}\:\mathrm{calculator}\:\mathrm{sells}\:\mathrm{for}\:\$\mathrm{10}.\:\mathrm{The}\:\mathrm{Original} \\ $$$$\mathrm{selling}\:\mathrm{price}\:\mathrm{was}\:? \\ $$
Question Number 174655 Answers: 1 Comments: 0
$$\mathrm{Factorize}\:{a}^{\mathrm{3}} \:−\:\mathrm{16}{a}\:−\:\mathrm{3} \\ $$
Question Number 174654 Answers: 0 Comments: 1
$$\mathrm{Factorize}\:{x}^{\mathrm{9}} \:+\:{x}^{\mathrm{7}} \:+\:\mathrm{1} \\ $$
Question Number 174649 Answers: 0 Comments: 3
Question Number 174647 Answers: 0 Comments: 0
Question Number 174635 Answers: 2 Comments: 0
Question Number 174628 Answers: 1 Comments: 2
$$\:\:\:\Omega\:=\:\int\:\frac{{x}}{\mathrm{1}+\mathrm{csc}\:{x}}\:{dx}\:=? \\ $$
Question Number 174627 Answers: 0 Comments: 0
Question Number 174626 Answers: 0 Comments: 0
Question Number 174625 Answers: 0 Comments: 0
Question Number 174624 Answers: 0 Comments: 0
Question Number 174622 Answers: 0 Comments: 1
Question Number 174620 Answers: 0 Comments: 1
Question Number 174619 Answers: 2 Comments: 0
Question Number 174613 Answers: 1 Comments: 0
$$\mathrm{In}\:\mathrm{a}\:\mathrm{mixture}\:\mathrm{of}\:\:\mathrm{Skettles}\:\mathrm{and}\:\mathrm{M\&M}'\mathrm{s}, \\ $$$$\mathrm{80\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pieces}\:\mathrm{are}\:\mathrm{M\&M}'\mathrm{s}.\:\mathrm{A}\:\mathrm{fourth} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{mixture}\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{by}\:\mathrm{a}\:\mathrm{second} \\ $$$$\mathrm{mixture},\:\mathrm{resulting}\:\mathrm{in}\:\mathrm{combination} \\ $$$$\mathrm{which}\:\mathrm{contain}\:\mathrm{16\%}\:\mathrm{Skittles}\:\mathrm{in}\:\mathrm{total}. \\ $$$$\mathrm{What}\:\mathrm{was}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{Skittles} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{second}\:\mathrm{mixture}? \\ $$
Question Number 174612 Answers: 0 Comments: 1
Question Number 174611 Answers: 0 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{expected}\:\mathrm{payback}\:\mathrm{for}\:\mathrm{a}\: \\ $$$$\mathrm{game}\:\mathrm{in}\:\mathrm{which}\:\mathrm{you}\:\mathrm{bet}\:\$\mathrm{8}.\mathrm{00}\:\mathrm{on}\:\mathrm{any} \\ $$$$\mathrm{number}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{99}\:\mathrm{and}\:\mathrm{if}\:\mathrm{your} \\ $$$$\mathrm{number}\:\mathrm{comes}\:\mathrm{up},\:\mathrm{you}\:\mathrm{win}\:\$\mathrm{2},\mathrm{000}.\mathrm{00} \\ $$
Question Number 174610 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{this}\:{integral}: \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:{dx} \\ $$
Pg 431 Pg 432 Pg 433 Pg 434 Pg 435 Pg 436 Pg 437 Pg 438 Pg 439 Pg 440
Terms of Service
Privacy Policy
Contact: info@tinkutara.com