Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 436
Question Number 175670 Answers: 1 Comments: 0
$${Solve}\:{the}\:{differential}\:{equation} \\ $$$$\left(\mathrm{1}+{y}^{\mathrm{2}} \right){dx}−\left(\mathrm{1}+{x}^{\mathrm{2}} \right){xydy}=\mathrm{0} \\ $$
Question Number 181509 Answers: 1 Comments: 0
$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{3xy}−\mathrm{5x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{1}\right)=−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 175655 Answers: 1 Comments: 0
Question Number 175653 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:{Q}:\:\:{prove}\:{that}\:{the}\:{following} \\ $$$$\:\:\:\:\:{equation}\:{has}\:{no}\:{solution}. \\ $$$$ \\ $$$$\:\:\:\sqrt{{x}\:+\lfloor\:{x}\:\rfloor}\:+\:\sqrt{{x}\:−\sqrt{{x}}\:}\:=\:\mathrm{1} \\ $$$$ \\ $$
Question Number 175650 Answers: 0 Comments: 0
$$\: \\ $$$$ \\ $$$${cos}\left(\mathrm{5}{x}\right)=\:{a}.{cos}^{\:\mathrm{5}} \left({x}\right)+{b}.{cos}^{\:\mathrm{4}} \left({x}\right)+{c}.{cos}^{\mathrm{3}} \left({x}\right)+\:{d}.{cos}^{\:\mathrm{2}} \left({x}\right)+{e}.{cos}\left({x}\right)+{f} \\ $$$$\:\:\:\:\:\:{a}\:,\:{b}\:,\:{c}\:,\:{d}\:,\:{e}\:,\:{f}\:=? \\ $$$$ \\ $$$$ \\ $$
Question Number 175652 Answers: 0 Comments: 0
Question Number 175644 Answers: 0 Comments: 0
Question Number 175639 Answers: 1 Comments: 0
$${x}^{\mathrm{99}} +{y}^{\mathrm{99}} =\:{x}^{\mathrm{100}} \\ $$$${Interger}\:{solutions}?\: \\ $$
Question Number 175638 Answers: 0 Comments: 0
$$\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\:{sin}\left(\:\mathrm{3}{x}\:\right)}{\:\sqrt{\:\mathrm{1}−\:{sin}\left({x}\right).{cos}\left({x}\right)}}\:{dx}\:=\:\mathrm{2}\left(\sqrt{\:{a}}\:.{ln}\left(\:\mathrm{1}\:+\:\sqrt{{b}\:}\:\:\right)\:+\:{c}\:\right) \\ $$$$ \\ $$$${find}\:{the}\:{value}\:{of}\::\:\:\:\:\:\:{a}\:+\:{b}\:+\:{c}\:=\:?\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\: \\ $$
Question Number 175637 Answers: 1 Comments: 0
Question Number 175620 Answers: 0 Comments: 1
$${the}\:{domain}\:{of}\:\:{f}\left({x}\right)\:\:=\:\:\sqrt{\mathrm{log}_{{x}} \left\{{x}\right\}}\:\:; \\ $$$$\left\{.\right\}\:{denote}\:{the}\:{fractional}\:{part}\:{is} \\ $$
Question Number 175618 Answers: 1 Comments: 2
Question Number 175614 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{4}{t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}}{dt} \\ $$
Question Number 175608 Answers: 1 Comments: 3
Question Number 175602 Answers: 1 Comments: 2
$$\:\int\:\frac{\mathrm{dx}}{\mathrm{csc}\:\mathrm{x}+\:\mathrm{cos}\:\mathrm{x}}\:=? \\ $$
Question Number 175601 Answers: 2 Comments: 0
Question Number 175623 Answers: 1 Comments: 0
$$\:\mathrm{min}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{5}}\:+\sqrt{\mathrm{4x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{10}} \\ $$
Question Number 175624 Answers: 3 Comments: 0
$$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{6}} +\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} +\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f} \\ $$$$\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{such} \\ $$$$\:\:\mathrm{that}\:\:\mathrm{p}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:;\:\mathrm{p}\left(\mathrm{2}\right)\:=\:\mathrm{2}\:;\:\:\mathrm{p}\left(\mathrm{3}\right)\:=\:\mathrm{3} \\ $$$$\:\:\mathrm{p}\left(\mathrm{4}\right)\:=\:\mathrm{4}\:;\:\mathrm{p}\left(\mathrm{5}\right)\:=\:\mathrm{5}\:;\:\mathrm{p}\left(\mathrm{6}\right)\:=\:\mathrm{6}\:\:\mathrm{then} \\ $$$$\:\:\mathrm{find}\:\:\mathrm{p}\left(\mathrm{7}\right)\:=\:? \\ $$
Question Number 175595 Answers: 0 Comments: 0
Question Number 175593 Answers: 0 Comments: 3
$$\mathrm{If}\:\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{a}}&{\mathrm{log}\left(\mathrm{a}^{\boldsymbol{\mathrm{a}}} \right)}\\{\mathrm{1}}&{\sqrt{\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }{\mathrm{2}}}\:\sqrt{\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }{\mathrm{8}}}\:\centerdot\:\mathrm{log}\left(\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }{\mathrm{2}}\right)}&{}\\{\mathrm{1}}&{\mathrm{b}}&{\mathrm{log}\left(\mathrm{b}^{\boldsymbol{\mathrm{b}}} \right)}\end{vmatrix}\geqslant\:\mathrm{0} \\ $$
Question Number 175588 Answers: 2 Comments: 1
Question Number 175585 Answers: 1 Comments: 6
$$ \\ $$$$\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:\:{prove}\:\:{that}: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{sin}\:\left(\frac{\:{A}}{\mathrm{2}}\:\right)\:\leqslant\:\frac{\:{a}}{\:{b}\:+\:{c}}\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$
Question Number 175583 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{{t}} {dt}=\mathrm{3} \\ $$$${solve}\:{for}\:{x} \\ $$
Question Number 175579 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{1}−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)} .\left(\mathrm{x}^{\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)} −\mathrm{1}\right)}{\mathrm{ln}\:\mathrm{x}} \\ $$
Question Number 175573 Answers: 0 Comments: 0
Question Number 175572 Answers: 0 Comments: 0
Pg 431 Pg 432 Pg 433 Pg 434 Pg 435 Pg 436 Pg 437 Pg 438 Pg 439 Pg 440
Terms of Service
Privacy Policy
Contact: info@tinkutara.com