Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 436
Question Number 175800 Answers: 1 Comments: 0
$$\:\mathrm{Find}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{3}\:\mathrm{digits}\:\mathrm{such}\:\mathrm{that}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\:\mathrm{sum}\:\mathrm{of}\:\mathrm{3}\:\mathrm{diffrent}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{prime} \\ $$
Question Number 175793 Answers: 0 Comments: 2
$$\:\:\mathrm{if}\:\mathrm{xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{zx}\:=\:\mathrm{48};\:\mathrm{where}\:\mathrm{x},\mathrm{y},\mathrm{z} \\ $$$$\:\:\mathrm{are}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible} \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{product}\:\left(\mathrm{xyz}\right) \\ $$
Question Number 175799 Answers: 2 Comments: 0
$$\:\:\mathrm{For}\:\mathrm{x}\:,\mathrm{y}\:\varepsilon\:\mathbb{Z}^{+} \:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\mathrm{7x}+\mathrm{9y}=\mathrm{405}.\:\mathrm{Find}\:\mathrm{max}\:\mathrm{value} \\ $$$$\:\:\mathrm{of}\:\mathrm{x}−\mathrm{y}. \\ $$
Question Number 175785 Answers: 2 Comments: 3
Question Number 175780 Answers: 0 Comments: 0
$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{cosx}\left\{\mathrm{sin}{x}\:+\:\sqrt{\mathrm{sin}^{\mathrm{2}} {x}\:+\:\mathrm{sin}^{\mathrm{2}} \alpha\:\:}\:\right\}\:\: \\ $$
Question Number 175770 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{P}_{{n}} \:=\:{e}^{\:\left(\frac{\mathrm{1}}{\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\left(\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\right)\:+...+\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\:+...+\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\:\left(−\mathrm{1}\:\right)^{\:{k}+\mathrm{1}} }{{k}}} \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:\:\mathrm{P}\:=\:{lim}_{\:{n}\rightarrow\infty} \left({e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{k}+\mathrm{1}} }{{k}}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{lim}_{\:{n}\rightarrow\infty} \left(\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{ln}\left(\mathrm{2}\right)} =\:\mathrm{2} \\ $$
Question Number 175766 Answers: 1 Comments: 1
$${Number}\:{of}\:\:{even}\:{composite}\:{factors}\:{of}\:\mathrm{2520}? \\ $$
Question Number 175765 Answers: 1 Comments: 0
$${li}\underset{{x}\rightarrow\infty} {{m}}\left(\mathrm{1}+\frac{\mathrm{2}}{{x}}\right)^{−{x}} =? \\ $$
Question Number 175762 Answers: 0 Comments: 0
$$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\left(\left[\frac{\boldsymbol{\mathrm{nsinx}}\:}{\boldsymbol{\mathrm{x}}}\right]+\left[\frac{\boldsymbol{\mathrm{ntanx}}\:}{\boldsymbol{\mathrm{x}}}\right]\right)\:,\:\boldsymbol{\mathrm{where}}\:\left[:\right]\:\boldsymbol{\mathrm{denotes}} \\ $$$$\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{greatest}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{function}}\:\:\boldsymbol{\mathrm{and}}\: \\ $$$$\:\:\boldsymbol{\mathrm{n}}\in\mathbb{I}−\left\{\mathrm{0}\right\} \\ $$
Question Number 175758 Answers: 1 Comments: 0
Question Number 175756 Answers: 2 Comments: 1
Question Number 175750 Answers: 1 Comments: 0
Question Number 175746 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{2}\left(\mathrm{2xy}+\mathrm{4y}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Question Number 175740 Answers: 3 Comments: 0
Question Number 175739 Answers: 0 Comments: 2
$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{5x}−\mathrm{6}=\mathrm{0} \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 175734 Answers: 0 Comments: 0
$${form}\:{a}\:{differential}\:{equation}\:{from}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{1}=\mathrm{0}\:\:{a}={constant} \\ $$$$\left.\mathrm{2}\right)\:{y}={A}\varrho^{\mathrm{3}{x}} +{B}\varrho^{−\mathrm{2}{x}} \\ $$
Question Number 175731 Answers: 0 Comments: 0
Question Number 175715 Answers: 2 Comments: 1
$${how}\:{is}\:{the}\:{solution}\:{of}\:{this}\:{qution} \\ $$$$ \\ $$$$\sqrt{\left({x}\right)\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)+\mathrm{1}} \\ $$$${when}\:\:\:\:\:\begin{array}{|c|}{{x}=\mathrm{50}}\\\hline\end{array}\begin{array}{|c|c|}\\\\\hline\end{array} \\ $$
Question Number 175717 Answers: 1 Comments: 0
Question Number 175709 Answers: 2 Comments: 0
Question Number 175706 Answers: 2 Comments: 1
Question Number 175697 Answers: 2 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{2}}}\:\mathrm{dx} \\ $$
Question Number 175685 Answers: 2 Comments: 0
$$\mathrm{3}^{\mathrm{5}^{{x}} } =\:\mathrm{5}^{\mathrm{3}^{{x}} } \\ $$$${solve}\:{for}\:{x} \\ $$
Question Number 175674 Answers: 2 Comments: 0
Question Number 175672 Answers: 0 Comments: 0
Question Number 175669 Answers: 0 Comments: 0
$$\:\:\int\frac{\left[\mathrm{cos}^{−\mathrm{1}} {x}\left\{\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\right\}\right]^{−\mathrm{1}} }{\mathrm{log}_{{e}} \left\{\mathrm{1}+\left(\frac{\mathrm{sin}\left[\mathrm{2}{x}\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\:\right]}{\pi}\:\right\}\right.}{dx} \\ $$
Pg 431 Pg 432 Pg 433 Pg 434 Pg 435 Pg 436 Pg 437 Pg 438 Pg 439 Pg 440
Terms of Service
Privacy Policy
Contact: info@tinkutara.com