Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 436

Question Number 175042    Answers: 1   Comments: 0

Question Number 175041    Answers: 0   Comments: 0

Solve the differential (dy/dx)=((x^2 −3xy)/(x+y))

$${Solve}\:{the}\:{differential} \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} −\mathrm{3}{xy}}{{x}+{y}} \\ $$

Question Number 175040    Answers: 1   Comments: 0

hello, please, someone help me to correct the equation? It's typed wrong and I can't find where Solve: 5,76[((log_a ((√(log _b ((√a))))))/(log((√(log(a)))))) + log_(log (a)) (2)]((log _2 (x)))^(1/5) + ((log_2 (x))/(25)) = [log _2 (x)]^(3/5) Answers x_1 =1 , x_2 =2^(243) , x_3 =2^(−243) , x_4 =2^(1024) , x_5 =2^(−1024)

$$ \\ $$hello, please, someone help me to correct the equation? It's typed wrong and I can't find where $${Solve}: \\ $$$$\mathrm{5},\mathrm{76}\left[\frac{\mathrm{log}_{{a}} \left(\sqrt{\mathrm{log}\:_{{b}} \left(\sqrt{{a}}\right)}\right)}{\mathrm{log}\left(\sqrt{\mathrm{log}\left({a}\right)}\right)}\:+\:\mathrm{log}_{\mathrm{log}\:\left({a}\right)} \left(\mathrm{2}\right)\right]\sqrt[{\mathrm{5}}]{\mathrm{log}\:_{\mathrm{2}} \left({x}\right)}\:+\:\frac{\mathrm{log}_{\mathrm{2}} \left({x}\right)}{\mathrm{25}}\:=\:\left[\mathrm{log}\:_{\mathrm{2}} \left({x}\right)\right]^{\frac{\mathrm{3}}{\mathrm{5}}} \\ $$$${Answers} \\ $$$${x}_{\mathrm{1}} =\mathrm{1}\:,\:{x}_{\mathrm{2}} =\mathrm{2}^{\mathrm{243}} \:,\:{x}_{\mathrm{3}} =\mathrm{2}^{−\mathrm{243}} \:,\:{x}_{\mathrm{4}} =\mathrm{2}^{\mathrm{1024}} \:,\:{x}_{\mathrm{5}} =\mathrm{2}^{−\mathrm{1024}} \\ $$

Question Number 175028    Answers: 0   Comments: 1

Question Number 175032    Answers: 0   Comments: 0

Question Number 175017    Answers: 0   Comments: 2

Question Number 175012    Answers: 1   Comments: 0

prove: Use the residus form ∫_0 ^(+∞) ((xsinx)/((x^2 +1)^2 ))dx=(π/(4e))

$${prove}:\:{Use}\:{the}\:{residus}\:{form} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{xsinx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{4}{e}} \\ $$

Question Number 175011    Answers: 0   Comments: 2

A large lot of tires contain 5% defectives. 4 tires are to be chosen for a car. Find the probability that you find (a) 2 defective tires before 4 good ones (b) at most 2 defective tires before 4 good ones.

$$\mathrm{A}\:\mathrm{large}\:\mathrm{lot}\:\mathrm{of}\:\mathrm{tires}\:\mathrm{contain}\:\mathrm{5\%}\:\mathrm{defectives}. \\ $$$$\mathrm{4}\:\mathrm{tires}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{chosen}\:\mathrm{for}\:\mathrm{a}\:\mathrm{car}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{you}\:\mathrm{find} \\ $$$$\:\left(\mathrm{a}\right)\:\mathrm{2}\:\mathrm{defective}\:\mathrm{tires}\:\mathrm{before}\:\mathrm{4}\:\mathrm{good}\:\mathrm{ones} \\ $$$$\:\left(\mathrm{b}\right)\:\mathrm{at}\:\mathrm{most}\:\mathrm{2}\:\mathrm{defective}\:\mathrm{tires}\:\mathrm{before}\:\mathrm{4}\:\mathrm{good}\:\mathrm{ones}. \\ $$

Question Number 175010    Answers: 1   Comments: 1

A ball of p of mass 0.25kg losses (1/3) of its velocity when it makes an head on collision with an identical ball q at rest. After collision, q moves off with a velocity of 2ms^(−1) in the original direction of p. Calculate the initial velocity of p.

$$\:\mathrm{A}\:\mathrm{ball}\:\mathrm{of}\:\boldsymbol{\mathrm{p}}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{0}.\mathrm{25kg}\:\mathrm{losses}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{of}\: \\ $$$$\mathrm{its}\:\mathrm{velocity}\:\mathrm{when}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{head}\:\mathrm{on} \\ $$$$\mathrm{collision}\:\mathrm{with}\:\mathrm{an}\:\mathrm{identical}\:\mathrm{ball}\:\boldsymbol{\mathrm{q}}\:\mathrm{at}\:\mathrm{rest}. \\ $$$$\mathrm{After}\:\mathrm{collision},\:\boldsymbol{\mathrm{q}}\:\mathrm{moves}\:\mathrm{off}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{2ms}^{−\mathrm{1}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{original}\:\mathrm{direction}\:\mathrm{of}\:\boldsymbol{\mathrm{p}}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\boldsymbol{\mathrm{p}}. \\ $$

Question Number 175008    Answers: 0   Comments: 2

Find The Centroid Coordinate If Trapezoid With B_1 =4, B_2 =3 And Height=5 With Positions Like This

$${Find}\:{The}\:{Centroid}\:{Coordinate}\: \\ $$$${If}\:{Trapezoid}\:{With}\:{B}_{\mathrm{1}} =\mathrm{4},\:{B}_{\mathrm{2}} =\mathrm{3} \\ $$$${And}\:{Height}=\mathrm{5}\:{With}\:{Positions}\: \\ $$$${Like}\:{This} \\ $$

Question Number 175023    Answers: 0   Comments: 0

𝚺_(n=0) ^∞ (((−1)^n )/(7+6n))[𝛙^((0)) (((9+6n)/2))−𝛙^((0)) (((7+6n)/2))]

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{7}+\mathrm{6}\boldsymbol{\mathrm{n}}}\left[\boldsymbol{\psi}^{\left(\mathrm{0}\right)} \left(\frac{\mathrm{9}+\mathrm{6}\boldsymbol{\mathrm{n}}}{\mathrm{2}}\right)−\boldsymbol{\psi}^{\left(\mathrm{0}\right)} \left(\frac{\mathrm{7}+\mathrm{6}\boldsymbol{\mathrm{n}}}{\mathrm{2}}\right)\right] \\ $$

Question Number 175004    Answers: 0   Comments: 1

Question Number 175000    Answers: 1   Comments: 1

Question Number 174983    Answers: 0   Comments: 3

Question Number 174982    Answers: 2   Comments: 0

Question Number 174981    Answers: 0   Comments: 1

Question Number 174975    Answers: 1   Comments: 0

Question Number 174974    Answers: 1   Comments: 0

Question Number 174965    Answers: 1   Comments: 0

∫ ((x+sin x)/(1+cos x)) dx =?

$$\:\:\:\:\:\:\int\:\frac{{x}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$

Question Number 174963    Answers: 3   Comments: 1

Question Number 174960    Answers: 1   Comments: 0

solve for all x ⌊x^2 ⌋ − ⌊x⌋^2 = 100

$${solve}\:{for}\:{all}\:{x}\: \\ $$$$\lfloor{x}^{\mathrm{2}} \rfloor\:−\:\lfloor{x}\rfloor^{\mathrm{2}} \:=\:\mathrm{100} \\ $$

Question Number 174951    Answers: 1   Comments: 0

lim_(n→∞) (1/n)[1+(√2)+^3 (√3)+...^n (√n)]

$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\left[\mathrm{1}+\sqrt{\mathrm{2}}+^{\mathrm{3}} \sqrt{\mathrm{3}}+...^{{n}} \sqrt{{n}}\right] \\ $$

Question Number 174950    Answers: 1   Comments: 0

Have you seen this method of solving quadratic problem? x^2 −x−12=0 y′=±(√(b^2 −4ac))

$$\mathrm{Have}\:\mathrm{you}\:\mathrm{seen}\:\mathrm{this}\:\mathrm{method}\:\mathrm{of}\:\mathrm{solving} \\ $$$$\mathrm{quadratic}\:\mathrm{problem}? \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{12}=\mathrm{0} \\ $$$$\mathrm{y}'=\pm\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}} \\ $$

Question Number 174933    Answers: 1   Comments: 0

Question Number 174928    Answers: 3   Comments: 0

How many digits does 1000^(1000) have? Mastermind

$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{does}\:\mathrm{1000}^{\mathrm{1000}} \:\mathrm{have}? \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 174915    Answers: 1   Comments: 0

Find the value of a for which the limit lim_(x→0) ((sin (ax)−arctan x−x)/(x^3 +x^4 )) is finite and then evaluate the limit

$$\:{Find}\:{the}\:{value}\:{of}\:{a}\:{for}\:{which}\: \\ $$$$\:{the}\:{limit}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left({ax}\right)−\mathrm{arctan}\:{x}−{x}}{{x}^{\mathrm{3}} +{x}^{\mathrm{4}} } \\ $$$${is}\:{finite}\:{and}\:{then}\:{evaluate}\:{the}\:{limit} \\ $$

  Pg 431      Pg 432      Pg 433      Pg 434      Pg 435      Pg 436      Pg 437      Pg 438      Pg 439      Pg 440   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com