Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 429

Question Number 176531    Answers: 1   Comments: 4

Dans la figure ci−joint AB∣∣ A^′ B^′ AA^′ =BB^′ =CC^′ Determiner le rapport ((aire Δ(A^′ B^′ C^′ ))/(aire Δ(ABC)))=?

$${Dans}\:{la}\:{figure}\:{ci}−{joint} \\ $$$${AB}\mid\mid\:{A}^{'} {B}^{'} \:\:\:{AA}^{'} ={BB}^{'} ={CC}^{'} \\ $$$${Determiner}\:{le}\:{rapport} \\ $$$$\:\:\:\:\:\frac{{aire}\:\Delta\left({A}^{'} {B}^{'} {C}^{'} \right)}{{aire}\:\Delta\left({ABC}\right)}=? \\ $$

Question Number 176514    Answers: 1   Comments: 0

△ABC, sinA=cosB=tanC find the value of cos^3 A+cos^2 A−cosA.

$$\bigtriangleup{ABC},\:\mathrm{sin}{A}=\mathrm{cos}{B}=\mathrm{tan}{C} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}^{\mathrm{3}} {A}+\mathrm{cos}^{\mathrm{2}} {A}−\mathrm{cos}{A}. \\ $$

Question Number 176513    Answers: 1   Comments: 0

z∈C, ((z−3i)/(z+i))∈R^− , ((z−3)/(z+1))∈I find z.

$${z}\in\mathbb{C},\:\frac{{z}−\mathrm{3i}}{{z}+\mathrm{i}}\in\mathbb{R}^{−} \:,\:\:\frac{{z}−\mathrm{3}}{{z}+\mathrm{1}}\in\mathbb{I} \\ $$$$\mathrm{find}\:{z}. \\ $$

Question Number 176501    Answers: 1   Comments: 1

find the range of x+y such that (x−2)^2 + (y−4)^2 = 49

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\:\left({y}−\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{49} \\ $$

Question Number 176490    Answers: 2   Comments: 0

solve ( x,y ∈ R ) { (( tan(x ) + tan (y )=2)),(( tan(2x ) + tan( 2y ) = 2)) :} −−−−−−−−

$$ \\ $$$$\:\:\:\:\:{solve}\:\:\:\left(\:{x},{y}\:\in\:\mathbb{R}\:\right) \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\begin{cases}{\:\mathrm{tan}\left({x}\:\right)\:+\:\mathrm{tan}\:\left({y}\:\right)=\mathrm{2}}\\{\:\mathrm{tan}\left(\mathrm{2}{x}\:\right)\:+\:\mathrm{tan}\left(\:\mathrm{2}{y}\:\right)\:=\:\mathrm{2}}\end{cases} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−− \\ $$

Question Number 176486    Answers: 1   Comments: 0

lim_(x→0) [ ((tan x−x)/x^5 ) −(1/(3x^2 )) ]=?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }\:−\frac{\mathrm{1}}{\mathrm{3x}^{\mathrm{2}} }\:\right]=? \\ $$

Question Number 176485    Answers: 2   Comments: 1

Question Number 176482    Answers: 0   Comments: 0

L(E) est l′algebre des endomorphisme continus d′un espace de Banach E, muni de la norme d′application lineaire ; GL(E) est le sous ensemble des elements inversibles de L(E) a)Montrer que GL(E) est ouvert dans L(E) b)montrer que l′application ∅:GL(E)→GL(E) u→u^(−1) =∅(u) est continu dans GL(E) c)montrer que ∅ est differentiable dans GL(E) dt calculer d∅

$${L}\left({E}\right)\:{est}\:{l}'{algebre}\:{des}\:{endomorphisme} \\ $$$${continus}\:{d}'{un}\:{espace}\:{de}\:{Banach}\:{E}, \\ $$$${muni}\:{de}\:{la}\:{norme}\:{d}'{application}\:{lineaire} \\ $$$$;\:{GL}\left({E}\right)\:{est}\:{le}\:{sous}\:{ensemble}\:{des} \\ $$$${elements}\:{inversibles}\:{de}\:{L}\left({E}\right) \\ $$$$\left.{a}\right){Montrer}\:{que}\:{GL}\left({E}\right)\:{est}\:{ouvert}\:{dans} \\ $$$${L}\left({E}\right) \\ $$$$\left.{b}\right){montrer}\:{que}\:{l}'{application}\: \\ $$$$\emptyset:{GL}\left({E}\right)\rightarrow{GL}\left({E}\right)\: \\ $$$$\:\:\:\:\:\:\:{u}\rightarrow{u}^{−\mathrm{1}} =\emptyset\left({u}\right)\:{est}\:{continu}\:{dans}\:{GL}\left({E}\right) \\ $$$$\left.{c}\right){montrer}\:{que}\:\emptyset\:{est}\:{differentiable} \\ $$$${dans}\:{GL}\left({E}\right)\:{dt}\:{calculer}\:{d}\emptyset \\ $$

Question Number 176472    Answers: 1   Comments: 0

solve for x,y,z with x+y+z=x^2 +y^2 +z^2 =x^3 +y^3 +z^3 =5

$${solve}\:{for}\:{x},{y},{z}\:{with} \\ $$$${x}+{y}+{z}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{5} \\ $$

Question Number 176468    Answers: 1   Comments: 1

((sin (2x+18°))/(sin (2x+12°))) =(√((sin 36°)/(sin 48°))) tan 2x = (√(tan M)) .(√(tan N)) 0°<M,N<90° ⇒M+N=?°

$$\:\:\frac{\mathrm{sin}\:\left(\mathrm{2}{x}+\mathrm{18}°\right)}{\mathrm{sin}\:\left(\mathrm{2}{x}+\mathrm{12}°\right)}\:=\sqrt{\frac{\mathrm{sin}\:\mathrm{36}°}{\mathrm{sin}\:\mathrm{48}°}}\: \\ $$$$\:\:\mathrm{tan}\:\mathrm{2}{x}\:=\:\sqrt{\mathrm{tan}\:{M}}\:.\sqrt{\mathrm{tan}\:{N}} \\ $$$$\:\:\mathrm{0}°<{M},{N}<\mathrm{90}°\:\Rightarrow{M}+{N}=?° \\ $$

Question Number 176462    Answers: 1   Comments: 1

In ΔABC given ((2a)/(tan A)) = (b/(tan B)) then ((sin^2 A−cos^2 B)/(cos^2 A+cos^2 B))=?

$${In}\:\Delta{ABC}\:{given}\:\frac{\mathrm{2}{a}}{\mathrm{tan}\:{A}}\:=\:\frac{{b}}{\mathrm{tan}\:{B}}\: \\ $$$$\:{then}\:\frac{\mathrm{sin}\:^{\mathrm{2}} {A}−\mathrm{cos}\:^{\mathrm{2}} {B}}{\mathrm{cos}\:^{\mathrm{2}} {A}+\mathrm{cos}\:^{\mathrm{2}} {B}}=? \\ $$

Question Number 176458    Answers: 5   Comments: 0

x^2 +x=1 ((x^5 +8)/(x+1))=?

$${x}^{\mathrm{2}} +{x}=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{5}} +\mathrm{8}}{{x}+\mathrm{1}}=? \\ $$

Question Number 176453    Answers: 2   Comments: 0

If , α , β , γ ∈ ( 0 , 1 ) , then prove that : (√((1−^ α ).(1−^ β ). (1−^ γ ))) +(√(α^ .β^ .γ^ )) < 1

$$ \\ $$$$\:\:\:{If}\:,\:\:\alpha\:,\:\beta\:,\:\gamma\:\in\:\left(\:\mathrm{0}\:\:,\:\:\mathrm{1}\:\right)\:\:,\:\:{then}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:{prove}\:\:{that}\::\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\sqrt{\left(\mathrm{1}\overset{} {−}\alpha\:\right).\left(\mathrm{1}\overset{} {−}\beta\:\right).\:\left(\mathrm{1}\overset{} {−}\gamma\:\right)}\:+\sqrt{\overset{} {\alpha}.\overset{} {\beta}.\overset{} {\gamma}}\:\:<\:\mathrm{1} \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 176449    Answers: 0   Comments: 0

A fair dice was thrown twice and it landed on a and b respectively then the probability that cubic equation x^3 −(3a+1)x^2 +(3a+2b)x−2b=0 has three distinct root

$$\mathrm{A}\:\mathrm{fair}\:\mathrm{dice}\:\mathrm{was}\:\mathrm{thrown}\:\mathrm{twice}\:\mathrm{and} \\ $$$$\mathrm{it}\:\mathrm{landed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{respectively}\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{cubic}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{3}} −\left(\mathrm{3a}+\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{3a}+\mathrm{2b}\right)\mathrm{x}−\mathrm{2b}=\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{three}\:\mathrm{distinct}\:\mathrm{root} \\ $$$$ \\ $$

Question Number 176448    Answers: 0   Comments: 3

Suppose a^3 +b^3 +c^3 =a^2 +b^2 +c^2 =a+b+c Prove that abc=0

$$\mathrm{Suppose}\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} =\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \\ $$$$=\mathrm{a}+\mathrm{b}+\mathrm{c}\:\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{abc}=\mathrm{0} \\ $$$$ \\ $$

Question Number 176768    Answers: 0   Comments: 0

Question Number 176440    Answers: 0   Comments: 0

Question Number 176437    Answers: 1   Comments: 0

Question Number 176427    Answers: 0   Comments: 0

Question Number 176424    Answers: 0   Comments: 0

Using perseval′s Identity Evaluate : ∫_0 ^∞ (((1−cosx)/x))^2 dx Mastermind

$$\mathrm{Using}\:\mathrm{perseval}'\mathrm{s}\:\mathrm{Identity} \\ $$$$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 176423    Answers: 1   Comments: 0

Question Number 176421    Answers: 2   Comments: 0

Question Number 176399    Answers: 2   Comments: 1

a,b,c ∈R_+ ^∗ prove that a+b+c≥3^3 (√(abc))

$$\:{a},{b},{c}\:\in\mathbb{R}_{+} ^{\ast} \:\:{prove}\:{that}\:{a}+{b}+{c}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{{abc}} \\ $$$$ \\ $$

Question Number 176394    Answers: 0   Comments: 1

lim_(x→0) (((1−cos(√(∣x∣)))^2 )/(1−(√(cosx)))) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−{cos}\sqrt{\mid{x}\mid}\right)^{\mathrm{2}} }{\mathrm{1}−\sqrt{{cosx}}}\:=\:? \\ $$

Question Number 176388    Answers: 1   Comments: 1

find lim_(x→0) ((x+sinx)/(x−sinx))

$$\:{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}+{sinx}}{{x}−{sinx}} \\ $$

Question Number 176387    Answers: 4   Comments: 5

x^3 +(1/x^3 ) = 1 ⇒(([x^5 +(1/x^5 )]^3 −1)/(x^5 +(1/x^5 ))) =?

$$\:\:\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:\mathrm{1}\:\Rightarrow\frac{\left[\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }\right]^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }}\:=? \\ $$

  Pg 424      Pg 425      Pg 426      Pg 427      Pg 428      Pg 429      Pg 430      Pg 431      Pg 432      Pg 433   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com