Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 425
Question Number 176334 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Psi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}\left(\:\mathrm{1}+\:{x}\:−\:{x}^{\:\mathrm{2}} \right)}{{x}}\mathrm{d}{x}\:=\:? \\ $$$$ \\ $$
Question Number 176332 Answers: 1 Comments: 1
$${f}\left(\frac{{x}}{{f}\left({y}\right)}\right)=\:\frac{{x}}{{y}} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y} \\ $$
Question Number 176327 Answers: 0 Comments: 0
$${p}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\sqrt{\mathrm{4}{x}^{\mathrm{2}} }\:\:\: \\ $$$${pq}=\mathrm{4}\:\:\:\:{and}\:\:{p}+{q}=\mathrm{2}\:\:\:{faind} \\ $$$${p}^{{a}_{\mathrm{2}} } +{q}^{{a}_{\mathrm{1}} } =? \\ $$
Question Number 176318 Answers: 1 Comments: 3
Question Number 176347 Answers: 1 Comments: 0
$$\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}} \left(\mathrm{2}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}} \\ $$$$\mathrm{find}\:\mathrm{coefficient}\:\mathrm{x}^{\mathrm{2}} \\ $$
Question Number 176316 Answers: 1 Comments: 0
$$\:\:{xy}+{xz}=\mathrm{255} \\ $$$$\:{xz}−{yz}=\mathrm{224}. \\ $$$${find}\:{x}\:{y}\:{and}\:{z} \\ $$
Question Number 176310 Answers: 1 Comments: 0
$${a}^{{lna}} ={b}^{{lnb}} \\ $$$${a}−{b}=\mathrm{1} \\ $$$${solve}\:{for}\:{a}\:{and}\:{b} \\ $$
Question Number 176303 Answers: 1 Comments: 0
Question Number 176300 Answers: 1 Comments: 4
$$\:\mathrm{coeffisien}\:\mathrm{x}\:^{\mathrm{2}\:} \:\mathrm{from}\:\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}} \left(\mathrm{1}−\mathrm{4x}\right)^{\mathrm{5}} \\ $$
Question Number 176293 Answers: 3 Comments: 0
$${find}\:{n}^{{th}} \:{formolla}\:{of}\:<\mathrm{0},\mathrm{4},\mathrm{9},\mathrm{16},\mathrm{25}> \\ $$
Question Number 176292 Answers: 2 Comments: 0
Question Number 176289 Answers: 0 Comments: 1
$$\:\:\int\:\:\frac{\mathrm{log}\:\left(\mathrm{cos}{x}\:+\:\sqrt{\mathrm{cos2}{x}}\right)\:}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}\:}{dx} \\ $$
Question Number 176288 Answers: 0 Comments: 0
$$\:\:\int\mathrm{cos2}{x}\mathrm{log}\left(\mathrm{1}+\mathrm{tan}{x}\right){dx}\:\:\: \\ $$
Question Number 176767 Answers: 0 Comments: 0
Question Number 176766 Answers: 0 Comments: 0
Question Number 176765 Answers: 0 Comments: 1
Question Number 176764 Answers: 0 Comments: 0
Question Number 176773 Answers: 0 Comments: 2
$$\mathrm{Let}\:{a},\:{b},\:{c}\:>\mathrm{0}.\:\mathrm{If}\: \\ $$$$\frac{{a}−{b}}{{b}}>\mathrm{7},\:\frac{{b}+{c}}{{c}}<\mathrm{8},\: \\ $$$$\mathrm{Find}\:\mathrm{min}\left({a}+{b}+{c}\right)\: \\ $$
Question Number 176281 Answers: 0 Comments: 3
Question Number 176279 Answers: 1 Comments: 0
$$\mathrm{Proof}\:\mathrm{that}\:: \\ $$$$\nexists{n}\in\mathbb{Z},\:{n}^{\mathrm{2}} +\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{4}\right) \\ $$
Question Number 176278 Answers: 0 Comments: 0
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{{H}}_{\mathrm{4}\boldsymbol{{n}}} }{\mathrm{2}^{\mathrm{4}\boldsymbol{{n}}} \boldsymbol{{n}}}=??? \\ $$
Question Number 176276 Answers: 2 Comments: 0
$$\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{from}\: \\ $$$$\:\:\left[\mathrm{6}+\mathrm{8x}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\right]^{\mathrm{5}} \: \\ $$
Question Number 176274 Answers: 1 Comments: 0
Question Number 176270 Answers: 0 Comments: 3
$$\:\mathrm{kojo}\:\mathrm{can}\:\mathrm{do}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{work}\:\mathrm{in}\:\mathrm{5hours} \\ $$$$\:\mathrm{Edina}\:\mathrm{can}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{work}\:\mathrm{in}\: \\ $$$$\:\mathrm{4hours}.\:\mathrm{how}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it}\:\mathrm{take}\:\mathrm{the}\:\mathrm{two} \\ $$$$\:\mathrm{of}\:\mathrm{them}\:\mathrm{to}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{work}\:\mathrm{together} \\ $$$$\mathrm{if}\:\mathrm{they}\:\mathrm{work}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{rate} \\ $$$$ \\ $$
Question Number 176776 Answers: 2 Comments: 0
Question Number 176809 Answers: 1 Comments: 0
$$\:\:\begin{cases}{\mathrm{x}=\mathrm{cos}\:^{\mathrm{3}} \emptyset}\\{\mathrm{y}=\mathrm{sin}\:^{\mathrm{3}} \emptyset}\end{cases}\:\Rightarrow\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$
Pg 420 Pg 421 Pg 422 Pg 423 Pg 424 Pg 425 Pg 426 Pg 427 Pg 428 Pg 429
Terms of Service
Privacy Policy
Contact: info@tinkutara.com