Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 425

Question Number 177005    Answers: 1   Comments: 0

Question Number 177000    Answers: 1   Comments: 0

Let a and b be positive integers. If 118!+119!=5^a b then what is a_(max) ?

$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integers}. \\ $$$$\mathrm{If}\:\mathrm{118}!+\mathrm{119}!=\mathrm{5}^{{a}} {b}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:{a}_{\mathrm{max}} \:?\: \\ $$

Question Number 176995    Answers: 1   Comments: 0

x^3 −(3/4)x+(1/8)=0 x=?

$$\:\:{x}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{4}}{x}+\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\:{x}=? \\ $$

Question Number 176991    Answers: 2   Comments: 0

Question Number 176988    Answers: 1   Comments: 2

{ ((a^3 =3ab^2 +11)),((b^3 =3a^2 b+2)) :} ; a,b ∈R ⇒a^2 +b^2 =?

$$\:\begin{cases}{{a}^{\mathrm{3}} =\mathrm{3}{ab}^{\mathrm{2}} +\mathrm{11}}\\{{b}^{\mathrm{3}} =\mathrm{3}{a}^{\mathrm{2}} {b}+\mathrm{2}}\end{cases}\:;\:{a},{b}\:\in\mathrm{R} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =? \\ $$

Question Number 176980    Answers: 1   Comments: 0

(xy)_7 =(yx)_9 x+y=?

$$\left({xy}\right)_{\mathrm{7}} =\left({yx}\right)_{\mathrm{9}} \\ $$$${x}+{y}=? \\ $$

Question Number 176968    Answers: 0   Comments: 0

f(x)+3f((1/x))=(1/x) f(x)=?

$$ \\ $$$$\:\:\:{f}\left({x}\right)+\mathrm{3}{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=?\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 176973    Answers: 0   Comments: 1

Question Number 176966    Answers: 1   Comments: 1

Question Number 176964    Answers: 0   Comments: 0

Question Number 176963    Answers: 1   Comments: 1

Question Number 176962    Answers: 0   Comments: 2

Recommended books for trigonometry from zero? I know most Euclidean geometry, and basic algebra. I feel a bit lost

$$\:{Recommended}\:{books}\:{for}\:{trigonometry}\:{from} \\ $$$$\:{zero}?\:{I}\:{know}\:{most}\:{Euclidean}\:{geometry}, \\ $$$$\:\:{and}\:{basic}\:{algebra}.\:{I}\:{feel}\:{a}\:{bit}\:{lost} \\ $$$$\: \\ $$

Question Number 176950    Answers: 1   Comments: 0

Question Number 176948    Answers: 1   Comments: 2

Question Number 176946    Answers: 1   Comments: 0

Question Number 176942    Answers: 1   Comments: 0

Question Number 176936    Answers: 1   Comments: 0

Question Number 176933    Answers: 1   Comments: 0

Question Number 182216    Answers: 3   Comments: 2

Find a, b, c ∈ N ; 2^( a) + 4^( b) + 8^( c) = 328

$$\:{Find}\:{a},\:{b},\:{c}\:\in\:\mathbb{N}\:;\:\mathrm{2}^{\:{a}} +\:\mathrm{4}^{\:{b}} +\:\mathrm{8}^{\:{c}} =\:\mathrm{328} \\ $$

Question Number 176928    Answers: 1   Comments: 0

What is the smallest three digit number divisible by (2/3), (7/9), (4/(13)) without a remainder ?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{three}\:\mathrm{digit}\:\mathrm{number} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{7}}{\mathrm{9}},\:\frac{\mathrm{4}}{\mathrm{13}}\:\mathrm{without}\:\mathrm{a}\:\mathrm{remainder}\:? \\ $$

Question Number 176925    Answers: 1   Comments: 0

Question Number 176917    Answers: 0   Comments: 0

Question Number 176915    Answers: 1   Comments: 0

Question Number 176913    Answers: 1   Comments: 1

Determiner la hauteur DE(r+x) en fonction de r r=OOC=BH BF=20 pour que distance(AB+BC+CD+DE+EF soit sgale AC+arcCDF

$${Determiner}\:{la}\:{hauteur}\:\mathrm{D}{E}\left({r}+{x}\right)\:{en}\:{fonction}\:{de}\:{r} \\ $$$${r}=\mathrm{OOC}=\mathrm{BH}\:\:\:\:\:\mathrm{BF}=\mathrm{20} \\ $$$$\mathrm{pour}\:\mathrm{que}\:\mathrm{distance}\left(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EF}\:\:\mathrm{soit}\:\right. \\ $$$$\mathrm{sgale}\:\mathrm{AC}+\mathrm{arcCDF} \\ $$

Question Number 176898    Answers: 1   Comments: 0

Question Number 176746    Answers: 5   Comments: 0

a_(n+2) −5a_(n+1) +6a_n =3n+5^n a_1 =1, a_2 =0 find a_n

$${a}_{{n}+\mathrm{2}} −\mathrm{5}{a}_{{n}+\mathrm{1}} +\mathrm{6}{a}_{{n}} =\mathrm{3}{n}+\mathrm{5}^{{n}} \\ $$$${a}_{\mathrm{1}} =\mathrm{1},\:{a}_{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:{a}_{{n}} \\ $$

  Pg 420      Pg 421      Pg 422      Pg 423      Pg 424      Pg 425      Pg 426      Pg 427      Pg 428      Pg 429   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com