Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 425

Question Number 176764    Answers: 0   Comments: 0

Question Number 176773    Answers: 0   Comments: 2

Let a, b, c >0. If ((a−b)/b)>7, ((b+c)/c)<8, Find min(a+b+c)

$$\mathrm{Let}\:{a},\:{b},\:{c}\:>\mathrm{0}.\:\mathrm{If}\: \\ $$$$\frac{{a}−{b}}{{b}}>\mathrm{7},\:\frac{{b}+{c}}{{c}}<\mathrm{8},\: \\ $$$$\mathrm{Find}\:\mathrm{min}\left({a}+{b}+{c}\right)\: \\ $$

Question Number 176281    Answers: 0   Comments: 3

Question Number 176279    Answers: 1   Comments: 0

Proof that : ∄n∈Z, n^2 +1≡0(mod 4)

$$\mathrm{Proof}\:\mathrm{that}\:: \\ $$$$\nexists{n}\in\mathbb{Z},\:{n}^{\mathrm{2}} +\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{4}\right) \\ $$

Question Number 176278    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (H_(4n) /(2^(4n) n))=???

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{{H}}_{\mathrm{4}\boldsymbol{{n}}} }{\mathrm{2}^{\mathrm{4}\boldsymbol{{n}}} \boldsymbol{{n}}}=??? \\ $$

Question Number 176276    Answers: 2   Comments: 0

coeff of x^2 from [6+8x−(3/2)x^2 ]^5

$$\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{from}\: \\ $$$$\:\:\left[\mathrm{6}+\mathrm{8x}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\right]^{\mathrm{5}} \: \\ $$

Question Number 176274    Answers: 1   Comments: 0

Question Number 176270    Answers: 0   Comments: 3

kojo can do a piece of work in 5hours Edina can do the same work in 4hours. how long will it take the two of them to do the same work together if they work at the same rate

$$\:\mathrm{kojo}\:\mathrm{can}\:\mathrm{do}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{work}\:\mathrm{in}\:\mathrm{5hours} \\ $$$$\:\mathrm{Edina}\:\mathrm{can}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{work}\:\mathrm{in}\: \\ $$$$\:\mathrm{4hours}.\:\mathrm{how}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it}\:\mathrm{take}\:\mathrm{the}\:\mathrm{two} \\ $$$$\:\mathrm{of}\:\mathrm{them}\:\mathrm{to}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{work}\:\mathrm{together} \\ $$$$\mathrm{if}\:\mathrm{they}\:\mathrm{work}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{rate} \\ $$$$ \\ $$

Question Number 176776    Answers: 2   Comments: 0

Question Number 176809    Answers: 1   Comments: 0

{ ((x=cos^3 ∅)),((y=sin^3 ∅)) :} ⇒(d^2 y/dx^2 ) =?

$$\:\:\begin{cases}{\mathrm{x}=\mathrm{cos}\:^{\mathrm{3}} \emptyset}\\{\mathrm{y}=\mathrm{sin}\:^{\mathrm{3}} \emptyset}\end{cases}\:\Rightarrow\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$

Question Number 176808    Answers: 1   Comments: 0

lim_(x→∞) ((sin x)/(1+cos^2 x))=?

$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}=? \\ $$

Question Number 176774    Answers: 1   Comments: 0

How many distinct y exist satisfying ∣x^2 −8x+18∣+∣y−3∣=5

$$\mathrm{How}\:\mathrm{many}\:\mathrm{distinct}\:{y}\:\mathrm{exist}\:\mathrm{satisfying} \\ $$$$\mid{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{18}\mid+\mid{y}−\mathrm{3}\mid=\mathrm{5} \\ $$

Question Number 176216    Answers: 0   Comments: 0

Question Number 176215    Answers: 2   Comments: 0

A certain amount of money is distributed among A, B and C in the ratio of 2:5:3 and another amount of money among B, D and E is also distributed in the same ratio. If the amount distributed among A, B and C is ⅖ of the amount distributed among B, D and E, what is the ratio in which the amount is distributed among A, C and E?

$$ \\ $$A certain amount of money is distributed among A, B and C in the ratio of 2:5:3 and another amount of money among B, D and E is also distributed in the same ratio. If the amount distributed among A, B and C is ⅖ of the amount distributed among B, D and E, what is the ratio in which the amount is distributed among A, C and E?

Question Number 176213    Answers: 1   Comments: 0

lim_(x→0) ((arctan x)/(arcsin x−x)) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{arctan}\:\mathrm{x}}{\mathrm{arcsin}\:\mathrm{x}−\mathrm{x}}\:=? \\ $$

Question Number 176212    Answers: 0   Comments: 2

A solid rigth triangular prism of length 12cm and a cross section which is an equilateral triangle of 6cm. Find the total surface area.

$$\:\:\mathrm{A}\:\mathrm{solid}\:\mathrm{rigth}\:\mathrm{triangular}\:\mathrm{prism}\:\mathrm{of}\: \\ $$$$\:\:\mathrm{length}\:\mathrm{12cm}\:\mathrm{and}\:\mathrm{a}\:\mathrm{cross}\:\mathrm{section}\: \\ $$$$\:\:\mathrm{which}\:\mathrm{is}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{of} \\ $$$$\:\:\mathrm{6cm}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{area}. \\ $$

Question Number 176211    Answers: 1   Comments: 0

Question Number 176206    Answers: 1   Comments: 0

Question Number 176205    Answers: 1   Comments: 0

In a school election for the positon of SRC president, one candidate obtained 87.5% of the vote cast others obtained 275 votes (a) How many votes did the winner obtain. (b) If the voter turnout was 55% find the total number of eligible voters in the school.

$$\:\mathrm{In}\:\mathrm{a}\:\mathrm{school}\:\mathrm{election}\:\mathrm{for}\:\mathrm{the}\:\mathrm{positon}\: \\ $$$$\:\:\mathrm{of}\:\mathrm{SRC}\:\mathrm{president},\:\mathrm{one}\:\mathrm{candidate} \\ $$$$\:\:\mathrm{obtained}\:\mathrm{87}.\mathrm{5\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vote}\:\mathrm{cast}\: \\ $$$$\:\:\mathrm{others}\:\mathrm{obtained}\:\mathrm{275}\:\mathrm{votes} \\ $$$$\:\:\left(\mathrm{a}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{votes}\:\mathrm{did}\:\mathrm{the}\:\mathrm{winner} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{obtain}. \\ $$$$\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{voter}\:\mathrm{turnout}\:\mathrm{was}\:\mathrm{55\%}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\:\mathrm{eligible} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{voters}\:\mathrm{in}\:\mathrm{the}\:\mathrm{school}. \\ $$$$ \\ $$

Question Number 176199    Answers: 1   Comments: 0

Question Number 176195    Answers: 1   Comments: 0

Question Number 176192    Answers: 1   Comments: 0

Suppose ABCD is a rectangle. X and Y are points on BC and CD respectively, such that the area of ABX, CXY, and AYD are 3 cm^2 , 4 cm^2 , and 5 cm^2 respectively. Find the area of AXY.

$$\mathrm{Suppose}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rectangle}.\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{are}\:\mathrm{points}\:\mathrm{on}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{CD}\:\mathrm{respectively}, \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{ABX},\:\mathrm{CXY},\:\mathrm{and}\:\mathrm{AYD}\:\mathrm{are}\:\mathrm{3}\:\mathrm{cm}^{\mathrm{2}} ,\:\mathrm{4}\:\mathrm{cm}^{\mathrm{2}} ,\:\mathrm{and}\:\mathrm{5}\:\mathrm{cm}^{\mathrm{2}} \:\mathrm{respectively}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{AXY}. \\ $$

Question Number 176189    Answers: 1   Comments: 0

solve for x (1+(1/x))^(x+1) =(1+(1/6))^6 show working

$${solve}\:{for}\:{x} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{6}} \\ $$$${show}\:{working} \\ $$

Question Number 176188    Answers: 1   Comments: 0

∫_( (√2)) ^2 ((sec^2 (sec^(−1) x))/(x(√(x^2 −1))))

$$ \\ $$$$\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{sec}^{\mathrm{2}} \left(\mathrm{sec}^{−\mathrm{1}} \mathrm{x}\right)}{\mathrm{x}\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$ \\ $$

Question Number 176187    Answers: 1   Comments: 0

∫(dy/(tan^(−1) y(1+y^2 )))

$$\int\frac{\mathrm{dy}}{\mathrm{tan}^{−\mathrm{1}} \mathrm{y}\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)} \\ $$

Question Number 176185    Answers: 0   Comments: 1

∫(e^(sin^(−1) x) /( (√(1−x_ ^2 )))) dx

$$\int\frac{\mathrm{e}^{\mathrm{sin}^{−\mathrm{1}} \mathrm{x}} }{\:\sqrt{\mathrm{1}−\mathrm{x}_{} ^{\mathrm{2}} }}\:\mathrm{dx} \\ $$

  Pg 420      Pg 421      Pg 422      Pg 423      Pg 424      Pg 425      Pg 426      Pg 427      Pg 428      Pg 429   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com