Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 425

Question Number 177446    Answers: 1   Comments: 1

Question Number 177442    Answers: 3   Comments: 0

Question Number 177437    Answers: 0   Comments: 0

Question Number 177432    Answers: 2   Comments: 10

Question Number 177431    Answers: 0   Comments: 0

Question Number 177415    Answers: 2   Comments: 0

Question Number 177403    Answers: 2   Comments: 1

if david wears shorts and short sleeves to play outside what temperature would it most likely be?

$${if}\:{david}\:{wears}\:{shorts}\:{and}\:{short}\:{sleeves}\:{to}\:{play}\:{outside}\:{what}\:{temperature}\:{would}\:{it}\:{most}\:{likely}\:{be}? \\ $$

Question Number 177400    Answers: 3   Comments: 2

∫((√(9a^2 −1))/a)da Evaluate

$$\int\frac{\sqrt{\mathrm{9a}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{a}}\mathrm{da} \\ $$$$ \\ $$$$\mathrm{Evaluate} \\ $$

Question Number 177378    Answers: 1   Comments: 0

Question Number 177451    Answers: 1   Comments: 1

Question Number 177361    Answers: 1   Comments: 0

4(16^((x+4)) × 5.2^(2x) =13

$$\mathrm{4}\left(\mathrm{16}^{\left({x}+\mathrm{4}\right)} \:×\:\mathrm{5}.\mathrm{2}^{\mathrm{2}{x}} =\mathrm{13}\right. \\ $$

Question Number 177360    Answers: 1   Comments: 0

1/2 log_4 36 ×log_6 64

$$\mathrm{1}/\mathrm{2}\:{log}_{\mathrm{4}} \mathrm{36}\:×{log}_{\mathrm{6}} \mathrm{64} \\ $$

Question Number 177375    Answers: 0   Comments: 5

soit k un entier naturel non nul ,S un nombre fini de nombres premiers impair −Demontrer qu il existe au plus une maniere(a rotation et symetrie axiale) de disposer les elements de S sur un cercle de sorte que le priduit de 2 nombres places l′un a cote de l′autre soit toujours de la forme (x^2 +x+k),x un entier naturel non nul. Extrait de Olimpiad de Mathematiques (France 2022).

$$\mathrm{soit}\:\mathrm{k}\:\mathrm{un}\:\mathrm{entier}\:\mathrm{naturel}\:\mathrm{non}\:\mathrm{nul}\:,\mathrm{S}\:\mathrm{un}\:\mathrm{nombre}\:\mathrm{fini}\:\mathrm{de}\: \\ $$$$\mathrm{nombres}\:\mathrm{premiers}\:\mathrm{impair} \\ $$$$−\mathrm{Demontrer}\:\mathrm{qu}\:\mathrm{il}\:\mathrm{existe}\:\mathrm{au}\:\mathrm{plus}\:\mathrm{une}\:\mathrm{maniere}\left(\mathrm{a}\:\mathrm{rotation}\:\mathrm{et}\:\mathrm{symetrie}\:\mathrm{axiale}\right) \\ $$$$\mathrm{de}\:\mathrm{disposer}\:\mathrm{les}\:\mathrm{elements}\:\mathrm{de}\:\mathrm{S}\:\mathrm{sur}\:\mathrm{un}\:\mathrm{cercle}\:\mathrm{de}\:\mathrm{sorte}\:\mathrm{que}\:\mathrm{le}\:\mathrm{priduit}\:\mathrm{de}\:\mathrm{2}\:\mathrm{nombres}\: \\ $$$$\mathrm{places}\:\mathrm{l}'\mathrm{un}\:\mathrm{a}\:\mathrm{cote}\:\mathrm{de}\:\mathrm{l}'\mathrm{autre}\:\mathrm{soit}\:\mathrm{toujours}\:\mathrm{de}\:\mathrm{la}\:\mathrm{forme}\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{k}}\right),\mathrm{x}\:\mathrm{un}\:\mathrm{entier}\:\mathrm{naturel}\:\mathrm{non}\:\mathrm{nul}. \\ $$$$\:\:\:\:\:\:\:{Extrait}\:{de}\:{Olimpiad}\:{de}\:{Mathematiques}\:\left({France}\:\mathrm{2022}\right). \\ $$$$ \\ $$

Question Number 177353    Answers: 4   Comments: 1

Question Number 177336    Answers: 0   Comments: 3

A tank GM by 4m by 3m. calculate one−third of its volume. please help!

$$\mathrm{A}\:\mathrm{tank}\:\mathrm{GM}\:\mathrm{by}\:\mathrm{4m}\:\mathrm{by}\:\mathrm{3m}.\:\mathrm{calculate} \\ $$$$\mathrm{one}−\mathrm{third}\:\mathrm{of}\:\mathrm{its}\:\mathrm{volume}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}! \\ $$

Question Number 177331    Answers: 1   Comments: 0

a+b+c=0 a^2 +b^2 +c^2 =4 a^4 +b^4 +c^4 =?

$${a}+{b}+{c}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{4} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} =? \\ $$

Question Number 177332    Answers: 1   Comments: 1

Question Number 177320    Answers: 1   Comments: 0

Question Number 177306    Answers: 2   Comments: 0

Resoudre l equaation acos x+bsin x=c (a,b,c)∈R^3

$${Resoudre}\:{l}\:{equaation} \\ $$$$\:\:{a}\mathrm{cos}\:{x}+{b}\mathrm{sin}\:{x}={c} \\ $$$$\left({a},{b},{c}\right)\in\mathbb{R}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 177298    Answers: 1   Comments: 0

Prove that ∫_0 ^(π/2) ((sin^2 x)/((sin x+cos x)))dx=(1/( (√2)))log ((√2)+1)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)}\mathrm{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{log}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$

Question Number 177296    Answers: 2   Comments: 1

Evaluate ∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx

$$\:\:\mathrm{Evaluate}\: \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{x}}{\mathrm{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$ \\ $$

Question Number 177280    Answers: 3   Comments: 1

by ussing demover find (cos(π/2) + i cos(π/8))^(−5)

$${by}\:{ussing}\:{demover}\:{find}\: \\ $$$$ \\ $$$$\left({cos}\frac{\pi}{\mathrm{2}}\:\:+\:{i}\:{cos}\frac{\pi}{\mathrm{8}}\right)^{−\mathrm{5}} \:\: \\ $$

Question Number 177279    Answers: 0   Comments: 0

Question Number 177253    Answers: 2   Comments: 0

The base of a right pyramid is a hexagon of side 16 cm, and its lateral surface is 720 sq. cm. Is. the height of the pyramid will be

$$ \\ $$The base of a right pyramid is a hexagon of side 16 cm, and its lateral surface is 720 sq. cm. Is. the height of the pyramid will be

Question Number 177242    Answers: 1   Comments: 0

∫ ((3x^(16) +5x^(14) )/((x^5 +x^2 +1)^4 ))dx

$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\mathrm{3x}^{\mathrm{16}} +\mathrm{5x}^{\mathrm{14}} }{\left(\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$$$ \\ $$

Question Number 177241    Answers: 1   Comments: 0

∫ ((sin x)/(sin (x−a)))dx

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{a}\right)}\mathrm{dx} \\ $$

  Pg 420      Pg 421      Pg 422      Pg 423      Pg 424      Pg 425      Pg 426      Pg 427      Pg 428      Pg 429   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com