Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 425
Question Number 176768 Answers: 0 Comments: 0
Question Number 176440 Answers: 0 Comments: 0
Question Number 176437 Answers: 1 Comments: 0
Question Number 176427 Answers: 0 Comments: 0
Question Number 176424 Answers: 0 Comments: 0
$$\mathrm{Using}\:\mathrm{perseval}'\mathrm{s}\:\mathrm{Identity} \\ $$$$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Question Number 176423 Answers: 1 Comments: 0
Question Number 176421 Answers: 2 Comments: 0
Question Number 176399 Answers: 2 Comments: 1
$$\:{a},{b},{c}\:\in\mathbb{R}_{+} ^{\ast} \:\:{prove}\:{that}\:{a}+{b}+{c}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{{abc}} \\ $$$$ \\ $$
Question Number 176394 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−{cos}\sqrt{\mid{x}\mid}\right)^{\mathrm{2}} }{\mathrm{1}−\sqrt{{cosx}}}\:=\:? \\ $$
Question Number 176388 Answers: 1 Comments: 1
$$\:{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}+{sinx}}{{x}−{sinx}} \\ $$
Question Number 176387 Answers: 4 Comments: 5
$$\:\:\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:\mathrm{1}\:\Rightarrow\frac{\left[\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }\right]^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }}\:=? \\ $$
Question Number 176384 Answers: 2 Comments: 0
$${Find}\:{the}\:{constant}\:{term}\:{in}\:{the} \\ $$$${expansion}\:{of}\:{the}\:{expression} \\ $$$$\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{3}} \left(\frac{\mathrm{1}}{{x}}−\mathrm{4}\right)^{\mathrm{4}} \\ $$
Question Number 176393 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+................\:\infty\:=\:\frac{−\mathrm{1}}{\mathrm{8}} \\ $$
Question Number 176391 Answers: 2 Comments: 1
Question Number 176379 Answers: 1 Comments: 0
$${lineariser}\:{sin}^{\mathrm{5}} \left({x}\right) \\ $$
Question Number 176378 Answers: 0 Comments: 0
Question Number 176375 Answers: 0 Comments: 2
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{3}}{\mathrm{x}+\sqrt{\mathrm{x}}}\:=?\: \\ $$
Question Number 176374 Answers: 1 Comments: 0
$${Show}\:: \\ $$$$\frac{\partial{X}}{\partial{Y}}\mid_{{Z}} \frac{\partial{Y}}{\partial{Z}}\mid_{{X}} \frac{\partial{X}}{\partial{Z}}\mid_{{Y}} =−\mathrm{1} \\ $$
Question Number 176371 Answers: 0 Comments: 1
Question Number 176367 Answers: 1 Comments: 1
Question Number 176360 Answers: 0 Comments: 0
Question Number 176365 Answers: 1 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} }\:+\:\mathrm{4}\:\underset{\boldsymbol{\mathrm{cyc}}} {\prod}\:\mathrm{cos}\:\mathrm{A}\:\leqslant\:\mathrm{2} \\ $$
Question Number 176366 Answers: 1 Comments: 0
$${donner}\:{la}\:{forme}\:{trigonometrique}\:{de}\left(\mathrm{1}−{i}\sqrt{}\mathrm{3}\right)\left(\mathrm{1}+{i}\right)\left({cos}\theta−{isin}\theta\right) \\ $$
Question Number 176354 Answers: 2 Comments: 0
Question Number 176336 Answers: 2 Comments: 0
$$ \\ $$$$\:{in}\:{A}\overset{\Delta} {{B}}_{\:} {C}\::\:\:\frac{{b}−{c}}{{h}_{{a}} \:}\:={k}\:, \\ $$$$\:\:\:\:\:\:\:\:\:\:{and}\:\:\hat {{A}}\:{is}\:{given}. \\ $$$$\:\:\:\:\:\:\:\:\hat {{B}}\:,\:\hat {{C}}\:=?\:\: \\ $$
Question Number 176334 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Psi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}\left(\:\mathrm{1}+\:{x}\:−\:{x}^{\:\mathrm{2}} \right)}{{x}}\mathrm{d}{x}\:=\:? \\ $$$$ \\ $$
Pg 420 Pg 421 Pg 422 Pg 423 Pg 424 Pg 425 Pg 426 Pg 427 Pg 428 Pg 429
Terms of Service
Privacy Policy
Contact: info@tinkutara.com