Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 408

Question Number 180285    Answers: 0   Comments: 3

Express this f(z)=((2z+i)/(z+i)) in polar form where z=re^(iθ) (polar form)

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2z}+\mathrm{i}}{\mathrm{z}+\mathrm{i}}\:\mathrm{in}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{where}\:\mathrm{z}=\mathrm{re}^{\mathrm{i}\theta} \:\left(\mathrm{polar}\:\mathrm{form}\right) \\ $$$$ \\ $$

Question Number 180277    Answers: 0   Comments: 4

Express the function f(z)=ze^(iz) into cartesian form and separate it into Real and Imaginary part. M.m

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\mathrm{iz}} \:\mathrm{into} \\ $$$$\mathrm{cartesian}\:\mathrm{form}\:\mathrm{and}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into} \\ $$$$\mathrm{Real}\:\mathrm{and}\:\mathrm{Imaginary}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 180274    Answers: 1   Comments: 0

Solve in C the equation z^4 +(7−i)z^3 +(12−15i)z^2 +(4+4i)z+16+192i=0 Knowing that it has one real root and a purely imaginary root of equal magnitude.

$$\mathrm{Solve}\:\mathrm{in}\:\mathbb{C}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{4}} +\left(\mathrm{7}−{i}\right){z}^{\mathrm{3}} +\left(\mathrm{12}−\mathrm{15}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{4}+\mathrm{4}{i}\right){z}+\mathrm{16}+\mathrm{192}{i}=\mathrm{0} \\ $$$$\mathrm{Knowing}\:\mathrm{that}\:\mathrm{it}\:\mathrm{has}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{and}\:\mathrm{a}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{root} \\ $$$$\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}. \\ $$

Question Number 180273    Answers: 0   Comments: 0

In triangle ABC with angles α , β , γ correspondently , Euler′s line interescts BC at point P. Ite′s put δ is angle between Euler′s line and BC (∠BPH). Then the following is true tan δ = ((2 cos β cos γ − cos α)/(sin (β − γ)))

$$\mathrm{In}\:\mathrm{triangle}\:\:\mathrm{ABC}\:\:\mathrm{with}\:\mathrm{angles}\:\:\alpha\:,\:\beta\:,\:\gamma \\ $$$$\mathrm{correspondently}\:,\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{interescts} \\ $$$$\mathrm{BC}\:\:\mathrm{at}\:\mathrm{point}\:\:\mathrm{P}.\:\mathrm{Ite}'\mathrm{s}\:\mathrm{put}\:\:\delta\:\:\mathrm{is}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{and}\:\:\mathrm{BC}\:\left(\angle\mathrm{BPH}\right). \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{tan}\:\delta\:=\:\frac{\mathrm{2}\:\mathrm{cos}\:\beta\:\mathrm{cos}\:\gamma\:−\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\left(\beta\:−\:\gamma\right)} \\ $$

Question Number 180272    Answers: 0   Comments: 0

In the triangle following identity is true: 6R^2 = a^2 + c^2 , a ≠ c. Ptove that Euler′s line is antiparallel to AC.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{following}\:\mathrm{identity} \\ $$$$\mathrm{is}\:\mathrm{true}:\:\:\:\mathrm{6R}^{\mathrm{2}} \:=\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:\:,\:\:\:\mathrm{a}\:\neq\:\mathrm{c}. \\ $$$$\mathrm{Ptove}\:\mathrm{that}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{is}\:\mathrm{antiparallel}\:\mathrm{to}\:\:\mathrm{AC}. \\ $$

Question Number 180268    Answers: 2   Comments: 0

Question Number 180260    Answers: 1   Comments: 0

x^(logx) =100x what is the value of x?

$$\mathrm{x}^{\mathrm{logx}} =\mathrm{100x} \\ $$$$ \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 180258    Answers: 2   Comments: 1

Question Number 180257    Answers: 2   Comments: 1

Question Number 180256    Answers: 3   Comments: 1

Question Number 180254    Answers: 1   Comments: 0

Question Number 180236    Answers: 0   Comments: 0

calculation Ω= Σ_(n=1) ^∞ (( ζ ( 2n ))/4^( n) ) =^? (1/2) Ω =Σ_(n=1) ^∞ {(1/2^( 2n) ) Σ_(k=1) ^∞ (1/k^( 2n) ) } = Σ_(n=1) ^∞ Σ_(k=1) ^∞ (1/((2k )^( 2n) ))=Σ_(k=1) ^∞ Σ_(n=1) ^∞ (1/((2k)^( 2n) )) = Σ_(k=1) ^∞ Σ_(n=1) ^∞ (1/((4k^( 2) )^( n) )) = Σ_(k=1) ^∞ (( (1/(4k^( 2) )))/(1− (1/(4k^( 2) )))) = Σ_(k=1) ^∞ (1/((2k−1)(2k+1 ))) =(1/2) Σ_(k=1) ^∞ ((1/(2k−1)) −(1/(2k+1)) ) = (1/2) (1/(2(1)−1)) − lim_( k→∞) (1/(2k+1)) =(1/2)

$$\:\:\:\:\mathrm{calculation} \\ $$$$\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\:\mathrm{2}{n}\:\right)}{\mathrm{4}^{\:{n}} }\:\overset{?} {=}\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\:\Omega\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{2}^{\:\mathrm{2}{n}} }\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\:\mathrm{2}{n}} }\:\right\} \\ $$$$\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}\:\right)^{\:\mathrm{2}{n}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}\right)^{\:\mathrm{2}{n}} } \\ $$$$\:\:\:\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{4}{k}^{\:\mathrm{2}} \:\right)^{\:{n}} }\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\frac{\mathrm{1}}{\mathrm{4}{k}^{\:\mathrm{2}} }}{\mathrm{1}−\:\frac{\mathrm{1}}{\mathrm{4}{k}^{\:\mathrm{2}} }} \\ $$$$\:\:\:\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\:\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:\right) \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}\right)−\mathrm{1}}\:−\:\mathrm{lim}_{\:{k}\rightarrow\infty} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Question Number 180212    Answers: 1   Comments: 0

How many polygons can be formed from a heptagon?

$${How}\:{many}\:{polygons}\:{can}\:{be}\:{formed} \\ $$$$\:{from}\:{a}\:{heptagon}?\: \\ $$

Question Number 180211    Answers: 1   Comments: 0

Find: Ω = gcd (4^(2020) −1 , 8^(2021) −1). Generalization.

$$\mathrm{Find}: \\ $$$$\Omega\:=\:\mathrm{gcd}\:\left(\mathrm{4}^{\mathrm{2020}} −\mathrm{1}\:,\:\mathrm{8}^{\mathrm{2021}} −\mathrm{1}\right).\:\mathrm{Generalization}. \\ $$

Question Number 180207    Answers: 5   Comments: 0

(2/(15)) , ((11)/(40)) , ((26)/(75)) , ((47)/(120)) , ...

$$\:\frac{\mathrm{2}}{\mathrm{15}}\:,\:\:\frac{\mathrm{11}}{\mathrm{40}}\:\:,\:\:\frac{\mathrm{26}}{\mathrm{75}}\:\:,\:\:\frac{\mathrm{47}}{\mathrm{120}}\:\:,\:... \\ $$$$ \\ $$

Question Number 180200    Answers: 4   Comments: 2

A) How many even numbers of 3 different digits bigger than 300 can be formed from {1, 2, 3, 4} B) How many numbers bigger than 300 can be formed from the same group

$$\left.\boldsymbol{{A}}\right)\:{How}\:{many}\:{even}\:{numbers}\:{of}\:\mathrm{3}\:{different}\:{digits} \\ $$$$\:{bigger}\:{than}\:\mathrm{300}\:{can}\:{be}\:{formed}\:{from}\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right\} \\ $$$$\left.\boldsymbol{{B}}\right)\:{How}\:{many}\:{numbers}\:{bigger}\:{than}\:\mathrm{300}\:{can} \\ $$$$\:\:\:\:\:\:\:\:{be}\:{formed}\:{from}\:{the}\:{same}\:{group} \\ $$

Question Number 180197    Answers: 0   Comments: 0

Question Number 180196    Answers: 0   Comments: 0

Question Number 180192    Answers: 1   Comments: 2

With 3 blue, 2 red and 2 pink beads how many necklaces can be made if there: a• is no clasp b• is a clasp

$${With}\:\mathrm{3}\:{blue},\:\mathrm{2}\:{red}\:{and}\:\mathrm{2}\:{pink}\:{beads}\:{how}\:{many} \\ $$$$\:{necklaces}\:{can}\:{be}\:{made}\:{if}\:{there}: \\ $$$$\:{a}\bullet\:{is}\:{no}\:{clasp}\:\:\:\:\:\:{b}\bullet\:{is}\:{a}\:{clasp} \\ $$$$\: \\ $$

Question Number 180191    Answers: 1   Comments: 0

A solid cone of height 56cm and a basem diaeter of 56cm is formed from al cylindrica drum equal in height andt diameer with the cone. Find the surfacee ara of the remaining part of the drum. (if the answer is accompanied by a diagramit will be perfect and I thank youo fr it).

$$ \\ $$$$\mathrm{A}\:\mathrm{solid}\:\mathrm{cone}\:\mathrm{of}\:\mathrm{height}\:\mathrm{56cm}\:\mathrm{and}\:\mathrm{a}\:\mathrm{basem} \\ $$$$\mathrm{diaeter}\:\mathrm{of}\:\mathrm{56cm}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{al} \\ $$$$\mathrm{cylindrica}\:\mathrm{drum}\:\mathrm{equal}\:\mathrm{in}\:\mathrm{height}\:\mathrm{andt} \\ $$$$\mathrm{diameer}\:\mathrm{with}\:\mathrm{the}\:\mathrm{cone}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{surfacee} \\ $$$$\mathrm{ara}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{drum}. \\ $$$$ \\ $$$$\left(\mathrm{if}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{accompanied}\:\mathrm{by}\:\mathrm{a}\:\right. \\ $$$$\mathrm{diagramit}\:\mathrm{will}\:\mathrm{be}\:\mathrm{perfect}\:\mathrm{and}\:\mathrm{I}\:\mathrm{thank}\:\mathrm{youo} \\ $$$$\left.\mathrm{fr}\:\mathrm{it}\right). \\ $$

Question Number 180190    Answers: 1   Comments: 0

Question Number 180188    Answers: 1   Comments: 0

Question Number 180186    Answers: 0   Comments: 0

A maintenance manager wishes to repair 8 out of 15 machines down. In how many ways can he create a list of 8 machines a\ If he has to precise the hour of repair of each of them ? b\ If he doesn′t precise the hour of repair of each of them ? c\ Haven chosen the 8 machines, in how many ways can he define the order of repair of each of them ?

$$\:\:\:\mathrm{A}\:\mathrm{maintenance}\:\mathrm{manager}\:\mathrm{wishes}\:\mathrm{to}\:\mathrm{repair}\:\mathrm{8}\:\mathrm{out}\:\mathrm{of}\: \\ $$$$\mathrm{15}\:\mathrm{machines}\:\mathrm{down}.\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{he}\:\mathrm{create} \\ $$$$\mathrm{a}\:\mathrm{list}\:\mathrm{of}\:\mathrm{8}\:\mathrm{machines} \\ $$$$\mathrm{a}\backslash\:\mathrm{If}\:\mathrm{he}\:\mathrm{has}\:\mathrm{to}\:\mathrm{precise}\:\mathrm{the}\:\mathrm{hour}\:\mathrm{of}\:\mathrm{repair}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:? \\ $$$$\mathrm{b}\backslash\:\mathrm{If}\:\mathrm{he}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{precise}\:\mathrm{the}\:\mathrm{hour}\:\mathrm{of}\:\mathrm{repair}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:? \\ $$$$\mathrm{c}\backslash\:\mathrm{Haven}\:\mathrm{chosen}\:\mathrm{the}\:\mathrm{8}\:\mathrm{machines},\:\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can} \\ $$$$\mathrm{he}\:\mathrm{define}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{repair}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:? \\ $$

Question Number 180162    Answers: 0   Comments: 9

How many words can be formed from letters of the “Your answer is wrong”? So that they shouldn′t start with ′o′ neither ′w′ and shouldn′t end with ′w′, and should be′r′ & ′s′ adjacents. Oya...n, Wen...y, Iog...w , Yourws...e : are invalid Enrsow...g : is valid

$${How}\:{many}\:{words}\:{can}\:{be}\:{formed}\:{from}\:{letters}\:{of}\:{the} \\ $$$$\:``{Your}\:{answer}\:{is}\:{wrong}''?\:{So}\:{that}\:{they}\:{shouldn}'{t} \\ $$$$\:{start}\:{with}\:'{o}'\:{neither}\:'{w}'\:{and}\:\:{shouldn}'{t}\:{end} \\ $$$$\:{with}\:'{w}',\:{and}\:{should}\:{be}'{r}'\:\&\:'{s}'\:{adjacents}. \\ $$$$ \\ $$$$\:\cancel{{O}ya}...{n},\:\cancel{{W}en}...{y},\:{Iog}...\cancel{{w}}\:,\:{You}\cancel{{r}w}\cancel{{s}}...{e}\:\::\:{are}\:{invalid} \\ $$$$\:{Enrsow}...{g}\::\:{is}\:{valid} \\ $$$$ \\ $$

Question Number 180159    Answers: 1   Comments: 0

Express the function f(z)=ze^(iz) in polar form and separate it into Real and Imaginary part. M.m

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\mathrm{iz}} \:\mathrm{in}\:\mathrm{polar} \\ $$$$\mathrm{form}\:\mathrm{and}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into}\:\mathrm{Real}\:\mathrm{and}\: \\ $$$$\mathrm{Imaginary}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 180157    Answers: 2   Comments: 0

As the force on a string increases from 100N to 180N, the string extends by 10cm. The work done in increasing the tension in the string is?

As the force on a string increases from 100N to 180N, the string extends by 10cm. The work done in increasing the tension in the string is?

  Pg 403      Pg 404      Pg 405      Pg 406      Pg 407      Pg 408      Pg 409      Pg 410      Pg 411      Pg 412   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com