Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 408

Question Number 178137    Answers: 1   Comments: 2

Let f(x)= (ax+1)^5 .(1+bx)^4 ; a,b ∈ N if times of x equal 62 so what are possible values of the sum a, b?

$${Let}\:{f}\left({x}\right)=\:\left({ax}+\mathrm{1}\right)^{\mathrm{5}} .\left(\mathrm{1}+{bx}\right)^{\mathrm{4}} \:;\:{a},{b}\:\in\:\mathbb{N} \\ $$$$\:{if}\:{times}\:{of}\:{x}\:{equal}\:\mathrm{62}\:{so}\:{what}\:{are}\:{possible}\:{values} \\ $$$$\:{of}\:{the}\:{sum}\:{a},\:{b}? \\ $$$$ \\ $$

Question Number 178136    Answers: 0   Comments: 0

Journey inside a regular hexagon The operation is to connect three dots of a regular hexagon′s heads. 1• How many types of geometric shapes will we get? 2• How many each type?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Journey}}\:\boldsymbol{{inside}}\:\boldsymbol{{a}}\:\boldsymbol{{regular}}\:\boldsymbol{{hexagon}} \\ $$$$\:{The}\:{operation}\:{is}\:{to}\:{connect}\:{three}\:{dots}\:{of} \\ $$$$\:{a}\:{regular}\:{hexagon}'{s}\:{heads}. \\ $$$$\mathrm{1}\bullet\:{How}\:{many}\:{types}\:{of}\:{geometric}\:{shapes}\:{will}\:{we}\:{get}? \\ $$$$\mathrm{2}\bullet\:{How}\:{many}\:{each}\:{type}? \\ $$$$ \\ $$

Question Number 178134    Answers: 0   Comments: 8

Am not a friend with this isssue: 6 red, 1 black and 3 white balls We draw 3 balls in a raw, returning the drawn ball each time. How many different results which include at least one black ball. Way_1 : 1000−9^3 = 271 results That′s very ok Way_2 : 1×9×9_(very ok) ×3_(Omg, Why?) + 1×1×9×3_(the same confused above) + 1×1×1_(very ok and i like it.... but why not ×3) = 271 result Explanation_(about the story of ×3) ?

$${Am}\:{not}\:{a}\:{friend}\:{with}\:{this}\:{isssue}: \\ $$$$\mathrm{6}\:{red},\:\mathrm{1}\:{black}\:{and}\:\mathrm{3}\:{white}\:{balls} \\ $$$${We}\:{draw}\:\mathrm{3}\:{balls}\:{in}\:{a}\:{raw},\:{returning}\:{the} \\ $$$$\:{drawn}\:{ball}\:{each}\:{time}. \\ $$$${How}\:{many}\:{different}\:{results}\:{which}\:{include} \\ $$$$\:\boldsymbol{{at}}\:\boldsymbol{{least}}\:{one}\:{black}\:{ball}. \\ $$$$ \\ $$$$\:{Way}_{\mathrm{1}} :\:\mathrm{1000}−\mathrm{9}^{\mathrm{3}} =\:\mathrm{271}\:{results}\:{That}'{s}\:{very}\:{ok} \\ $$$$ \\ $$$$\:{Way}_{\mathrm{2}} :\:\mathrm{1}×\mathrm{9}×\mathrm{9}_{{very}\:{ok}} ×\mathrm{3}_{\boldsymbol{{Omg}},\:\boldsymbol{{Why}}?} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\mathrm{1}×\mathrm{1}×\mathrm{9}×\mathrm{3}_{{the}\:{same}\:{confused}\:{above}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\mathrm{1}×\mathrm{1}×\mathrm{1}_{{very}\:{ok}\:{and}\:{i}\:{like}\:{it}....\:{but}\:{why}\:{not}\:×\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{271}\:{result} \\ $$$$ \\ $$$$\:{Explanation}_{{about}\:{the}\:{story}\:{of}\:×\mathrm{3}} ? \\ $$$$ \\ $$

Question Number 178131    Answers: 1   Comments: 2

Question Number 178115    Answers: 2   Comments: 0

(n/(390)) is a prime number less than 12 and one of the prime factor of n is not a prime factor of 390. Qty A: n Qty B: 3000

$$\frac{{n}}{\mathrm{390}}\:{is}\:{a}\:{prime}\:{number}\:{less}\:{than}\:\mathrm{12}\:{and}\: \\ $$$${one}\:{of}\:{the}\:{prime}\:{factor}\:{of}\:\:{n}\:{is}\:{not}\: \\ $$$${a}\:{prime}\:{factor}\:{of}\:\mathrm{390}. \\ $$$${Qty}\:{A}:\:{n} \\ $$$${Qty}\:{B}:\:\mathrm{3000} \\ $$

Question Number 178103    Answers: 0   Comments: 1

A sample of 18 integers has an average (arithemetic mean) equal to M and standard deviation equal to S. Two of the integers are equal to m. Quantity A: The standard devuaition of the 16 integers that are not equal to m. Quantity B: S

$${A}\:{sample}\:{of}\:\mathrm{18}\:{integers}\:{has}\:{an}\:{average}\: \\ $$$$\left({arithemetic}\:{mean}\right)\:{equal}\:{to}\:{M}\:{and}\:{standard} \\ $$$${deviation}\:{equal}\:{to}\:{S}.\:{Two}\:{of}\:{the}\:{integers} \\ $$$${are}\:{equal}\:{to}\:{m}. \\ $$$${Quantity}\:{A}:\:{The}\:{standard}\:{devuaition}\:{of} \\ $$$${the}\:\mathrm{16}\:{integers}\:{that}\:{are}\:{not}\:{equal}\:{to}\:{m}. \\ $$$${Quantity}\:{B}:\:{S} \\ $$

Question Number 178102    Answers: 0   Comments: 2

I am really learning here. I am studying for GRE

$${I}\:{am}\:{really}\:{learning}\:{here}.\:{I}\:{am}\:{studying} \\ $$$${for}\:{GRE} \\ $$

Question Number 178101    Answers: 0   Comments: 0

x and s are positive Quantity A: the amount of money invested for one year at x/2 percent simple interest that will earn 2x dollars in interest in that year. Quantity B: the amount of money invested for one year at x percent simple annual interest that will earn s dollars in interest in that year.

$${x}\:{and}\:{s}\:{are}\:{positive} \\ $$$${Quantity}\:{A}:\:{the}\:{amount}\:{of}\:{money}\:{invested} \\ $$$${for}\:{one}\:{year}\:{at}\:{x}/\mathrm{2}\:{percent}\:{simple}\:{interest} \\ $$$${that}\:{will}\:{earn}\:\mathrm{2}{x}\:{dollars}\:{in}\:{interest}\:{in}\:{that} \\ $$$${year}. \\ $$$${Quantity}\:{B}:\:{the}\:{amount}\:{of}\:{money}\:{invested} \\ $$$${for}\:{one}\:{year}\:{at}\:{x}\:{percent}\:{simple}\:{annual} \\ $$$${interest}\:{that}\:{will}\:{earn}\:{s}\:{dollars}\:{in}\:{interest} \\ $$$${in}\:{that}\:{year}. \\ $$$$ \\ $$$$ \\ $$

Question Number 181541    Answers: 4   Comments: 2

solve for f(x) such that f′(x)=f^(−1) (x)

$${solve}\:{for}\:{f}\left({x}\right)\:{such}\:{that} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$

Question Number 181540    Answers: 0   Comments: 0

Question Number 181602    Answers: 2   Comments: 0

if lim_(x→1) (((√(ax+b))−4)/((x−1)))=5 find a,b

$${if}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\frac{\sqrt{{ax}+{b}}−\mathrm{4}}{\left({x}−\mathrm{1}\right)}=\mathrm{5}\:\:\:\:{find}\:{a},{b} \\ $$

Question Number 178091    Answers: 0   Comments: 0

remainder when 7^9^9^9^9 is divided by 10

$${remainder}\:{when}\:\mathrm{7}^{\mathrm{9}^{\mathrm{9}^{\mathrm{9}^{\mathrm{9}} } } } \:{is}\:{divided}\:{by}\:\mathrm{10}\: \\ $$

Question Number 178087    Answers: 0   Comments: 1

un avion volant a hauteur h=4km du sol a vitesse supersonic (v) sachant que la vitesse du son a la hauteur h est de 300m/s et que le temps mis par le son emis par l avion depuis un point(c) est cspte par une prrsonne avec un retard de 3s −Determiner la vitesse( v)de l′ avion?

$${un}\:{avion}\:{volant}\:{a}\:{hauteur}\:{h}=\mathrm{4}{km}\:{du}\:{sol} \\ $$$${a}\:{vitesse}\:{supersonic}\:\:\left({v}\right)\: \\ $$$${sachant}\:{que}\:{la}\:{vitesse}\:{du}\:{son}\:{a}\:{la}\: \\ $$$${hauteur}\:{h}\:{est}\:{de}\:\mathrm{300}{m}/{s}\:{et} \\ $$$${que}\:{le}\:{temps}\:{mis}\:{par}\:{le}\:{son}\:{emis}\:{par} \\ $$$${l}\:{avion}\:{depuis}\:{un}\:{point}\left({c}\right)\:{est}\: \\ $$$${cspte}\:{par}\:{une}\:{prrsonne}\:{avec}\:{un} \\ $$$${retard}\:{de}\:\mathrm{3}{s} \\ $$$$−{Determiner}\:{la}\:{vitesse}\left(\:{v}\right){de}\:{l}'\:{avion}? \\ $$$$ \\ $$

Question Number 178114    Answers: 1   Comments: 1

n is an integer greater than 1. Quantity A: the number of positive divisor of 2n. Quantity B: twice the number of positive divisors of n

$${n}\:{is}\:{an}\:{integer}\:{greater}\:{than}\:\mathrm{1}. \\ $$$${Quantity}\:{A}:\:{the}\:{number}\:{of}\:{positive}\:{divisor} \\ $$$${of}\:\mathrm{2}{n}. \\ $$$${Quantity}\:{B}:\:{twice}\:{the}\:{number}\:{of}\:{positive} \\ $$$${divisors}\:{of}\:{n} \\ $$

Question Number 178113    Answers: 1   Comments: 0

8 yellow, 8 red, 8 green and 8 blue cards, each grouo is numbered from 1 to 8 . We want to know how many pulls contain at least one card with number 1 through pull processes 5 cards each time

$$\:\mathrm{8}\:{yellow},\:\mathrm{8}\:{red},\:\mathrm{8}\:{green}\:{and}\:\mathrm{8}\:{blue}\:{cards},\: \\ $$$${each}\:{grouo}\:{is}\:{numbered}\:{from}\:\mathrm{1}\:{to}\:\mathrm{8}\:. \\ $$$$\:{We}\:{want}\:{to}\:{know}\:{how}\:{many}\:{pulls}\:{contain} \\ $$$$\:{at}\:{least}\:{one}\:{card}\:{with}\:{number}\:\mathrm{1}\:{through} \\ $$$$\:{pull}\:{processes}\:\mathrm{5}\:{cards}\:{each}\:{time} \\ $$$$ \\ $$$$ \\ $$

Question Number 178074    Answers: 0   Comments: 3

question posted by spillover in 12.10.2022

$${question}\:{posted}\:{by}\:{spillover}\:{in} \\ $$$$\mathrm{12}.\mathrm{10}.\mathrm{2022} \\ $$

Question Number 178073    Answers: 1   Comments: 4

Question Number 178067    Answers: 0   Comments: 0

Question Number 178064    Answers: 1   Comments: 0

A group of n people is categorized as follows. 14 people are shorter than 5(1/2) feet 9 people are taller than 6 feet 12 people are under 21 years old. if each person in the group is in at least one of the three categories. then n can be any integer between a. 9 and 14 inclusive b. 12 and 21 inclusive c. 14 and 23 inclusive d. 21 and 26 inclusive e. 23 and 35 inclusive

$${A}\:{group}\:{of}\:{n}\:{people}\:{is}\:{categorized}\:{as}\:{follows}. \\ $$$$\mathrm{14}\:{people}\:{are}\:{shorter}\:{than}\:\mathrm{5}\frac{\mathrm{1}}{\mathrm{2}}\:{feet} \\ $$$$\mathrm{9}\:{people}\:{are}\:{taller}\:{than}\:\mathrm{6}\:{feet} \\ $$$$\mathrm{12}\:{people}\:{are}\:{under}\:\mathrm{21}\:{years}\:{old}. \\ $$$${if}\:{each}\:{person}\:{in}\:{the}\:{group}\:{is}\:{in}\:{at}\:{least} \\ $$$${one}\:{of}\:{the}\:{three}\:{categories}.\:{then}\:{n}\:{can}\:{be} \\ $$$${any}\:{integer}\:{between}\: \\ $$$${a}.\:\mathrm{9}\:{and}\:\mathrm{14}\:{inclusive} \\ $$$${b}.\:\mathrm{12}\:{and}\:\mathrm{21}\:{inclusive} \\ $$$${c}.\:\mathrm{14}\:{and}\:\mathrm{23}\:{inclusive} \\ $$$${d}.\:\mathrm{21}\:{and}\:\mathrm{26}\:{inclusive} \\ $$$${e}.\:\mathrm{23}\:{and}\:\mathrm{35}\:{inclusive} \\ $$$$ \\ $$

Question Number 178058    Answers: 0   Comments: 0

This app will soon be all over everywhere. I am certain. it is greatly helpful.

$${This}\:{app}\:{will}\:{soon}\:{be}\:{all}\:{over}\:{everywhere}. \\ $$$${I}\:{am}\:{certain}.\:{it}\:{is}\:{greatly}\:{helpful}. \\ $$

Question Number 178059    Answers: 1   Comments: 1

Question Number 178054    Answers: 2   Comments: 3

Mr. w wants to distribute n+1 different prizes to n friends so that each one gets at least one prize, how many results of this process. I hope to be that one gets 2

$${Mr}.\:{w}\:{wants}\:{to}\:{distribute}\:{n}+\mathrm{1}\:{different}\: \\ $$$${prizes}\:\:{to}\:{n}\:{friends}\:{so}\:{that}\:{each}\:{one}\:{gets} \\ $$$$\:{at}\:{least}\:{one}\:{prize},\:{how}\:{many}\:{results} \\ $$$$\:{of}\:{this}\:{process}.\:{I}\:{hope}\:{to}\:{be}\:{that}\:{one}\:{gets}\:\mathrm{2} \\ $$$$ \\ $$

Question Number 178052    Answers: 0   Comments: 0

Question Number 178051    Answers: 0   Comments: 0

Question Number 178037    Answers: 1   Comments: 1

Question Number 178032    Answers: 0   Comments: 3

• D={z : ∣z∣<1} • H (A→B) denotes the set of holomorfic functions from A to B • We define: W={f∈H (D→R) : ∣∣f∣∣_W <∞ } where ∣∣ ∙ ∣∣_W : { (W,→,R_+ ),(f, ,(Σ_(n=0) ^∞ ((∣f^((n)) (0)∣)/(n!)))) :} Let f∈W Show that ∀g∈H ( f(D^ )), g○f∈W tip: show that ∣∣h∣∣_W ≤cste × Sup_(z∈D) {∣h(z)∣+∣h′′(z)∣} and that W is an algebra then, re−wright f=f_1 +f_2 with f_2 : z Σ_(n=N) ^∞ ((f^((n)) (0))/(n!))z^n with N great enough to make sure that Σ_(n=0) ^∞ ((g^((n)) (0))/(n!))f_2 ^( n) is well defined and converges over W. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

$$\bullet\:{D}=\left\{{z}\::\:\mid{z}\mid<\mathrm{1}\right\} \\ $$$$\bullet\:\mathscr{H}\:\left({A}\rightarrow{B}\right)\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{holomorfic} \\ $$$$\mathrm{functions}\:\mathrm{from}\:{A}\:\mathrm{to}\:{B} \\ $$$$\bullet\:\mathrm{We}\:\mathrm{define}: \\ $$$${W}=\left\{{f}\in\mathscr{H}\:\left({D}\rightarrow\mathbb{R}\right)\::\:\mid\mid{f}\mid\mid_{{W}} <\infty\:\right\} \\ $$$$\mathrm{where}\:\:\mid\mid\:\centerdot\:\mid\mid_{{W}} \::\:\begin{cases}{{W}}&{\rightarrow}&{\mathbb{R}_{+} }\\{{f}}&{ }&{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{f}^{\left({n}\right)} \left(\mathrm{0}\right)\mid}{{n}!}}\end{cases} \\ $$$$ \\ $$$$\mathrm{Let}\:{f}\in{W} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\forall{g}\in\mathscr{H}\:\left(\:{f}\left(\bar {{D}}\right)\right),\:{g}\circ{f}\in{W} \\ $$$${tip}:\:{show}\:{that} \\ $$$$\:\mid\mid{h}\mid\mid_{{W}} \leqslant{cste}\:×\:\mathrm{Sup}_{{z}\in{D}} \left\{\mid{h}\left({z}\right)\mid+\mid{h}''\left({z}\right)\mid\right\} \\ $$$${and}\:{that}\:{W}\:{is}\:{an}\:{algebra} \\ $$$$ \\ $$$$\mathrm{then},\:\mathrm{re}−\mathrm{wright}\:{f}={f}_{\mathrm{1}} +{f}_{\mathrm{2}} \:\mathrm{with} \\ $$$${f}_{\mathrm{2}} :\:{z}\: \underset{{n}={N}} {\overset{\infty} {\sum}}\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}{z}^{{n}} \\ $$$$\mathrm{with}\:{N}\:\mathrm{great}\:\mathrm{enough}\:\mathrm{to}\:\mathrm{make}\:\mathrm{sure}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{g}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}{f}_{\mathrm{2}} ^{\:{n}} \:\mathrm{is}\:\mathrm{well}\:\mathrm{defined}\:\mathrm{and}\:\mathrm{converges} \\ $$$$\mathrm{over}\:{W}. \\ $$$$\:\:\:\:\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot \\ $$

  Pg 403      Pg 404      Pg 405      Pg 406      Pg 407      Pg 408      Pg 409      Pg 410      Pg 411      Pg 412   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com