Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 408
Question Number 178019 Answers: 0 Comments: 0
$$\mathrm{Give}\:\mathrm{the}\:\mathrm{IUPAC}\:\mathrm{name}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following} \\ $$$$\left(\mathrm{a}\right)\mathrm{H}_{\mathrm{3}} \mathrm{PO}_{\mathrm{4}} \\ $$$$\left(\mathrm{b}\right)\mathrm{H}_{\mathrm{2}} \mathrm{CO}_{\mathrm{3}} \\ $$$$\left(\mathrm{c}\right)\mathrm{HCIO} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{HNO}_{\mathrm{2}} \\ $$$$\left(\mathrm{e}\right)\mathrm{HNO}_{\mathrm{3}} \\ $$$$\left(\mathrm{f}\right)\mathrm{Al}_{\mathrm{2}} \left(\mathrm{SO}_{\mathrm{4}} \right)_{\mathrm{3}} \\ $$$$\left(\mathrm{g}\right)\mathrm{Ca}_{\mathrm{3}} \left(\mathrm{PO}_{\mathrm{4}} \right)_{\mathrm{2}} \\ $$$$\left(\mathrm{h}\right)\mathrm{MgO}_{\mathrm{2}} \\ $$$$\left(\mathrm{i}\right)\mathrm{HF} \\ $$
Question Number 178018 Answers: 2 Comments: 0
$$\mathrm{8}.\mathrm{1g}\:\mathrm{of}\:\mathrm{a}\:\mathrm{compound}\:\mathrm{Q}\:\mathrm{contain} \\ $$$$\mathrm{magnessium}\:\mathrm{and}\:\mathrm{oxygen}.\mathrm{if} \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{magnessium}\:\mathrm{is}\:\mathrm{4}.\mathrm{9g} \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{empirical}\:\mathrm{formular} \\ $$$$\mathrm{of}\:\mathrm{compound}\:\mathrm{Q}. \\ $$$$\left[\mathrm{given}\:\mathrm{Mg}=\mathrm{24}\:\:\:\mathrm{O}=\mathrm{16}\right] \\ $$
Question Number 178013 Answers: 4 Comments: 0
$$\mathrm{Using}\:\mathrm{Electronic}\:\mathrm{diagrams}\:\mathrm{show} \\ $$$$\mathrm{the}\:\mathrm{bonding}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following} \\ $$$$\left(\mathrm{a}\right)\mathrm{Magnesium}\:\mathrm{chloride} \\ $$$$\left(\mathrm{b}\right)\mathrm{Sodium}\:\mathrm{chloride} \\ $$
Question Number 178011 Answers: 3 Comments: 0
$$\mathrm{Hydrocarbon}\:\mathrm{contain}\:\mathrm{80\%}\:\mathrm{by} \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{carbon}\:\mathrm{and}\:\mathrm{the}\:\mathrm{rest} \\ $$$$\mathrm{is}\:\mathrm{for}\:\mathrm{hydrogen}.\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{empirical}\:\mathrm{formula}\:\mathrm{of}\:\mathrm{the}\:\mathrm{compound} \\ $$$$\left[\mathrm{given}\:\mathrm{H}=\mathrm{1}\:\:\mathrm{C}=\mathrm{12}\right] \\ $$
Question Number 178009 Answers: 3 Comments: 2
Question Number 178008 Answers: 1 Comments: 0
Question Number 178007 Answers: 1 Comments: 0
Question Number 178001 Answers: 1 Comments: 1
Question Number 177996 Answers: 0 Comments: 1
Question Number 177990 Answers: 0 Comments: 0
Question Number 177980 Answers: 1 Comments: 0
Question Number 177978 Answers: 3 Comments: 0
Question Number 177976 Answers: 0 Comments: 1
Question Number 177975 Answers: 1 Comments: 0
Question Number 177964 Answers: 3 Comments: 1
$$\frac{\mathrm{1}}{{sec}\mathrm{15}\:{sin}\mathrm{15}\:{cos}\mathrm{30}}=? \\ $$
Question Number 177957 Answers: 2 Comments: 0
$$\mathrm{let}\:\:\mathrm{a}\:>\:\mathrm{0}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{infinite}\: \\ $$$$\mathrm{series} \\ $$$$\:\mathrm{1}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{2}} \:}{\mathrm{2}!}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{4}} \:}{\mathrm{4}!}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{6}} \:}{\mathrm{6}!}... \\ $$
Question Number 177933 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{1}+\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+...\infty \\ $$$$=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\:\:,\mathrm{0}<\mathrm{x}<\pi\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$ \\ $$
Question Number 177932 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}\:\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{c}}\:+\sqrt{\mathrm{a}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{a}}},\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P} \\ $$
Question Number 177931 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{by}\:\mathrm{the}\:\mathrm{principle}\:\mathrm{of}\: \\ $$$$\mathrm{induction}\:\mathrm{that} \\ $$$$\mathrm{1}.\mathrm{4}.\mathrm{7}+\mathrm{2}.\mathrm{5}.\mathrm{8}+\mathrm{3}.\mathrm{6}.\mathrm{9}+...\mathrm{n}\left(\mathrm{n}+\mathrm{3}\right)\left(\mathrm{n}+\mathrm{6}\right) \\ $$$$=\frac{\mathrm{n}}{\mathrm{4}}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{6}\right)\left(\mathrm{n}+\mathrm{7}\right) \\ $$
Question Number 177930 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{LCM}\: \\ $$$$\mathrm{14a}^{\mathrm{2}} \mathrm{b}^{\mathrm{3}} \mathrm{c}^{\mathrm{4}} ,\mathrm{20ab}^{\mathrm{4}} \mathrm{c}^{\mathrm{4}} \:\mathrm{and} \\ $$$$\:\mathrm{35a}^{\mathrm{5}} \mathrm{b}^{\mathrm{3}} \mathrm{c} \\ $$
Question Number 177929 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{LCM}\: \\ $$$$\mathrm{3y}+\mathrm{12},\mathrm{y}^{\mathrm{2}} −\mathrm{16}\:\mathrm{and}\:\mathrm{y}^{\mathrm{4}} −\mathrm{64y} \\ $$
Question Number 177928 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\left[\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} +\mathrm{3y}}\right]\boldsymbol{\div}\left[\frac{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{3xy}}{\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} }\right]×\left[\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\right]=\mathrm{xy} \\ $$
Question Number 177922 Answers: 1 Comments: 0
Question Number 177913 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{if}}\:\:\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} =\int\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:\:\:\boldsymbol{\mathrm{and}}\:\: \\ $$$$\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} \:=\:−\frac{\boldsymbol{\mathrm{xsin}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{cosx}}\:}{\boldsymbol{\mathrm{n}}}\:+\frac{\boldsymbol{\mathrm{sin}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{x}}\:}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\mathrm{f}\left(\mathrm{n}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} \\ $$$$\:\:\:\mathrm{then}\:\:\mathrm{f}\left(\mathrm{n}\right)\:=\:? \\ $$
Question Number 177914 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\:\:\:\:\:\frac{\mathrm{2}{sin}\mathrm{26}+\mathrm{2}{cos}\mathrm{64}}{\mathrm{4}{sin}\mathrm{13}\:{cos}\mathrm{13}}=? \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\frac{\mathrm{1}}{{sec}\mathrm{15}\:{sin}\mathrm{15}\:{cos}\mathrm{30}}=? \\ $$
Question Number 177910 Answers: 2 Comments: 0
Pg 403 Pg 404 Pg 405 Pg 406 Pg 407 Pg 408 Pg 409 Pg 410 Pg 411 Pg 412
Terms of Service
Privacy Policy
Contact: info@tinkutara.com