Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 401

Question Number 180107    Answers: 1   Comments: 6

Question Number 180106    Answers: 3   Comments: 0

lim_(x→∞) (√(x^2 +x))−x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{{x}^{\mathrm{2}} +{x}}−{x} \\ $$

Question Number 180104    Answers: 1   Comments: 1

Question Number 180103    Answers: 0   Comments: 4

Solve 2x^2 =8

$${Solve}\:\mathrm{2}{x}^{\mathrm{2}} =\mathrm{8} \\ $$

Question Number 180101    Answers: 1   Comments: 2

Hello mr. Tinku Tara Please, in the comments part, putting the name of the member whom the comment is for him Commentd by Acem on Mr. w as an example Thank you!

$${Hello}\:{mr}.\:{Tinku}\:{Tara} \\ $$$$ \\ $$$${Please},\:{in}\:{the}\:{comments}\:{part},\:{putting}\:{the}\:{name} \\ $$$$\:{of}\:{the}\:{member}\:{whom}\:{the}\:{comment}\:{is}\:{for}\:{him} \\ $$$$ \\ $$$${Commentd}\:{by}\:{Acem}\:{on}\:{Mr}.\:{w}\:\:{as}\:{an}\:{example} \\ $$$$ \\ $$$${Thank}\:{you}! \\ $$

Question Number 180043    Answers: 4   Comments: 3

Question Number 180027    Answers: 1   Comments: 0

There are 4 identical mathematics books, 3 identical physics books, 2 identical chemistry books and 2 identical biology books. in how many ways can you compile these books such that same books are not mutually adjacent. (an unsolved old question)

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{3}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{biology}\:\mathrm{books}.\:\mathrm{in}\:\mathrm{how}\:\mathrm{many} \\ $$$$\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile}\:\mathrm{these}\:\mathrm{books} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}. \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\right) \\ $$

Question Number 180025    Answers: 1   Comments: 0

4−2cos (2π(13x+9)^2 )= 5sin (π(13x+9)^2 ) x=?

$$\:\:\:\:\:\:\:\mathrm{4}−\mathrm{2cos}\:\left(\mathrm{2}\pi\left(\mathrm{13x}+\mathrm{9}\right)^{\mathrm{2}} \right)=\:\mathrm{5sin}\:\left(\pi\left(\mathrm{13x}+\mathrm{9}\right)^{\mathrm{2}} \right) \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 180018    Answers: 0   Comments: 1

((sin^2 (((3π)/7)))/(sin^2 (((2π)/7)))) + ((sin (((3π)/7)))/(sin (((2π)/7)))) +1−2sin (((5π)/(14))) =?

$$\:\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)}\:+\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}{\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)}\:+\mathrm{1}−\mathrm{2sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{14}}\right)\:=? \\ $$

Question Number 180016    Answers: 0   Comments: 0

Find max and min local of function y= ((x+2)/(x^2 +3sin (3x)+4cos (3x)))

$$\:\mathrm{Find}\:\mathrm{max}\:\mathrm{and}\:\mathrm{min}\:\mathrm{local}\:\mathrm{of}\:\mathrm{function} \\ $$$$\:\mathrm{y}=\:\frac{\mathrm{x}+\mathrm{2}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3sin}\:\left(\mathrm{3x}\right)+\mathrm{4cos}\:\left(\mathrm{3x}\right)} \\ $$

Question Number 180014    Answers: 2   Comments: 0

Given 80^a = 5 and 80^b = 2 then 25^((1−a−2b)/(1+a−4b)) =?

$$\:\:\mathrm{Given}\:\mathrm{80}^{{a}} \:=\:\mathrm{5}\:\mathrm{and}\:\mathrm{80}^{{b}} \:=\:\mathrm{2} \\ $$$$\:\mathrm{then}\:\mathrm{25}^{\frac{\mathrm{1}−{a}−\mathrm{2}{b}}{\mathrm{1}+{a}−\mathrm{4}{b}}} \:=?\: \\ $$

Question Number 179999    Answers: 1   Comments: 1

Question Number 179993    Answers: 0   Comments: 13

How many 6 digit numbers have different digits and are divisible by 11? (an unsolved old question)

$${How}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{have} \\ $$$${different}\:{digits}\:{and}\:{are}\:{divisible}\:{by} \\ $$$$\mathrm{11}? \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\right) \\ $$

Question Number 179972    Answers: 0   Comments: 5

Question Number 179955    Answers: 1   Comments: 0

Question Number 179950    Answers: 0   Comments: 1

lim_(x→∞) [(1+(1/x))+(1+(2/x))^(2/2) +(1+(3/x))^(1/3) +∙∙∙∙+(1+(x/x))^(1/x) ]=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)+\left(\mathrm{1}+\frac{\mathrm{2}}{{x}}\right)^{\frac{\mathrm{2}}{\mathrm{2}}} +\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} +\centerdot\centerdot\centerdot\centerdot+\left(\mathrm{1}+\frac{{x}}{{x}}\right)^{\frac{\mathrm{1}}{{x}}} \right]=? \\ $$

Question Number 179961    Answers: 1   Comments: 0

f(x)∈[0,1],1≤f(x)≤3 how to prove 1≤∫_0 ^1 f(x)dx ∫_0 ^1 (dx/(f(x)))≤(4/3)?

$${f}\left({x}\right)\in\left[\mathrm{0},\mathrm{1}\right],\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\mathrm{3} \\ $$$${how}\:{to}\:{prove}\:\mathrm{1}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{f}\left({x}\right)}\leqslant\frac{\mathrm{4}}{\mathrm{3}}? \\ $$

Question Number 179938    Answers: 2   Comments: 3

Question Number 179936    Answers: 3   Comments: 0

Question Number 179919    Answers: 1   Comments: 0

Evaluate Ω = lim_( n→∞) ( n− Σ_(k=1) ^n cos ( (( (√k))/( n)) ) ) =?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Evaluate}\: \\ $$$$\:\:\:\:\:\:\Omega\:=\:\mathrm{lim}_{\:{n}\rightarrow\infty} \left(\:{n}−\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\:\left(\:\frac{\:\sqrt{{k}}}{\:{n}}\:\:\right)\:\right)\:=?\:\:\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$

Question Number 179918    Answers: 1   Comments: 0

Question Number 179917    Answers: 1   Comments: 0

Question Number 179916    Answers: 0   Comments: 0

Question Number 179908    Answers: 0   Comments: 2

Some Important notes 1st Someone has solved a question as wrong, and after he see other people have solved it correctly he delete his poste! hmmm by the way, i have some lapses, i′ve never deleted any. My mistakes keep you from making like them. There is no embarrassment, so please, leave things as they are. 2nd I once composed an question, some people had solved it perfectly, and someone write as comment: “You seem don′t know anything about math” I′ve never replied him, because am not interest in introducing my acadimic qualifications to him. But here i would like to do and say that i exchange the qusetions with others, so if you were a student then try to learn, and if you were a professuer so you can note my questions in your book to show them later to your students in real. The bottom line is let′s exchange a variety of questions! 3rd I noticed some people answer qusetions as a comment! Good! now he seems as the 1st one who solved true! Claps! Can you friend respect who had solved before you? Theses were my three points, for this day. Hope you interest in too, and thanks for you all

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Some}}\:\boldsymbol{{Important}}\:\boldsymbol{{notes}} \\ $$$$\:\mathrm{1}\boldsymbol{{st}}\:{Someone}\:{has}\:{solved}\:{a}\:{question}\:{as}\:{wrong}, \\ $$$$\:{and}\:{after}\:{he}\:{see}\:{other}\:{people}\:{have}\:{solved}\:{it} \\ $$$$\:{correctly}\:{he}\:{delete}\:{his}\:{poste}!\:{hmmm}\:{by}\:{the}\:{way}, \\ $$$$\:{i}\:{have}\:{some}\:{lapses},\:{i}'{ve}\:{never}\:{deleted}\:{any}. \\ $$$$\:{My}\:{mistakes}\:{keep}\:{you}\:{from}\:{making}\:{like}\:{them}. \\ $$$$\:{There}\:{is}\:{no}\:{embarrassment},\:{so}\:{please},\:{leave} \\ $$$$\:{things}\:{as}\:{they}\:{are}. \\ $$$$ \\ $$$$\mathrm{2}\boldsymbol{{nd}}\:{I}\:{once}\:{composed}\:{an}\:{question},\:{some}\:{people} \\ $$$$\:{had}\:{solved}\:{it}\:{perfectly},\:{and}\:{someone}\:{write}\:{as} \\ $$$$\:{comment}: \\ $$$$\:``{You}\:{seem}\:{don}'{t}\:{know}\:{anything}\:{about}\:{math}'' \\ $$$$\:{I}'{ve}\:{never}\:{replied}\:{him},\:{because}\:{am}\:{not}\:{interest} \\ $$$$\:{in}\:{introducing}\:{my}\:{acadimic}\:{qualifications}\:{to}\:{him}. \\ $$$$\:{But}\:{here}\:{i}\:{would}\:{like}\:{to}\:{do}\:{and}\:{say}\:{that} \\ $$$$\:{i}\:{exchange}\:{the}\:{qusetions}\:{with}\:{others},\:{so}\:{if}\:{you} \\ $$$$\:{were}\:{a}\:{student}\:{then}\:{try}\:{to}\:{learn}, \\ $$$$\:{and}\:{if}\:{you}\:{were}\:{a}\:{professuer}\:{so}\:{you}\:{can}\:{note} \\ $$$$\:{my}\:{questions}\:{in}\:{your}\:{book}\:{to}\:{show}\:{them}\:{later} \\ $$$$\:{to}\:{your}\:{students}\:{in}\:{real}. \\ $$$$\:\boldsymbol{{The}}\:\boldsymbol{{bottom}}\:\boldsymbol{{line}}\:{is}\:{let}'{s}\:{exchange} \\ $$$$\:\:\:{a}\:{variety}\:{of}\:{questions}! \\ $$$$ \\ $$$$\mathrm{3}{rd}\:{I}\:{noticed}\:{some}\:{people}\:{answer}\:{qusetions} \\ $$$$\:{as}\:{a}\:{comment}!\:{Good}!\:{now}\:{he}\:{seems} \\ $$$$\:{as}\:{the}\:\mathrm{1}{st}\:{one}\:{who}\:{solved}\:{true}!\:\boldsymbol{{Claps}}! \\ $$$$ \\ $$$$\:{Can}\:{you}\:{friend}\:{respect}\:{who}\:{had}\:{solved}\:{before}\:{you}? \\ $$$$ \\ $$$$\:{Theses}\:{were}\:{my}\:{three}\:{points},\:{for}\:{this}\:{day}. \\ $$$$ \\ $$$$\:{Hope}\:{you}\:{interest}\:{in}\:{too},\:{and}\:{thanks}\:{for}\:{you}\:{all} \\ $$$$ \\ $$

Question Number 179906    Answers: 2   Comments: 0

2 boxes, 1st contains 4 white & 6 black balls 2nd box contains 8 white & 8 black balls We randomly draw a ball, got a black one What′s probability that it was drawn from Box_2 ?

$$\mathrm{2}\:{boxes},\:\mathrm{1}{st}\:{contains}\:\mathrm{4}\:{white}\:\&\:\mathrm{6}\:{black}\:{balls} \\ $$$$\:\mathrm{2}{nd}\:{box}\:{contains}\:\mathrm{8}\:{white}\:\&\:\mathrm{8}\:{black}\:{balls} \\ $$$$\:{We}\:{randomly}\:{draw}\:{a}\:{ball},\:{got}\:{a}\:{black}\:{one} \\ $$$$\:{What}'{s}\:{probability}\:{that}\:{it}\:{was}\:{drawn}\:{from}\:{Box}_{\mathrm{2}} ? \\ $$

Question Number 179900    Answers: 1   Comments: 0

Prove that: f = 5x^4 + 35x^3 + 28x^2 + 14x + 7 is irreducible in Q[x]

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{f}\:=\:\mathrm{5x}^{\mathrm{4}} \:+\:\mathrm{35x}^{\mathrm{3}} \:+\:\mathrm{28x}^{\mathrm{2}} \:+\:\mathrm{14x}\:+\:\mathrm{7}\:\:\mathrm{is}\:\mathrm{irreducible}\:\mathrm{in}\:\:\mathrm{Q}\left[\mathrm{x}\right] \\ $$

  Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404      Pg 405   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com