Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 401

Question Number 179107    Answers: 1   Comments: 0

I= ∫ (x^2 /(sin (2arctan (e^x )))) dx , Find I

$${I}=\:\int\:\frac{{x}^{\mathrm{2}} }{\mathrm{sin}\:\left(\mathrm{2arctan}\:\left({e}^{{x}} \right)\right)}\:{dx}\:\:,\:{Find}\:{I} \\ $$

Question Number 179066    Answers: 1   Comments: 0

If f(x)=∫ (x^2 /(x^2 +tan x)) dx then ∫ ((tan x)/(x^2 +tan x)) dx =?

$$\:\:\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\:\:\:\mathrm{then}\:\int\:\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 179064    Answers: 1   Comments: 3

Question Number 179063    Answers: 1   Comments: 2

why is not a polynomial (√(25x^8 )) ?

$${why}\:{is}\:{not}\:{a}\:{polynomial}\:\sqrt{\mathrm{25}{x}^{\mathrm{8}} }\:\:? \\ $$

Question Number 179062    Answers: 1   Comments: 1

why is not it a polynomial ∣10−2y∣?

$${why}\:{is}\:{not}\:{it}\:{a}\:{polynomial}\:\mid\mathrm{10}−\mathrm{2}{y}\mid? \\ $$

Question Number 179058    Answers: 1   Comments: 0

f(x)=(((x−2)/(x+1)))^(1/3) Dom_(f(x)) =?

$${f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}}\:\:\:\:\:\:\:{Dom}_{{f}\left({x}\right)} =? \\ $$

Question Number 179054    Answers: 0   Comments: 0

find the sum of the following vectors (a)AB, −CD, BC and CE (b) PR, −SR, ST and −QT (c) AC,3BC,CD,3CD and DA (d) PQRS is a quadilateral with M &N as the mid−points of SP and RQ respectively. Show that PS^(→) +SR^(→) =2MN^(→)

$${find}\:{the}\:{sum}\:{of}\:{the}\:{following}\:{vectors} \\ $$$$\left({a}\right){AB},\:−{CD},\:{BC}\:{and}\:{CE} \\ $$$$\left({b}\right)\:{PR},\:−{SR},\:{ST}\:{and}\:−{QT}\:\: \\ $$$$\left({c}\right)\:{AC},\mathrm{3}{BC},{CD},\mathrm{3}{CD}\:{and}\:{DA} \\ $$$$\left({d}\right)\:{PQRS}\:{is}\:{a}\:{quadilateral}\:{with}\:{M}\:\&{N}\:{as}\:{the} \\ $$$${mid}−{points}\:{of}\:{SP}\:{and}\:{RQ}\:{respectively}. \\ $$$${Show}\:{that}\:\overset{\rightarrow} {{PS}}+\overset{\rightarrow} {{SR}}=\mathrm{2}\overset{\rightarrow} {{MN}} \\ $$

Question Number 179053    Answers: 1   Comments: 0

Question Number 179052    Answers: 0   Comments: 3

Question Number 179044    Answers: 0   Comments: 0

Three interior angles of a polygon are 160 each. If the other interior angles are 120 each.find the number of sides.

$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polygon}\:\mathrm{are} \\ $$$$\:\mathrm{160}\:\mathrm{each}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{other}\:\mathrm{interior}\:\mathrm{angles} \\ $$$$\:\mathrm{are}\:\mathrm{120}\:\mathrm{each}.\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{sides}. \\ $$

Question Number 179042    Answers: 2   Comments: 0

Question Number 179031    Answers: 0   Comments: 1

prove that sgn(0)=0

$${prove}\:{that}\:{sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$

Question Number 179025    Answers: 0   Comments: 3

2^(10x) −x^5 −4=0

$$\mathrm{2}^{\mathrm{10}{x}} −{x}^{\mathrm{5}} −\mathrm{4}=\mathrm{0} \\ $$

Question Number 179023    Answers: 0   Comments: 0

Draw an electrical network (a) p∧(q∨r) (b)(∼p∧∼q)∨(∼p∧q)∨(p∧∼q) (c) p↔q

$$\mathrm{Draw}\:\mathrm{an}\:\mathrm{electrical}\:\mathrm{network} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{p}\wedge\left(\mathrm{q}\vee\mathrm{r}\right) \\ $$$$\left(\mathrm{b}\right)\left(\sim\mathrm{p}\wedge\sim\mathrm{q}\right)\vee\left(\sim\mathrm{p}\wedge\mathrm{q}\right)\vee\left(\mathrm{p}\wedge\sim\mathrm{q}\right) \\ $$$$\left(\mathrm{c}\right)\:\mathrm{p}\leftrightarrow\mathrm{q} \\ $$

Question Number 179018    Answers: 3   Comments: 0

Question Number 178996    Answers: 2   Comments: 0

Question Number 178994    Answers: 4   Comments: 1

Question Number 178993    Answers: 0   Comments: 0

Question Number 178992    Answers: 1   Comments: 0

Question Number 178988    Answers: 1   Comments: 0

C = ∫_0 ^(π/2) ((cos^2 x)/(4sin^2 x+cos^2 x)) dx =?

$$\:\:\:\:\:\:\:\mathrm{C}\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 179001    Answers: 0   Comments: 1

In △ABC ∠BAC = 90° and AB = ((BC)/2). ∠ACB = ?

$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\angle\mathrm{BAC}\:=\:\mathrm{90}°\:\mathrm{and}\:\mathrm{AB}\:=\:\frac{\mathrm{BC}}{\mathrm{2}}. \\ $$$$\angle\mathrm{ACB}\:=\:? \\ $$

Question Number 181561    Answers: 1   Comments: 0

Question Number 178969    Answers: 1   Comments: 0

"How many integers between 100 - 999 inclusive consist of distinct odd digit"

"How many integers between 100 - 999 inclusive consist of distinct odd digit"

Question Number 178967    Answers: 1   Comments: 0

Find the greatest coefficient in expansion of: (3x − 2)^(25)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{expansion}\:\mathrm{of}:\:\:\:\left(\mathrm{3x}\:\:\:−\:\:\:\mathrm{2}\right)^{\mathrm{25}} \\ $$

Question Number 178957    Answers: 1   Comments: 0

Find the recurring factors of the polynomial: 1. f(x)=x^5 −6x^4 +16x^3 −24x^2 +20x−8 2. f(x)=x^4 −x^3 −30x^2 −7x−56

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{recurring}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{polynomial}: \\ $$$$\mathrm{1}.\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{5}} −\mathrm{6x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} −\mathrm{24x}^{\mathrm{2}} +\mathrm{20x}−\mathrm{8} \\ $$$$\mathrm{2}.\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{3}} −\mathrm{30x}^{\mathrm{2}} −\mathrm{7x}−\mathrm{56} \\ $$

Question Number 178947    Answers: 1   Comments: 0

  Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404      Pg 405   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com