Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 401

Question Number 180396    Answers: 0   Comments: 0

The difference between the ages of Sammy and Cindy is half the difference between the ages of their parents. Their father is 6 years older than twice the age of Cindy. Their mother is twice as old as Cindy and 12 years older than Sammy. By how many years is Sammy younger than Cindy?

$$\mathrm{The}\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ages}\:\mathrm{of} \\ $$$$\mathrm{Sammy}\:\mathrm{and}\:\mathrm{Cindy}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\: \\ $$$$\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ages}\:\mathrm{of}\: \\ $$$$\mathrm{their}\:\mathrm{parents}.\:\mathrm{Their}\:\mathrm{father}\:\mathrm{is}\:\mathrm{6} \\ $$$$\mathrm{years}\:\mathrm{older}\:\mathrm{than}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{age}\:\mathrm{of}\: \\ $$$$\mathrm{Cindy}.\:\mathrm{Their}\:\mathrm{mother}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{as}\:\mathrm{old} \\ $$$$\mathrm{as}\:\mathrm{Cindy}\:\mathrm{and}\:\mathrm{12}\:\mathrm{years}\:\mathrm{older}\:\mathrm{than}\: \\ $$$$\mathrm{Sammy}.\:\mathrm{By}\:\mathrm{how}\:\mathrm{many}\:\mathrm{years}\:\mathrm{is}\: \\ $$$$\mathrm{Sammy}\:\mathrm{younger}\:\mathrm{than}\:\mathrm{Cindy}? \\ $$

Question Number 180391    Answers: 1   Comments: 1

y = x − (2/x) Find the set of values of the function.

$$\mathrm{y}\:=\:\mathrm{x}\:−\:\frac{\mathrm{2}}{\mathrm{x}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}. \\ $$

Question Number 180388    Answers: 1   Comments: 0

Question Number 180381    Answers: 2   Comments: 0

(√((8^(12) +4^(13) )/(8^6 +4^(14) )))

$$\sqrt{\frac{\mathrm{8}^{\mathrm{12}} +\mathrm{4}^{\mathrm{13}} }{\mathrm{8}^{\mathrm{6}} +\mathrm{4}^{\mathrm{14}} }} \\ $$

Question Number 180379    Answers: 1   Comments: 0

∫ x^2 ((x^6 +5))^(1/6) dx =?

$$\:\:\:\:\int\:{x}^{\mathrm{2}} \:\sqrt[{\mathrm{6}}]{{x}^{\mathrm{6}} +\mathrm{5}}\:{dx}\:=? \\ $$

Question Number 180378    Answers: 1   Comments: 0

Question Number 180368    Answers: 2   Comments: 5

Question Number 180365    Answers: 1   Comments: 0

Question Number 180364    Answers: 1   Comments: 0

Question Number 180363    Answers: 1   Comments: 0

Question Number 180362    Answers: 0   Comments: 0

Question Number 180351    Answers: 0   Comments: 0

solve the differential equation y′′ +2 y′ + y = 0 using power series method that is, assume y = Σ_(n=0) ^∞ c_n x^n is a solution

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\:\:{y}''\:+\mathrm{2}\:{y}'\:+\:{y}\:=\:\mathrm{0} \\ $$$$\mathrm{using}\:\mathrm{power}\:\mathrm{series}\:\mathrm{method}\:\mathrm{that}\:\mathrm{is},\:\mathrm{assume} \\ $$$${y}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{c}_{{n}} {x}^{{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Question Number 180350    Answers: 1   Comments: 0

Question Number 180348    Answers: 0   Comments: 0

Question Number 180343    Answers: 1   Comments: 1

Question Number 180340    Answers: 1   Comments: 1

please answer this question i have no idea to post an image. it is sent by mistke.

$${please}\:{answer}\:{this}\:{question} \\ $$$${i}\:{have}\:{no}\:{idea}\:{to}\:{post}\:{an}\:{image}.\:{it}\:{is}\: \\ $$$${sent}\:{by}\:{mistke}. \\ $$

Question Number 180335    Answers: 2   Comments: 1

The integers between 1 to 10^4 contain exactly one 8 and one 9 is? I got 1160 but one is arguing 1154only..kindly help me out

$${The}\:{integers}\:{between}\:\mathrm{1}\:{to}\:\mathrm{10}^{\mathrm{4}} \\ $$$${contain}\:{exactly}\:{one}\:\mathrm{8}\:\:{and}\:{one}\:\mathrm{9} \\ $$$${is}?\:{I}\:{got}\:\mathrm{1160}\:{but}\:{one}\:\:{is}\:{arguing} \\ $$$$\mathrm{1154}{only}..{kindly}\:{help}\:{me}\:{out} \\ $$

Question Number 180301    Answers: 3   Comments: 1

Question Number 180300    Answers: 3   Comments: 0

Question Number 180299    Answers: 1   Comments: 0

Question Number 180298    Answers: 1   Comments: 0

Question Number 180295    Answers: 0   Comments: 2

Express these both Cartesian and polar form (1) f(z)=3z^2 −2z+(1/z) (2) f(z)=z+(1/z) Thanks

$$\mathrm{Express}\:\mathrm{these}\:\mathrm{both}\:\mathrm{Cartesian}\:\mathrm{and}\: \\ $$$$\mathrm{polar}\:\mathrm{form} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{3z}^{\mathrm{2}} −\mathrm{2z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 180285    Answers: 0   Comments: 3

Express this f(z)=((2z+i)/(z+i)) in polar form where z=re^(iθ) (polar form)

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2z}+\mathrm{i}}{\mathrm{z}+\mathrm{i}}\:\mathrm{in}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{where}\:\mathrm{z}=\mathrm{re}^{\mathrm{i}\theta} \:\left(\mathrm{polar}\:\mathrm{form}\right) \\ $$$$ \\ $$

Question Number 180277    Answers: 0   Comments: 4

Express the function f(z)=ze^(iz) into cartesian form and separate it into Real and Imaginary part. M.m

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\mathrm{iz}} \:\mathrm{into} \\ $$$$\mathrm{cartesian}\:\mathrm{form}\:\mathrm{and}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into} \\ $$$$\mathrm{Real}\:\mathrm{and}\:\mathrm{Imaginary}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 180274    Answers: 1   Comments: 0

Solve in C the equation z^4 +(7−i)z^3 +(12−15i)z^2 +(4+4i)z+16+192i=0 Knowing that it has one real root and a purely imaginary root of equal magnitude.

$$\mathrm{Solve}\:\mathrm{in}\:\mathbb{C}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{4}} +\left(\mathrm{7}−{i}\right){z}^{\mathrm{3}} +\left(\mathrm{12}−\mathrm{15}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{4}+\mathrm{4}{i}\right){z}+\mathrm{16}+\mathrm{192}{i}=\mathrm{0} \\ $$$$\mathrm{Knowing}\:\mathrm{that}\:\mathrm{it}\:\mathrm{has}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{and}\:\mathrm{a}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{root} \\ $$$$\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}. \\ $$

Question Number 180273    Answers: 0   Comments: 0

In triangle ABC with angles α , β , γ correspondently , Euler′s line interescts BC at point P. Ite′s put δ is angle between Euler′s line and BC (∠BPH). Then the following is true tan δ = ((2 cos β cos γ − cos α)/(sin (β − γ)))

$$\mathrm{In}\:\mathrm{triangle}\:\:\mathrm{ABC}\:\:\mathrm{with}\:\mathrm{angles}\:\:\alpha\:,\:\beta\:,\:\gamma \\ $$$$\mathrm{correspondently}\:,\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{interescts} \\ $$$$\mathrm{BC}\:\:\mathrm{at}\:\mathrm{point}\:\:\mathrm{P}.\:\mathrm{Ite}'\mathrm{s}\:\mathrm{put}\:\:\delta\:\:\mathrm{is}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{and}\:\:\mathrm{BC}\:\left(\angle\mathrm{BPH}\right). \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{tan}\:\delta\:=\:\frac{\mathrm{2}\:\mathrm{cos}\:\beta\:\mathrm{cos}\:\gamma\:−\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\left(\beta\:−\:\gamma\right)} \\ $$

  Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404      Pg 405   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com