Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 401

Question Number 180623    Answers: 1   Comments: 0

Question Number 180621    Answers: 1   Comments: 0

Question Number 180615    Answers: 3   Comments: 0

Question Number 180614    Answers: 0   Comments: 0

Question Number 180604    Answers: 1   Comments: 0

Question Number 180603    Answers: 0   Comments: 1

find the real solution of following equation system: x^2 +xy+y^2 =p y^2 +yz+z^2 =q z^2 +zx+x^2 =r with p,q,r>0

$${find}\:{the}\:{real}\:{solution}\:{of}\:{following} \\ $$$${equation}\:{system}: \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{xy}}+\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{p}} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{yz}}+\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{q}} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{zx}}+\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{r}} \\ $$$${with}\:{p},{q},{r}>\mathrm{0} \\ $$

Question Number 180599    Answers: 1   Comments: 0

Find the length PQ.

$${Find}\:{the}\:{length}\:{PQ}. \\ $$

Question Number 180585    Answers: 2   Comments: 0

there are 5 points on a line and 4 points on a parallel line. how many quadrilaterals can be formed with these points as vertrices?

$${there}\:{are}\:\mathrm{5}\:{points}\:{on}\:{a}\:{line}\:{and}\:\mathrm{4}\: \\ $$$${points}\:{on}\:{a}\:{parallel}\:{line}. \\ $$$${how}\:{many}\:{quadrilaterals}\:{can}\:{be}\: \\ $$$${formed}\:{with}\:{these}\:{points}\:{as}\: \\ $$$${vertrices}? \\ $$

Question Number 180582    Answers: 1   Comments: 0

Question Number 180576    Answers: 4   Comments: 1

Question Number 180569    Answers: 1   Comments: 1

(√(x+4)) − (√(x−1)) > (√(4x+5))

$$\sqrt{\boldsymbol{{x}}+\mathrm{4}}\:−\:\sqrt{\boldsymbol{{x}}−\mathrm{1}}\:>\:\sqrt{\mathrm{4}\boldsymbol{{x}}+\mathrm{5}} \\ $$

Question Number 180565    Answers: 2   Comments: 1

(2x+(√(4x^2 +1)))(3y+(√(9y^2 +1)))=1 (4x+6y)^3 =? Show full solution

$$\left(\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\mathrm{3}{y}+\sqrt{\mathrm{9}{y}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{1} \\ $$$$\left(\mathrm{4}{x}+\mathrm{6}{y}\right)^{\mathrm{3}} =? \\ $$$${Show}\:{full}\:{solution} \\ $$

Question Number 180558    Answers: 1   Comments: 0

The football team meets in a circle to consult about some plan to play, what′s the probability that the one player of the opponent team who′s trying to eavesdrops is standing behind the goalkeeper?

$${The}\:{football}\:{team}\:{meets}\:{in}\:{a}\:{circle}\:{to}\:{consult} \\ $$$$\:{about}\:{some}\:{plan}\:{to}\:{play},\:{what}'{s}\:{the}\:{probability} \\ $$$$\:{that}\:{the}\:{one}\:{player}\:{of}\:{the}\:{opponent}\:{team}\:{who}'{s} \\ $$$$\:{trying}\:{to}\:{eavesdrops}\:{is}\:{standing}\:{behind}\:{the} \\ $$$$\:{goalkeeper}? \\ $$

Question Number 180554    Answers: 2   Comments: 0

Question Number 180553    Answers: 1   Comments: 2

Question Number 180550    Answers: 1   Comments: 0

Resoudre af^′ (x)+(b/(f(x)))+c=0 (a,b,c)∈R^3

$${Resoudre}\: \\ $$$${af}^{'} \left({x}\right)+\frac{{b}}{{f}\left({x}\right)}+{c}=\mathrm{0}\:\:\:\:\left({a},{b},{c}\right)\in\mathbb{R}^{\mathrm{3}} \\ $$

Question Number 180549    Answers: 0   Comments: 0

Cross fertilization of 130 peas from different pure line yielded the following phenotype (GS, GW, and YW as follow GS only (36), GS and YW (15), all the three phenotype (9), GS and GW (14) YW and GW only (4). the number of those that have only YW or only GW are equal. a) How many peas have GW phenotype? b) How many peas have only one phenotype?

$$\mathrm{Cross}\:\mathrm{fertilization}\:\mathrm{of}\:\mathrm{130}\:\mathrm{peas}\:\mathrm{from} \\ $$$$\mathrm{different}\:\mathrm{pure}\:\mathrm{line}\:\mathrm{yielded}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{phenotype}\:\left(\mathrm{GS},\:\mathrm{GW},\:\mathrm{and}\:\mathrm{YW}\:\mathrm{as}\:\mathrm{follow}\right. \\ $$$$\mathrm{GS}\:\mathrm{only}\:\left(\mathrm{36}\right),\:\mathrm{GS}\:\mathrm{and}\:\mathrm{YW}\:\left(\mathrm{15}\right),\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{phenotype}\:\left(\mathrm{9}\right),\:\mathrm{GS}\:\mathrm{and}\:\mathrm{GW}\:\left(\mathrm{14}\right) \\ $$$$\mathrm{YW}\:\mathrm{and}\:\mathrm{GW}\:\mathrm{only}\:\left(\mathrm{4}\right).\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{those}\:\mathrm{that}\:\mathrm{have}\:\mathrm{only}\:\mathrm{YW}\:\mathrm{or}\:\mathrm{only}\:\mathrm{GW} \\ $$$$\mathrm{are}\:\mathrm{equal}. \\ $$$$\left.\mathrm{a}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{peas}\:\mathrm{have}\:\mathrm{GW}\:\mathrm{phenotype}? \\ $$$$\left.\mathrm{b}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{peas}\:\mathrm{have}\:\mathrm{only}\:\mathrm{one}\: \\ $$$$\mathrm{phenotype}? \\ $$

Question Number 180547    Answers: 1   Comments: 0

Question Number 180545    Answers: 0   Comments: 3

how do i prove for ∫cosec^2 (x)dx and ∫sec(x)tan(x)dx

$$\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{for}} \\ $$$$\:\int\boldsymbol{\mathrm{cosec}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}} \\ $$$$\:\int\boldsymbol{\mathrm{sec}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\: \\ $$

Question Number 180543    Answers: 1   Comments: 0

12.589 we read non−decimal 12 but decimal number 5,8,9 separate read. why?

$$\mathrm{12}.\mathrm{589} \\ $$$$\mathrm{we}\:\mathrm{read}\:\mathrm{non}−\mathrm{decimal}\:\mathrm{12}\:\mathrm{but}\:\mathrm{decimal} \\ $$$$\mathrm{number}\:\mathrm{5},\mathrm{8},\mathrm{9}\:\mathrm{separate}\:\mathrm{read}.\:\mathrm{why}? \\ $$

Question Number 180542    Answers: 2   Comments: 0

Resoudre dans R 1) a+b+c=2 a^2 +b^2 +c^2 =6 (1/a)+(1/b)+(1/c)=(1/2) 2) x^2 +xy+y^2 =3 y^2 +yz+z^2 =7 z^2 +zx+x^2 =13

$${Resoudre}\:{dans}\:\mathbb{R} \\ $$$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{3} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\mathrm{7} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{13} \\ $$

Question Number 180520    Answers: 2   Comments: 0

The number of triangles that can be formed by 5 points in a line and 3 points on a parralel line is ___

$$\:\:\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles}\: \\ $$$$\:\:\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{5}\:\mathrm{points}\: \\ $$$$\:\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{line}\:\mathrm{and}\:\mathrm{3}\:\mathrm{points}\:\mathrm{on}\:\mathrm{a}\:\mathrm{parralel}\:\mathrm{line} \\ $$$$\:\:\:\mathrm{is}\:\_\_\_\: \\ $$

Question Number 180652    Answers: 1   Comments: 0

Question Number 180510    Answers: 2   Comments: 1

Question Number 180509    Answers: 1   Comments: 0

Question Number 180653    Answers: 2   Comments: 0

  Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404      Pg 405   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com