Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 401
Question Number 176668 Answers: 3 Comments: 0
Question Number 176662 Answers: 3 Comments: 0
$$\:\:{sequence}\:{V}_{{n}+\mathrm{1}} −{V}_{{n}} ={n}+\mathrm{3}^{{n}} .\:{Find}\:{V}_{{n}} . \\ $$
Question Number 176660 Answers: 1 Comments: 1
Question Number 176652 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\begin{cases}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} −\mathrm{1}}} \:\mathrm{if}\:\mathrm{r}<\mathrm{1},\:\mathrm{where}\:\mathrm{r}=\parallel\left(\mathrm{x},\mathrm{y}\right)\parallel}\\{\mathrm{0}\:\mathrm{if}\:\mathrm{r}\geqslant\mathrm{1}}\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \\ $$
Question Number 176648 Answers: 2 Comments: 1
$$\int\:\frac{{dx}}{{a}+{bcosx}}\:\:\:\: \\ $$$$ \\ $$$$\int\:\frac{{dx}}{{a}−{bsinx}} \\ $$
Question Number 176643 Answers: 0 Comments: 2
Question Number 176638 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{sin}\:\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}} \right)\right)}=? \\ $$
Question Number 176637 Answers: 0 Comments: 0
Question Number 176636 Answers: 2 Comments: 2
$$\:\begin{cases}{{p}^{\mathrm{3}} +{q}^{\mathrm{3}} ={r}^{\mathrm{2}} }\\{{p}^{\mathrm{3}} +{r}^{\mathrm{3}} ={q}^{\mathrm{2}} }\\{{q}^{\mathrm{3}} +{r}^{\mathrm{3}} ={p}^{\mathrm{2}} }\end{cases} \\ $$$$\:\Rightarrow\mathrm{20}{pqr}\:=? \\ $$
Question Number 176610 Answers: 1 Comments: 0
Question Number 176607 Answers: 1 Comments: 0
Question Number 176603 Answers: 2 Comments: 6
$${look}\:{the}\:{anser} \\ $$
Question Number 176595 Answers: 2 Comments: 0
Question Number 176594 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\:{tanh}^{\:−\mathrm{1}} \left({x}\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}\:\right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\prec\:\:\:{solution}\:\:\succ \\ $$$$\:\:\:\:\:{note}\::\:\:{tanh}^{\:−\mathrm{1}} \left({x}\right)=−\:\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right) \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\:\right)}{\left(\mathrm{1}+{x}\:\right)^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\overset{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\:=\:{t}} {=}\:\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}^{\:\mathrm{2}} \left({t}\:\right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{8}_{\:} }\:\left\{\:\left[{t}.{ln}^{\:\mathrm{2}} \left({t}\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({t}\right){dt}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({t}\right){dt}=\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:\:\blacktriangleleft\:{m}.{n}\:\blacktriangleright\: \\ $$
Question Number 176592 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{1} \\ $$
Question Number 176589 Answers: 1 Comments: 0
Question Number 176598 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{1} \\ $$$$\frac{\left({x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }}=? \\ $$$${Q}#\mathrm{176387}\:{reposted}\:{for}\:{a}\:{new}\:{answer}. \\ $$
Question Number 176581 Answers: 1 Comments: 0
$$\:\:\mathrm{Given}\:\begin{cases}{\mathrm{sin}\:\mathrm{a}+\mathrm{sin}\:\mathrm{b}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\mathrm{cos}\:\mathrm{a}+\mathrm{cos}\:\mathrm{b}=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}}\end{cases} \\ $$$$\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\mathrm{real}\:\mathrm{numbers}.\:\mathrm{Evaluate} \\ $$$$\:\mathrm{sin}\:\left(\mathrm{a}+\mathrm{b}\right). \\ $$$$\:\left(\mathrm{A}\right)\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\:\:\:\:\left(\mathrm{E}\right)−\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}} \\ $$$$\:\:\left(\mathrm{C}\right)\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$
Question Number 176580 Answers: 1 Comments: 0
$$\mathrm{4}^{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}} −\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}} +\mathrm{2}=\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}} \\ $$$${x}=? \\ $$
Question Number 176571 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{lnx}}{\mathrm{1}+{lnx}−\mathrm{1}}=? \\ $$
Question Number 176570 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\:\:\underset{\frac{\pi}{\mathrm{3}}} {\int}^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+{sinx}}{{cosx}}\:{dx}=? \\ $$
Question Number 176566 Answers: 0 Comments: 0
$$−−−− \\ $$$$\:\:{calculate}:\:\:\:\:\Phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\:\infty} {\sum}}\:\frac{\:\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\:\right).{e}^{\:\mathrm{4}{n}+\mathrm{2}} }\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:{where}\:\:''\:\:{e}\:\:''\:\:{is}\:\:{euler}\:{number}. \\ $$$$\:\:\:\:\:\:\prec\:\:\:{solution}\:\:\succ \\ $$$$\:\:\:\:\:\:\Phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{e}^{\:\mathrm{4}{n}+\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\:\:{x}^{\mathrm{2}} }{{e}^{\:\mathrm{4}} }\:\right)^{\:{n}} {dx}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}}{\mathrm{1}−\:\left(\frac{{x}}{{e}^{\:\mathrm{2}} }\:\right)^{\:\mathrm{2}} }\:{dx}=\frac{\mathrm{1}}{\mathrm{2}{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−\frac{{x}}{{e}^{\:\mathrm{2}} }}\:+\frac{\mathrm{1}}{\mathrm{1}+\frac{{x}}{{e}^{\:\mathrm{2}} }}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:{ln}\:\left(\:\:\frac{\mathrm{1}+\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }}\:\:\right)\:\:\:\:=\:{tanh}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\Phi\:=\:{coth}^{\:−\mathrm{1}} \left(\:{e}^{\:\mathrm{2}} \right)\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\: \\ $$$$\:\:\:\: \\ $$
Question Number 176565 Answers: 0 Comments: 0
Question Number 176564 Answers: 0 Comments: 0
Question Number 176563 Answers: 1 Comments: 0
$$\mathrm{is}\:\mathrm{there}\:\mathrm{an}\:\mathrm{iOS}\:\mathrm{version}\:\mathrm{for}\:\mathrm{this}\:\mathrm{app}?\:\mathrm{please} \\ $$
Question Number 176555 Answers: 1 Comments: 2
$$\mathrm{ABCD}−\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{M}\in\mathrm{Int}\left(\mathrm{ABCD}\right)\:,\:\mathrm{F}−\mathrm{area}\:,\:\mathrm{s}−\mathrm{semiperimetr} \\ $$$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}−\mathrm{sides}.\:\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{MA}^{\mathrm{4}} }{\mathrm{b}}\:+\:\frac{\mathrm{MB}^{\mathrm{4}} }{\mathrm{c}^{\mathrm{4}} }\:+\:\frac{\mathrm{MC}^{\mathrm{4}} }{\mathrm{d}}\:+\:\frac{\mathrm{MD}^{\mathrm{4}} }{\mathrm{a}}\:\geqslant\:\frac{\mathrm{2F}^{\mathrm{2}} }{\mathrm{s}} \\ $$
Pg 396 Pg 397 Pg 398 Pg 399 Pg 400 Pg 401 Pg 402 Pg 403 Pg 404 Pg 405
Terms of Service
Privacy Policy
Contact: info@tinkutara.com