Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 401
Question Number 179107 Answers: 1 Comments: 0
$${I}=\:\int\:\frac{{x}^{\mathrm{2}} }{\mathrm{sin}\:\left(\mathrm{2arctan}\:\left({e}^{{x}} \right)\right)}\:{dx}\:\:,\:{Find}\:{I} \\ $$
Question Number 179066 Answers: 1 Comments: 0
$$\:\:\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\:\:\:\mathrm{then}\:\int\:\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 179064 Answers: 1 Comments: 3
Question Number 179063 Answers: 1 Comments: 2
$${why}\:{is}\:{not}\:{a}\:{polynomial}\:\sqrt{\mathrm{25}{x}^{\mathrm{8}} }\:\:? \\ $$
Question Number 179062 Answers: 1 Comments: 1
$${why}\:{is}\:{not}\:{it}\:{a}\:{polynomial}\:\mid\mathrm{10}−\mathrm{2}{y}\mid? \\ $$
Question Number 179058 Answers: 1 Comments: 0
$${f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}}\:\:\:\:\:\:\:{Dom}_{{f}\left({x}\right)} =? \\ $$
Question Number 179054 Answers: 0 Comments: 0
$${find}\:{the}\:{sum}\:{of}\:{the}\:{following}\:{vectors} \\ $$$$\left({a}\right){AB},\:−{CD},\:{BC}\:{and}\:{CE} \\ $$$$\left({b}\right)\:{PR},\:−{SR},\:{ST}\:{and}\:−{QT}\:\: \\ $$$$\left({c}\right)\:{AC},\mathrm{3}{BC},{CD},\mathrm{3}{CD}\:{and}\:{DA} \\ $$$$\left({d}\right)\:{PQRS}\:{is}\:{a}\:{quadilateral}\:{with}\:{M}\:\&{N}\:{as}\:{the} \\ $$$${mid}−{points}\:{of}\:{SP}\:{and}\:{RQ}\:{respectively}. \\ $$$${Show}\:{that}\:\overset{\rightarrow} {{PS}}+\overset{\rightarrow} {{SR}}=\mathrm{2}\overset{\rightarrow} {{MN}} \\ $$
Question Number 179053 Answers: 1 Comments: 0
Question Number 179052 Answers: 0 Comments: 3
Question Number 179044 Answers: 0 Comments: 0
$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polygon}\:\mathrm{are} \\ $$$$\:\mathrm{160}\:\mathrm{each}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{other}\:\mathrm{interior}\:\mathrm{angles} \\ $$$$\:\mathrm{are}\:\mathrm{120}\:\mathrm{each}.\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{sides}. \\ $$
Question Number 179042 Answers: 2 Comments: 0
Question Number 179031 Answers: 0 Comments: 1
$${prove}\:{that}\:{sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Question Number 179025 Answers: 0 Comments: 3
$$\mathrm{2}^{\mathrm{10}{x}} −{x}^{\mathrm{5}} −\mathrm{4}=\mathrm{0} \\ $$
Question Number 179023 Answers: 0 Comments: 0
$$\mathrm{Draw}\:\mathrm{an}\:\mathrm{electrical}\:\mathrm{network} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{p}\wedge\left(\mathrm{q}\vee\mathrm{r}\right) \\ $$$$\left(\mathrm{b}\right)\left(\sim\mathrm{p}\wedge\sim\mathrm{q}\right)\vee\left(\sim\mathrm{p}\wedge\mathrm{q}\right)\vee\left(\mathrm{p}\wedge\sim\mathrm{q}\right) \\ $$$$\left(\mathrm{c}\right)\:\mathrm{p}\leftrightarrow\mathrm{q} \\ $$
Question Number 179018 Answers: 3 Comments: 0
Question Number 178996 Answers: 2 Comments: 0
Question Number 178994 Answers: 4 Comments: 1
Question Number 178993 Answers: 0 Comments: 0
Question Number 178992 Answers: 1 Comments: 0
Question Number 178988 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\mathrm{C}\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 179001 Answers: 0 Comments: 1
$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\angle\mathrm{BAC}\:=\:\mathrm{90}°\:\mathrm{and}\:\mathrm{AB}\:=\:\frac{\mathrm{BC}}{\mathrm{2}}. \\ $$$$\angle\mathrm{ACB}\:=\:? \\ $$
Question Number 181561 Answers: 1 Comments: 0
Question Number 178969 Answers: 1 Comments: 0
"How many integers between 100 - 999 inclusive consist of distinct odd digit"
Question Number 178967 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{expansion}\:\mathrm{of}:\:\:\:\left(\mathrm{3x}\:\:\:−\:\:\:\mathrm{2}\right)^{\mathrm{25}} \\ $$
Question Number 178957 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{recurring}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{polynomial}: \\ $$$$\mathrm{1}.\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{5}} −\mathrm{6x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} −\mathrm{24x}^{\mathrm{2}} +\mathrm{20x}−\mathrm{8} \\ $$$$\mathrm{2}.\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{3}} −\mathrm{30x}^{\mathrm{2}} −\mathrm{7x}−\mathrm{56} \\ $$
Question Number 178947 Answers: 1 Comments: 0
Pg 396 Pg 397 Pg 398 Pg 399 Pg 400 Pg 401 Pg 402 Pg 403 Pg 404 Pg 405
Terms of Service
Privacy Policy
Contact: info@tinkutara.com