Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 401

Question Number 180894    Answers: 3   Comments: 2

x^3 +x=1 x^8 +3x^3 =?

$${x}^{\mathrm{3}} +{x}=\mathrm{1} \\ $$$${x}^{\mathrm{8}} +\mathrm{3}{x}^{\mathrm{3}} =? \\ $$

Question Number 180897    Answers: 1   Comments: 5

Question Number 180839    Answers: 1   Comments: 0

Find the derivatives f^′ (x) of the following function with respect to x: f(x)=Sin(π^(Sinx) +π^(Cosx) ). Mastermind

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{derivatives}\:\mathrm{f}^{'} \left(\mathrm{x}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{function}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{Sin}\left(\pi^{\mathrm{Sinx}} +\pi^{\mathrm{Cosx}} \right). \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180838    Answers: 0   Comments: 1

Find all x∈R that are solutions to this question: 0=(1−x−x^2 −...)∙(2−x−x^2 −...) Mastermind

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R}\:\mathrm{that}\:\mathrm{are}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{this} \\ $$$$\mathrm{question}:\: \\ $$$$\mathrm{0}=\left(\mathrm{1}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} −...\right)\centerdot\left(\mathrm{2}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} −...\right) \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180837    Answers: 2   Comments: 0

Without using table, find the values of: (1/((1−(√3))^2 )) − (1/((1+(√3))^2 )) Mastermind

$$\mathrm{Without}\:\mathrm{using}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{values} \\ $$$$\mathrm{of}: \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180836    Answers: 1   Comments: 0

Determine A,B,C such that all of the following function intersect the point (2,2) ; f_1 (x)=Ax + 1, f_2 (x)=Bx^2 + 2, f_3 (x)=Cx^3 + 3 Mastermind

$$\mathrm{Determine}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{such}\:\mathrm{that}\:\mathrm{all}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{function}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{point} \\ $$$$\left(\mathrm{2},\mathrm{2}\right)\:; \\ $$$$\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{Ax}\:+\:\mathrm{1},\:\:\mathrm{f}_{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{Bx}^{\mathrm{2}} \:+\:\mathrm{2},\:\: \\ $$$$\mathrm{f}_{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{Cx}^{\mathrm{3}} \:+\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180900    Answers: 0   Comments: 0

show that ∫_1 ^( +∞) (((x−⌊x⌋)/x^2 ))dx = 1 − γ

$${show}\:{that}\:\int_{\mathrm{1}} ^{\:+\infty} \left(\frac{{x}−\lfloor{x}\rfloor}{{x}^{\mathrm{2}} }\right){dx}\:=\:\mathrm{1}\:−\:\gamma \\ $$

Question Number 180899    Answers: 1   Comments: 0

H_n = Σ_(k=1) ^n (1/k) show that H_(2n) − H_n = Σ_(k=1) ^n ((1/(2k−1))−(1/(2k)))

$${H}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}} \\ $$$${show}\:{that}\:{H}_{\mathrm{2}{n}} \:−\:{H}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right) \\ $$

Question Number 180902    Answers: 1   Comments: 0

Calculate the root mean square speed of the molecules of a Helium gas kept in a gas cylinder at 400K. [Take R = 8.3 Jmol^(−1) K^(−1) ] The answer provided is 1.58 kms^(−1) Please I need help with the solution

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{root}\:\mathrm{mean}\:\mathrm{square}\: \\ $$$$\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{molecules}\:\mathrm{of}\:\mathrm{a}\:{Helium} \\ $$$$\mathrm{gas}\:\mathrm{kept}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gas}\:\mathrm{cylinder}\:\mathrm{at}\:\mathrm{400K}. \\ $$$$\:\:\:\:\:\:\left[{Take}\:\mathrm{R}\:=\:\mathrm{8}.\mathrm{3}\:{Jmol}^{−\mathrm{1}} {K}^{−\mathrm{1}} \right] \\ $$$${The}\:{answer}\:{provided}\:{is}\:\mathrm{1}.\mathrm{58}\:{kms}^{−\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{I}\:\mathrm{need}\:\mathrm{help}\:\mathrm{with}\:\mathrm{the}\:\mathrm{solution} \\ $$

Question Number 180901    Answers: 1   Comments: 0

∫_1 ^( n) ((⌊x⌋)/x^2 )dx =

$$\int_{\mathrm{1}} ^{\:{n}} \frac{\lfloor{x}\rfloor}{{x}^{\mathrm{2}} }{dx}\:=\: \\ $$

Question Number 180828    Answers: 1   Comments: 1

H_n =1+(1/2)+(1/3)+...+(1/n) H_(2n) =? compute H_(2n) −H_n and H_(n+1) −H_n

$${H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}} \\ $$$${H}_{\mathrm{2}{n}} =?\:{compute}\:{H}_{\mathrm{2}{n}} −{H}_{{n}} \:{and}\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} \\ $$

Question Number 180827    Answers: 0   Comments: 1

which is not range of f(x)=((2x+1)/(x−2))? 1) 2 2) 3 3)10 4) (2/3)

$${which}\:{is}\:{not}\:{range}\:{of}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{2}}? \\ $$$$\left.\mathrm{1}\left.\right)\left.\:\left.\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{2}\right)\:\mathrm{3}\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{10}\:\:\:\:\:\:\:\mathrm{4}\right)\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 180826    Answers: 1   Comments: 0

If , 2sin(θ )−3cos(θ) =3 ⇒ 2sin((θ/2)) − 3cos((θ/2)) = ?

$$ \\ $$$$\:\:\:\:\mathrm{I}{f}\:\:,\:\:\:\mathrm{2}{sin}\left(\theta\:\right)−\mathrm{3}{cos}\left(\theta\right)\:=\mathrm{3} \\ $$$$\:\Rightarrow\:\:\:\mathrm{2}{sin}\left(\frac{\theta}{\mathrm{2}}\right)\:−\:\mathrm{3}{cos}\left(\frac{\theta}{\mathrm{2}}\right)\:=\:? \\ $$$$ \\ $$

Question Number 180821    Answers: 0   Comments: 0

We want to randomly fill six digits with one of −1 or +1, what′s the probability that the sum value of those digits is zero provided that the same values of digits aren′t adjacents?

$${We}\:{want}\:{to}\:{randomly}\:{fill}\:{six}\:{digits}\:{with}\:{one}\:{of} \\ $$$$\:−\mathrm{1}\:{or}\:+\mathrm{1},\:{what}'{s}\:{the}\:{probability}\:{that}\:{the}\:{sum} \\ $$$$\:{value}\:{of}\:{those}\:{digits}\:{is}\:{zero}\:{provided}\:{that}\:{the}\:{same} \\ $$$$\:{values}\:{of}\:{digits}\:{aren}'{t}\:{adjacents}? \\ $$

Question Number 180819    Answers: 0   Comments: 0

Question Number 180815    Answers: 0   Comments: 0

Question Number 180813    Answers: 1   Comments: 5

Question Number 180801    Answers: 1   Comments: 0

Solve the Differential equation : (3xy+6y^2 )dx+(2x^2 +9xy)dy=0 Mastermind

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Differential}\:\mathrm{equation}\:: \\ $$$$\left(\mathrm{3xy}+\mathrm{6y}^{\mathrm{2}} \right)\mathrm{dx}+\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{9xy}\right)\mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180800    Answers: 0   Comments: 0

Question Number 180786    Answers: 1   Comments: 0

f(t)=∫_0 ^t x−⌊x⌋ dx

$${f}\left({t}\right)=\int_{\mathrm{0}} ^{{t}} {x}−\lfloor{x}\rfloor\:\:{dx} \\ $$

Question Number 180785    Answers: 2   Comments: 0

solve (1−x−x^2 ...)(2−x−x^2 ...)

$${solve}\:\left(\mathrm{1}−{x}−{x}^{\mathrm{2}} ...\right)\left(\mathrm{2}−{x}−{x}^{\mathrm{2}} ...\right) \\ $$

Question Number 180780    Answers: 0   Comments: 1

Question Number 180778    Answers: 0   Comments: 0

Question Number 180776    Answers: 2   Comments: 0

Simplify (√((4/( (√2))) + 3))

$${Simplify}\:\:\sqrt{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}\:+\:\mathrm{3}}\: \\ $$$$ \\ $$

Question Number 180775    Answers: 0   Comments: 7

A box contains 2 blue, 1 red balls. We randomly draw one ball then put it back and add two balls of the same color of that ball in the box. We randomly draw again one ball, if it was red then what′s the probability that the first drawn ball was blue?

$${A}\:{box}\:{contains}\:\mathrm{2}\:{blue},\:\mathrm{1}\:{red}\:{balls}.\:{We}\:{randomly} \\ $$$$\:{draw}\:{one}\:{ball}\:{then}\:{put}\:{it}\:{back}\:{and}\:{add}\:{two}\:{balls} \\ $$$$\:{of}\:{the}\:{same}\:{color}\:{of}\:{that}\:{ball}\:{in}\:{the}\:{box}.\:{We} \\ $$$$\:{randomly}\:{draw}\:{again}\:{one}\:{ball},\:{if}\:{it}\:{was}\:{red}\:{then} \\ $$$$\:{what}'{s}\:{the}\:{probability}\:{that}\:{the}\:{first}\:{drawn}\:{ball} \\ $$$$\:{was}\:{blue}? \\ $$

Question Number 180773    Answers: 1   Comments: 0

How many triangles can be formed from non−adjacent vertices of a regular polygon that it angle is 177^( °) ?

$${How}\:{many}\:{triangles}\:{can}\:{be}\:{formed}\:{from} \\ $$$$\:{non}−{adjacent}\:{vertices}\:{of}\:{a}\:{regular}\:{polygon} \\ $$$$\:{that}\:{it}\:{angle}\:{is}\:\mathrm{177}^{\:°} \:? \\ $$

  Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404      Pg 405   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com