Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 400

Question Number 180495    Answers: 1   Comments: 0

Question Number 180490    Answers: 3   Comments: 0

Question Number 180485    Answers: 0   Comments: 1

Determine the value of a and b , that make the function f(x) continuity f(x) = { ((x + 3 ,x ≨ 4)),((2ax + b ,x = 4)),((x^2 −3 , x ≩ 4)) :}

$${Determine}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:, \\ $$$$\:{that}\:{make}\:{the}\:{function}\:{f}\left({x}\right)\:{continuity} \\ $$$${f}\left({x}\right)\:=\:\begin{cases}{{x}\:+\:\mathrm{3}\:\:\:\:\:,{x}\:\lneqq\:\mathrm{4}}\\{\mathrm{2}{ax}\:+\:{b}\:\:\:\:,{x}\:=\:\mathrm{4}}\\{{x}^{\mathrm{2}} −\mathrm{3}\:\:\:,\:{x}\:\gneqq\:\mathrm{4}}\end{cases} \\ $$

Question Number 180483    Answers: 0   Comments: 1

Question Number 180471    Answers: 0   Comments: 1

Question Number 180467    Answers: 1   Comments: 0

Question Number 180459    Answers: 2   Comments: 0

Question Number 180458    Answers: 2   Comments: 0

Question Number 180457    Answers: 1   Comments: 11

Question Number 180449    Answers: 0   Comments: 1

x + y + z = 0 2x + 4y − z = 0 3x + 2y + 2z = 0 Solve for x,y,and z

$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:+\:\mathrm{4y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x},\mathrm{y},\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180447    Answers: 0   Comments: 1

x + y − z = 0 2x − 3y + z = 0 x −4y + 2z = 0 find the value of x,y, and z

$$\mathrm{x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:−\:\mathrm{3y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:−\mathrm{4y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\:\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180446    Answers: 2   Comments: 0

Solve : x_1 + 2x_2 − 3x_3 = 0 2x_1 + 4x_2 − 2x_3 = 2 3x_1 + 6x_2 − 4x_3 = 3

$$\mathrm{Solve}\::\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{2x}_{\mathrm{2}} \:−\:\mathrm{3x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{4x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:+\:\mathrm{6x}_{\mathrm{2}} \:−\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{3} \\ $$

Question Number 180438    Answers: 3   Comments: 0

lim_(x→0) (((√(4+x))−(√(4−x)))/x) find the limit above

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\sqrt{\mathrm{4}+\mathrm{x}}−\sqrt{\mathrm{4}−\mathrm{x}}}{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180436    Answers: 0   Comments: 0

f(x−y)+f(x+y)=2f(x)f(y) find f(x) Q#180407 (Altered)

$${f}\left({x}−{y}\right)+{f}\left({x}+{y}\right)=\mathrm{2}{f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{find}\:{f}\left({x}\right) \\ $$$${Q}#\mathrm{180407}\:\left({Altered}\right) \\ $$

Question Number 180423    Answers: 2   Comments: 4

Question Number 180421    Answers: 2   Comments: 0

find the number of numbers less than 10^6 which contain at least 3 different digits.

$${find}\:{the}\:{number}\:{of}\:{numbers}\:{less}\:{than}\: \\ $$$$\mathrm{10}^{\mathrm{6}} \:{which}\:{contain}\:{at}\:{least}\:\mathrm{3}\:{different} \\ $$$${digits}. \\ $$

Question Number 180414    Answers: 1   Comments: 0

lim_(x→3) (((3^x −x^3 )/(x^x −3^3 ))) find the limit above

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{3}} {\mathrm{m}}\left(\frac{\mathrm{3}^{\mathrm{x}} −\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{x}} −\mathrm{3}^{\mathrm{3}} }\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180413    Answers: 2   Comments: 0

lim_(h→0) (((e^h −1)/h)) find the limit above

$$\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\left(\frac{\mathrm{e}^{\mathrm{h}} −\mathrm{1}}{\mathrm{h}}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180407    Answers: 2   Comments: 0

f(x−y)+f(x+y)=f(x)f(y) find f(x)

$${f}\left({x}−{y}\right)+{f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{find}\:{f}\left({x}\right) \\ $$

Question Number 180405    Answers: 0   Comments: 0

Ω = ∫ ((ln (x+1))/(x^2 +x)) dx =?

$$\:\:\:\Omega\:=\:\int\:\frac{\mathrm{ln}\:\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 180400    Answers: 2   Comments: 1

Area BEF=AreaCDF Prouve AD×BE=AE×CD

$$\mathrm{Area}\:\mathrm{BEF}=\mathrm{AreaCDF} \\ $$$$\mathrm{Prouve}\:\:\mathrm{AD}×\mathrm{BE}=\mathrm{AE}×\mathrm{CD} \\ $$

Question Number 180398    Answers: 1   Comments: 1

∫(1/(sin (x−a)sin (x−b)))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{a}\right)\mathrm{sin}\:\left(\mathrm{x}−\mathrm{b}\right)}\mathrm{dx}=? \\ $$$$ \\ $$

Question Number 180396    Answers: 0   Comments: 0

The difference between the ages of Sammy and Cindy is half the difference between the ages of their parents. Their father is 6 years older than twice the age of Cindy. Their mother is twice as old as Cindy and 12 years older than Sammy. By how many years is Sammy younger than Cindy?

$$\mathrm{The}\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ages}\:\mathrm{of} \\ $$$$\mathrm{Sammy}\:\mathrm{and}\:\mathrm{Cindy}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\: \\ $$$$\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ages}\:\mathrm{of}\: \\ $$$$\mathrm{their}\:\mathrm{parents}.\:\mathrm{Their}\:\mathrm{father}\:\mathrm{is}\:\mathrm{6} \\ $$$$\mathrm{years}\:\mathrm{older}\:\mathrm{than}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{age}\:\mathrm{of}\: \\ $$$$\mathrm{Cindy}.\:\mathrm{Their}\:\mathrm{mother}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{as}\:\mathrm{old} \\ $$$$\mathrm{as}\:\mathrm{Cindy}\:\mathrm{and}\:\mathrm{12}\:\mathrm{years}\:\mathrm{older}\:\mathrm{than}\: \\ $$$$\mathrm{Sammy}.\:\mathrm{By}\:\mathrm{how}\:\mathrm{many}\:\mathrm{years}\:\mathrm{is}\: \\ $$$$\mathrm{Sammy}\:\mathrm{younger}\:\mathrm{than}\:\mathrm{Cindy}? \\ $$

Question Number 180391    Answers: 1   Comments: 1

y = x − (2/x) Find the set of values of the function.

$$\mathrm{y}\:=\:\mathrm{x}\:−\:\frac{\mathrm{2}}{\mathrm{x}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}. \\ $$

Question Number 180388    Answers: 1   Comments: 0

Question Number 180381    Answers: 2   Comments: 0

(√((8^(12) +4^(13) )/(8^6 +4^(14) )))

$$\sqrt{\frac{\mathrm{8}^{\mathrm{12}} +\mathrm{4}^{\mathrm{13}} }{\mathrm{8}^{\mathrm{6}} +\mathrm{4}^{\mathrm{14}} }} \\ $$

  Pg 395      Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com