Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 400

Question Number 179338    Answers: 3   Comments: 0

Question Number 179336    Answers: 0   Comments: 2

f(x)=((1−x)/(1+x)) (fofofo........of_(2004) )_x =?

$${f}\left({x}\right)=\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}} \\ $$$$\left(\underset{\mathrm{2004}} {\underbrace{{fofofo}........{of}}}\right)_{{x}} =? \\ $$

Question Number 179328    Answers: 1   Comments: 0

y(x)=cos2x, ((d/dx)y(x))^n = ?

$${y}\left({x}\right)={cos}\mathrm{2}{x},\:\:\left(\frac{{d}}{{dx}}{y}\left({x}\right)\right)^{{n}} =\:? \\ $$

Question Number 179327    Answers: 1   Comments: 0

Find polynomial u,v ∈Q[x] such that (x^4 −1)u(x)+(x^7 −1)v(x)=(x−1)

$$\:{Find}\:{polynomial}\:{u},{v}\:\in{Q}\left[{x}\right]\:{such} \\ $$$$\:\:{that}\:\left({x}^{\mathrm{4}} −\mathrm{1}\right){u}\left({x}\right)+\left({x}^{\mathrm{7}} −\mathrm{1}\right){v}\left({x}\right)=\left({x}−\mathrm{1}\right) \\ $$

Question Number 179302    Answers: 2   Comments: 2

Question Number 179301    Answers: 1   Comments: 0

Question Number 179289    Answers: 1   Comments: 0

A refrigerator use 1200joules of work to jump 300j of heat from a cold reservoir of 275k to a hot reservoir at 320k. 1. What is the coefficient of performance. 2 the maximum efficiency of performance.

A refrigerator use 1200joules of work to jump 300j of heat from a cold reservoir of 275k to a hot reservoir at 320k. 1. What is the coefficient of performance. 2 the maximum efficiency of performance.

Question Number 179284    Answers: 2   Comments: 0

Solve for x (a/(ax − 1)) + (b/(bx − 1)) = a + b [x ≠ (1/a), (1/b)]

$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{{x}} \\ $$$$\frac{{a}}{{ax}\:−\:\mathrm{1}}\:+\:\frac{{b}}{{bx}\:−\:\mathrm{1}}\:=\:{a}\:+\:{b}\:\left[{x}\:\neq\:\frac{\mathrm{1}}{{a}},\:\frac{\mathrm{1}}{{b}}\right] \\ $$

Question Number 179282    Answers: 3   Comments: 0

m^2 = n + 2 n^2 = m + 2 4mn − m^3 − n^3 = ? (m≠n)

$$\mathrm{m}^{\mathrm{2}} \:=\:\mathrm{n}\:+\:\mathrm{2} \\ $$$$\mathrm{n}^{\mathrm{2}} \:=\:\mathrm{m}\:+\:\mathrm{2} \\ $$$$\mathrm{4mn}\:−\:\mathrm{m}^{\mathrm{3}} \:−\:\mathrm{n}^{\mathrm{3}} \:=\:?\:\:\:\left(\mathrm{m}\neq\mathrm{n}\right) \\ $$

Question Number 179281    Answers: 2   Comments: 1

Question Number 179271    Answers: 2   Comments: 0

lim_(n→∞) [ ((n^3 +(n/3)))^(1/3) sin ((1/n)) ]^n^3 =?

$$\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\sqrt[{\mathrm{3}}]{\mathrm{n}^{\mathrm{3}} +\frac{\mathrm{n}}{\mathrm{3}}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\:\right]^{\mathrm{n}^{\mathrm{3}} } =? \\ $$$$\:\: \\ $$

Question Number 179269    Answers: 2   Comments: 2

what is the periodicity of thefollowing function? f(x)=cot(x)−tan(x)−2tan(2x)−4tan(4x)

$$ \\ $$$$\:\:\:{what}\:{is}\:{the}\:{periodicity}\: \\ $$$${of}\:{thefollowing}\:{function}? \\ $$$$ \\ $$$$\:{f}\left({x}\right)={cot}\left({x}\right)−{tan}\left({x}\right)−\mathrm{2}{tan}\left(\mathrm{2}{x}\right)−\mathrm{4}{tan}\left(\mathrm{4}{x}\right) \\ $$$$ \\ $$$$ \\ $$

Question Number 179266    Answers: 0   Comments: 1

prove that ∣z−w∣^2 +∣z − w^− ∣ = 4 Re z Rew

$${prove}\:{that}\:\mid{z}−{w}\mid^{\mathrm{2}} +\mid{z}\:−\:\overset{−} {{w}}\mid\:=\:\mathrm{4}\:{R}\boldsymbol{{e}}\:{z}\:{Rew} \\ $$

Question Number 179258    Answers: 1   Comments: 1

y=x^x^x (dy/dx)=?

$${y}={x}^{{x}^{{x}} } \\ $$$$\frac{{dy}}{{dx}}=? \\ $$

Question Number 179253    Answers: 1   Comments: 1

(fog)_x =cos2x and g(x)=tanx f(x)=?

$$\left({fog}\right)_{{x}} ={cos}\mathrm{2}{x}\:\:{and}\:{g}\left({x}\right)={tanx} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 179244    Answers: 2   Comments: 0

Evaluate ∫tan^4 x sec^5 x dx

$${Evaluate}\:\int\mathrm{tan}^{\mathrm{4}} \:{x}\:\mathrm{sec}^{\mathrm{5}} \:{x}\:{dx} \\ $$

Question Number 179242    Answers: 1   Comments: 1

f(x+1)= 2x−5 , find the value of the f(x) at x=2

$${f}\left({x}+\mathrm{1}\right)=\:\mathrm{2}{x}−\mathrm{5}\:,\:{find}\:{the}\:{value}\:{of}\:{the}\:{f}\left({x}\right)\:{at}\:{x}=\mathrm{2} \\ $$

Question Number 179230    Answers: 3   Comments: 0

f(x+y)=f(x)+f(y)+x∙y and f(4)=10 faind f(2022)=?

$${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)+{x}\centerdot{y} \\ $$$${and}\:{f}\left(\mathrm{4}\right)=\mathrm{10}\:\:{faind}\:\:{f}\left(\mathrm{2022}\right)=? \\ $$

Question Number 179229    Answers: 1   Comments: 0

Question Number 179228    Answers: 1   Comments: 0

prove in right triangle : a^2 +b^2 =c^2 −−−−−−

$${prove}\:{in}\:{right}\:{triangle}\::\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$−−−−−− \\ $$

Question Number 179226    Answers: 2   Comments: 1

Question Number 179198    Answers: 5   Comments: 2

Question Number 179195    Answers: 1   Comments: 0

a+(1/b)=tan59 b+(1/c)=tan60 c+(1/a)=tan61 (abc)^(2022) +(1/((abc)^(2022) ))=?

$${a}+\frac{\mathrm{1}}{{b}}={tan}\mathrm{59} \\ $$$${b}+\frac{\mathrm{1}}{{c}}={tan}\mathrm{60} \\ $$$${c}+\frac{\mathrm{1}}{{a}}={tan}\mathrm{61} \\ $$$$\left({abc}\right)^{\mathrm{2022}} +\frac{\mathrm{1}}{\left({abc}\right)^{\mathrm{2022}} }=? \\ $$

Question Number 179194    Answers: 2   Comments: 0

Evaluate the ∫ ((tan^5 x)/(cos^9 x)) dx

$${Evaluate}\:{the}\:\int\:\frac{\mathrm{tan}^{\mathrm{5}} \:{x}}{\mathrm{cos}^{\mathrm{9}} \:{x}}\:{dx} \\ $$

Question Number 179175    Answers: 0   Comments: 2

Find ∫x^5 (√(x^3 +1)) dx Answer: I= (2/(45)) (3x^3 −2) (√((x^3 +1)^3 )) + c

$$\:{Find}\:\int{x}^{\mathrm{5}} \:\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$$$\:{Answer}:\:{I}=\:\frac{\mathrm{2}}{\mathrm{45}}\:\left(\mathrm{3}{x}^{\mathrm{3}} −\mathrm{2}\right)\:\sqrt{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} }\:+\:{c} \\ $$$$ \\ $$

Question Number 180359    Answers: 1   Comments: 0

  Pg 395      Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com