Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 400

Question Number 181628    Answers: 1   Comments: 0

find the domain and range of y = (1/((x − 1)(x + 2))) restricted to 0 ≤ x ≤ 6

$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\:\:\:\mathrm{y}\:\:=\:\:\frac{\mathrm{1}}{\left(\mathrm{x}\:\:−\:\:\mathrm{1}\right)\left(\mathrm{x}\:\:+\:\:\mathrm{2}\right)} \\ $$$$\mathrm{restricted}\:\mathrm{to}\:\:\:\mathrm{0}\:\:\leqslant\:\:\mathrm{x}\:\:\leqslant\:\:\mathrm{6} \\ $$

Question Number 181625    Answers: 0   Comments: 0

K-Lemoine′s , I-incenter in △ABC. Prove that: KA^4 +KB^4 +KC^4 ≥ IA^4 +IB^4 +IC^4

$$\mathrm{K}-\mathrm{Lemoine}'\mathrm{s}\:,\:\mathrm{I}-\mathrm{incenter}\:\mathrm{in}\:\bigtriangleup\mathrm{ABC}. \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{KA}^{\mathrm{4}} +\mathrm{KB}^{\mathrm{4}} +\mathrm{KC}^{\mathrm{4}} \:\geqslant\:\mathrm{IA}^{\mathrm{4}} +\mathrm{IB}^{\mathrm{4}} +\mathrm{IC}^{\mathrm{4}} \\ $$

Question Number 181627    Answers: 1   Comments: 1

Point E is marked on side AD in rhombus ABCD. If AC = 6 (√(10)) and BD = 2 (√(10)) . How many different integer values can a piece of BE take?

$$\mathrm{Point}\:\:\mathrm{E}\:\:\mathrm{is}\:\mathrm{marked}\:\mathrm{on}\:\mathrm{side}\:\:\mathrm{AD}\:\:\mathrm{in} \\ $$$$\mathrm{rhombus}\:\:\mathrm{ABCD}.\:\mathrm{If}\:\:\mathrm{AC}\:=\:\mathrm{6}\:\sqrt{\mathrm{10}}\:\:\mathrm{and} \\ $$$$\mathrm{BD}\:=\:\mathrm{2}\:\sqrt{\mathrm{10}}\:.\:\mathrm{How}\:\mathrm{many}\:\mathrm{different} \\ $$$$\mathrm{integer}\:\mathrm{values}\:\mathrm{can}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\:\mathrm{BE}\:\:\mathrm{take}? \\ $$

Question Number 181619    Answers: 2   Comments: 1

Question Number 181618    Answers: 2   Comments: 0

(dy/dx)+2xy=x^2 y(0)=3 Solve .

$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2xy}=\mathrm{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Solve} \\ $$$$ \\ $$$$. \\ $$

Question Number 181617    Answers: 0   Comments: 0

Solve: x(dy/dx)+(x+1)y=e^x^2 .

$$\mathrm{Solve}: \\ $$$$\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}+\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}=\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \\ $$$$ \\ $$$$. \\ $$

Question Number 181615    Answers: 1   Comments: 0

Determine whether this is Homogenous or not (dy/dx)=(y/(y−2x)) .

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{this}\:\mathrm{is}\:\mathrm{Homogenous} \\ $$$$\mathrm{or}\:\mathrm{not} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{\mathrm{y}−\mathrm{2x}} \\ $$$$ \\ $$$$. \\ $$

Question Number 181613    Answers: 1   Comments: 0

(dy/dx)=((xy+y^2 )/x^2 ) y(−1)=2 .

$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(−\mathrm{1}\right)=\mathrm{2} \\ $$$$ \\ $$$$. \\ $$

Question Number 181607    Answers: 0   Comments: 0

Question Number 181605    Answers: 0   Comments: 1

Question Number 181599    Answers: 1   Comments: 0

f(x) is a strictly monotonic function in its domain (0, +∞) such that ∀x>0, f(f(x)−(1/x))=2. Find f(x).

$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{strictly}\:\mathrm{monotonic}\:\mathrm{function}\:\mathrm{in}\:\mathrm{its}\:\mathrm{domain}\:\left(\mathrm{0},\:+\infty\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\forall{x}>\mathrm{0},\:{f}\left({f}\left({x}\right)−\frac{\mathrm{1}}{{x}}\right)=\mathrm{2}. \\ $$$$\mathrm{Find}\:{f}\left({x}\right). \\ $$

Question Number 181595    Answers: 2   Comments: 0

Question Number 181593    Answers: 2   Comments: 0

I f , a^( 2) +5 b^( 2) + 4c^( 2) = 4b (a +c ) then , find the value of : E = (( ( b+ c −a )^( 3) )/( abc)) = ? ( abc ≠ 0 )

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{I}\:\mathrm{f}\:,\:\:\:\:{a}^{\:\mathrm{2}} \:+\mathrm{5}\:{b}^{\:\mathrm{2}} \:+\:\mathrm{4}{c}^{\:\mathrm{2}} =\:\mathrm{4}{b}\:\left({a}\:+{c}\:\right) \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{then}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{E}\:=\:\frac{\:\left(\:{b}+\:{c}\:−{a}\:\right)^{\:\mathrm{3}} }{\:{abc}}\:=\:?\:\:\:\:\left(\:{abc}\:\neq\:\mathrm{0}\:\right)\:\:\:\:\:\:\: \\ $$

Question Number 181592    Answers: 1   Comments: 0

prove that (1/(cos0 cos1 ))+(1/(cos1 cos2))+......+(1/(cos88 cos89))=((cos1)/(sin^2 1))

$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{cos}\mathrm{0}\:{cos}\mathrm{1}\:}+\frac{\mathrm{1}}{{cos}\mathrm{1}\:{cos}\mathrm{2}}+......+\frac{\mathrm{1}}{{cos}\mathrm{88}\:{cos}\mathrm{89}}=\frac{{cos}\mathrm{1}}{{sin}^{\mathrm{2}} \mathrm{1}} \\ $$

Question Number 181590    Answers: 1   Comments: 0

Mr. Jibril is four times as old as his son. Four years ago, he was seven times as old as his son. In how many years will Mr Jibril′s age be twice his son′s age?

$$\mathrm{Mr}.\:\mathrm{Jibril}\:\mathrm{is}\:\mathrm{four}\:\mathrm{times}\:\mathrm{as}\:\mathrm{old}\:\mathrm{as}\:\mathrm{his}\:\mathrm{son}. \\ $$$$\mathrm{Four}\:\mathrm{years}\:\mathrm{ago},\:\mathrm{he}\:\mathrm{was}\:\mathrm{seven}\:\mathrm{times}\:\mathrm{as}\:\mathrm{old} \\ $$$$\mathrm{as}\:\mathrm{his}\:\mathrm{son}.\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{years}\:\mathrm{will}\:\mathrm{Mr} \\ $$$$\mathrm{Jibril}'\mathrm{s}\:\mathrm{age}\:\mathrm{be}\:\mathrm{twice}\:\mathrm{his}\:\mathrm{son}'\mathrm{s}\:\mathrm{age}? \\ $$

Question Number 181573    Answers: 0   Comments: 1

25^x − 4^x = 9^x fimd x

$$\mathrm{25}^{{x}} \:−\:\mathrm{4}^{{x}} \:=\:\mathrm{9}^{{x}} \\ $$$${fimd}\:{x} \\ $$

Question Number 181570    Answers: 1   Comments: 0

prove that:xε]−1,1[ Σ_(n=1) ^(+oo) (x^n /n)=−ln(1−x)

$$\left.{prove}\:{that}:{x}\epsilon\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\frac{{x}^{{n}} }{{n}}=−{ln}\left(\mathrm{1}−{x}\right) \\ $$

Question Number 181323    Answers: 2   Comments: 1

{ ((U_0 =1 et U_1 =2)),((U_(n+2) =(√(U_n U_(n+1) )))) :} determiner le terme generale et sa nature besoin d′aide avp

$$\begin{cases}{{U}_{\mathrm{0}} =\mathrm{1}\:{et}\:{U}_{\mathrm{1}} =\mathrm{2}}\\{{U}_{{n}+\mathrm{2}} =\sqrt{{U}_{{n}} {U}_{{n}+\mathrm{1}} }}\end{cases} \\ $$$${determiner}\:{le}\:{terme}\:{generale}\:{et}\:{sa}\:{nature} \\ $$$${besoin}\:{d}'{aide}\:{avp} \\ $$

Question Number 181319    Answers: 1   Comments: 0

Determiner 1. ∫(x/(x^4 +x^2 +1))dx 2. ∫((x^4 +1)/(x^4 +x^2 +1))dx

$${Determiner} \\ $$$$\mathrm{1}.\:\:\:\int\frac{{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\mathrm{2}.\:\:\:\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 181318    Answers: 2   Comments: 1

if x+y+z=0, find the maximum of ((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 )))).

$${if}\:{x}+{y}+{z}=\mathrm{0},\:{find}\:{the}\:{maximum}\:{of} \\ $$$$\frac{\mid{x}+\mathrm{2}{y}+\mathrm{3}{z}\mid}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}. \\ $$

Question Number 181313    Answers: 2   Comments: 0

Montrer que 3^(2n+1) +2^(n+2) est divisible par 7

$${Montrer}\:{que} \\ $$$$\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} \:\:\:{est}\:{divisible}\:{par}\:\mathrm{7} \\ $$

Question Number 181296    Answers: 1   Comments: 0

Question Number 181312    Answers: 0   Comments: 0

Question Number 181280    Answers: 1   Comments: 0

Question Number 181279    Answers: 3   Comments: 0

Question Number 181275    Answers: 1   Comments: 7

what is the sum of all even factors of 1000?

$${what}\:{is}\:{the}\:{sum}\:{of}\:{all} \\ $$$${even}\:{factors}\:{of}\:\mathrm{1000}? \\ $$

  Pg 395      Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404   

Terms of Service

Privacy Policy

Contact: [email protected]