Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 400

Question Number 180547    Answers: 1   Comments: 0

Question Number 180545    Answers: 0   Comments: 3

how do i prove for ∫cosec^2 (x)dx and ∫sec(x)tan(x)dx

$$\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{for}} \\ $$$$\:\int\boldsymbol{\mathrm{cosec}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}} \\ $$$$\:\int\boldsymbol{\mathrm{sec}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\: \\ $$

Question Number 180543    Answers: 1   Comments: 0

12.589 we read non−decimal 12 but decimal number 5,8,9 separate read. why?

$$\mathrm{12}.\mathrm{589} \\ $$$$\mathrm{we}\:\mathrm{read}\:\mathrm{non}−\mathrm{decimal}\:\mathrm{12}\:\mathrm{but}\:\mathrm{decimal} \\ $$$$\mathrm{number}\:\mathrm{5},\mathrm{8},\mathrm{9}\:\mathrm{separate}\:\mathrm{read}.\:\mathrm{why}? \\ $$

Question Number 180542    Answers: 2   Comments: 0

Resoudre dans R 1) a+b+c=2 a^2 +b^2 +c^2 =6 (1/a)+(1/b)+(1/c)=(1/2) 2) x^2 +xy+y^2 =3 y^2 +yz+z^2 =7 z^2 +zx+x^2 =13

$${Resoudre}\:{dans}\:\mathbb{R} \\ $$$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{3} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\mathrm{7} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{13} \\ $$

Question Number 180520    Answers: 2   Comments: 0

The number of triangles that can be formed by 5 points in a line and 3 points on a parralel line is ___

$$\:\:\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles}\: \\ $$$$\:\:\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{5}\:\mathrm{points}\: \\ $$$$\:\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{line}\:\mathrm{and}\:\mathrm{3}\:\mathrm{points}\:\mathrm{on}\:\mathrm{a}\:\mathrm{parralel}\:\mathrm{line} \\ $$$$\:\:\:\mathrm{is}\:\_\_\_\: \\ $$

Question Number 180652    Answers: 1   Comments: 0

Question Number 180510    Answers: 2   Comments: 1

Question Number 180509    Answers: 1   Comments: 0

Question Number 180653    Answers: 2   Comments: 0

Question Number 180498    Answers: 2   Comments: 3

Question Number 180497    Answers: 0   Comments: 0

Question Number 180496    Answers: 0   Comments: 0

Question Number 180495    Answers: 1   Comments: 0

Question Number 180490    Answers: 3   Comments: 0

Question Number 180485    Answers: 0   Comments: 1

Determine the value of a and b , that make the function f(x) continuity f(x) = { ((x + 3 ,x ≨ 4)),((2ax + b ,x = 4)),((x^2 −3 , x ≩ 4)) :}

$${Determine}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:, \\ $$$$\:{that}\:{make}\:{the}\:{function}\:{f}\left({x}\right)\:{continuity} \\ $$$${f}\left({x}\right)\:=\:\begin{cases}{{x}\:+\:\mathrm{3}\:\:\:\:\:,{x}\:\lneqq\:\mathrm{4}}\\{\mathrm{2}{ax}\:+\:{b}\:\:\:\:,{x}\:=\:\mathrm{4}}\\{{x}^{\mathrm{2}} −\mathrm{3}\:\:\:,\:{x}\:\gneqq\:\mathrm{4}}\end{cases} \\ $$

Question Number 180483    Answers: 0   Comments: 1

Question Number 180471    Answers: 0   Comments: 1

Question Number 180467    Answers: 1   Comments: 0

Question Number 180459    Answers: 2   Comments: 0

Question Number 180458    Answers: 2   Comments: 0

Question Number 180457    Answers: 1   Comments: 11

Question Number 180449    Answers: 0   Comments: 1

x + y + z = 0 2x + 4y − z = 0 3x + 2y + 2z = 0 Solve for x,y,and z

$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:+\:\mathrm{4y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x},\mathrm{y},\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180447    Answers: 0   Comments: 1

x + y − z = 0 2x − 3y + z = 0 x −4y + 2z = 0 find the value of x,y, and z

$$\mathrm{x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:−\:\mathrm{3y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:−\mathrm{4y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\:\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180446    Answers: 2   Comments: 0

Solve : x_1 + 2x_2 − 3x_3 = 0 2x_1 + 4x_2 − 2x_3 = 2 3x_1 + 6x_2 − 4x_3 = 3

$$\mathrm{Solve}\::\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{2x}_{\mathrm{2}} \:−\:\mathrm{3x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{4x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:+\:\mathrm{6x}_{\mathrm{2}} \:−\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{3} \\ $$

Question Number 180438    Answers: 3   Comments: 0

lim_(x→0) (((√(4+x))−(√(4−x)))/x) find the limit above

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\sqrt{\mathrm{4}+\mathrm{x}}−\sqrt{\mathrm{4}−\mathrm{x}}}{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180436    Answers: 0   Comments: 0

f(x−y)+f(x+y)=2f(x)f(y) find f(x) Q#180407 (Altered)

$${f}\left({x}−{y}\right)+{f}\left({x}+{y}\right)=\mathrm{2}{f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{find}\:{f}\left({x}\right) \\ $$$${Q}#\mathrm{180407}\:\left({Altered}\right) \\ $$

  Pg 395      Pg 396      Pg 397      Pg 398      Pg 399      Pg 400      Pg 401      Pg 402      Pg 403      Pg 404   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com