Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 400
Question Number 180547 Answers: 1 Comments: 0
Question Number 180545 Answers: 0 Comments: 3
$$\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{for}} \\ $$$$\:\int\boldsymbol{\mathrm{cosec}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}} \\ $$$$\:\int\boldsymbol{\mathrm{sec}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\: \\ $$
Question Number 180543 Answers: 1 Comments: 0
$$\mathrm{12}.\mathrm{589} \\ $$$$\mathrm{we}\:\mathrm{read}\:\mathrm{non}−\mathrm{decimal}\:\mathrm{12}\:\mathrm{but}\:\mathrm{decimal} \\ $$$$\mathrm{number}\:\mathrm{5},\mathrm{8},\mathrm{9}\:\mathrm{separate}\:\mathrm{read}.\:\mathrm{why}? \\ $$
Question Number 180542 Answers: 2 Comments: 0
$${Resoudre}\:{dans}\:\mathbb{R} \\ $$$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{3} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\mathrm{7} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{13} \\ $$
Question Number 180520 Answers: 2 Comments: 0
$$\:\:\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles}\: \\ $$$$\:\:\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{5}\:\mathrm{points}\: \\ $$$$\:\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{line}\:\mathrm{and}\:\mathrm{3}\:\mathrm{points}\:\mathrm{on}\:\mathrm{a}\:\mathrm{parralel}\:\mathrm{line} \\ $$$$\:\:\:\mathrm{is}\:\_\_\_\: \\ $$
Question Number 180652 Answers: 1 Comments: 0
Question Number 180510 Answers: 2 Comments: 1
Question Number 180509 Answers: 1 Comments: 0
Question Number 180653 Answers: 2 Comments: 0
Question Number 180498 Answers: 2 Comments: 3
Question Number 180497 Answers: 0 Comments: 0
Question Number 180496 Answers: 0 Comments: 0
Question Number 180495 Answers: 1 Comments: 0
Question Number 180490 Answers: 3 Comments: 0
Question Number 180485 Answers: 0 Comments: 1
$${Determine}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:, \\ $$$$\:{that}\:{make}\:{the}\:{function}\:{f}\left({x}\right)\:{continuity} \\ $$$${f}\left({x}\right)\:=\:\begin{cases}{{x}\:+\:\mathrm{3}\:\:\:\:\:,{x}\:\lneqq\:\mathrm{4}}\\{\mathrm{2}{ax}\:+\:{b}\:\:\:\:,{x}\:=\:\mathrm{4}}\\{{x}^{\mathrm{2}} −\mathrm{3}\:\:\:,\:{x}\:\gneqq\:\mathrm{4}}\end{cases} \\ $$
Question Number 180483 Answers: 0 Comments: 1
Question Number 180471 Answers: 0 Comments: 1
Question Number 180467 Answers: 1 Comments: 0
Question Number 180459 Answers: 2 Comments: 0
Question Number 180458 Answers: 2 Comments: 0
Question Number 180457 Answers: 1 Comments: 11
Question Number 180449 Answers: 0 Comments: 1
$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:+\:\mathrm{4y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x},\mathrm{y},\mathrm{and}\:\mathrm{z} \\ $$
Question Number 180447 Answers: 0 Comments: 1
$$\mathrm{x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:−\:\mathrm{3y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:−\mathrm{4y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\:\mathrm{and}\:\mathrm{z} \\ $$
Question Number 180446 Answers: 2 Comments: 0
$$\mathrm{Solve}\::\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{2x}_{\mathrm{2}} \:−\:\mathrm{3x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{4x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:+\:\mathrm{6x}_{\mathrm{2}} \:−\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{3} \\ $$
Question Number 180438 Answers: 3 Comments: 0
$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\sqrt{\mathrm{4}+\mathrm{x}}−\sqrt{\mathrm{4}−\mathrm{x}}}{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$
Question Number 180436 Answers: 0 Comments: 0
$${f}\left({x}−{y}\right)+{f}\left({x}+{y}\right)=\mathrm{2}{f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{find}\:{f}\left({x}\right) \\ $$$${Q}#\mathrm{180407}\:\left({Altered}\right) \\ $$
Pg 395 Pg 396 Pg 397 Pg 398 Pg 399 Pg 400 Pg 401 Pg 402 Pg 403 Pg 404
Terms of Service
Privacy Policy
Contact: info@tinkutara.com