Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 4
Question Number 226102 Answers: 0 Comments: 0
Question Number 226101 Answers: 0 Comments: 0
$$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)=\begin{cases}{{r}\centerdot\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{sin}\left(\mathrm{2}\pi{v}\right)}\\{{rv}\centerdot\mathrm{cos}\left({u}\right)}\\{{r}\centerdot\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{cos}\left(\mathrm{2}\pi{v}\right)+{r}\centerdot\left(\mathrm{2}{v}−\mathrm{2}\right)}\end{cases} \\ $$$$\mathcal{D}=\left(\mathrm{0}\leq{r}<\infty\:,\:−\pi\leq{u}\leq\pi\:,\:\mathrm{0}\leq{v}\leq\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\int\int_{\:\mathcal{D}} \:\mathrm{det}\:\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}_{{u}} ×\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}_{{v}} \:\mathrm{d}{V}=?? \\ $$
Question Number 226100 Answers: 0 Comments: 0
$${please}\:{need}\:{help},\:{how}\:{to}\:{copy}\:{the}\:{required}\:{equation}\:{to} \\ $$$${ms}\:{word}.\: \\ $$
Question Number 226097 Answers: 0 Comments: 1
I have multiple rectangular boxes whose sides are x and y. I need to fit n such boxes into a larger rectangular box whose sides are X and Y. Now, find the values of X and Y such that the area of the larger box is minimum.
Question Number 226053 Answers: 1 Comments: 0
$${The}\:{coefficient}\:{of}\:{x}^{\mathrm{2}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left(\mathrm{1}+\:\left(\mathrm{2}/{p}\right){x}\right)^{\mathrm{5}} \:+\:\left(\mathrm{1}+{px}\right)^{\mathrm{6}} \:{is}\:\mathrm{70}. \\ $$$${Find}\:{the}\:{possible}\:{values}\:{of}\:{the} \\ $$$${constant}\:{p}. \\ $$
Question Number 226049 Answers: 0 Comments: 9
Question Number 226045 Answers: 0 Comments: 0
Question Number 226044 Answers: 1 Comments: 0
Question Number 226042 Answers: 0 Comments: 6
Question Number 226022 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{...} } } {dx}=? \\ $$
Question Number 226015 Answers: 1 Comments: 0
Question Number 226014 Answers: 2 Comments: 1
Question Number 226007 Answers: 0 Comments: 0
Question Number 226006 Answers: 0 Comments: 2
$$\left(\mathrm{3}/\mathrm{7}\right)^{\mathrm{0}} \:\:\:{prove}\:{and}\:{evalute}\:{show}\:{all} \\ $$$${working} \\ $$
Question Number 226003 Answers: 1 Comments: 1
$${If}\:\:{r}^{\mathrm{2}} +{r}\left(\sqrt{\mathrm{3}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{A}=\int_{\pi/\mathrm{6}} ^{\:\pi/\mathrm{2}} \left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\right){d}\theta \\ $$$$\: \\ $$
Question Number 225994 Answers: 2 Comments: 0
Question Number 225993 Answers: 0 Comments: 0
Question Number 225980 Answers: 2 Comments: 4
Question Number 225970 Answers: 0 Comments: 2
$$\mathrm{2}^{\mathrm{100}!} \:?\:\mathrm{2}^{\mathrm{100}} !\left[=,<{or}\:>\right] \\ $$
Question Number 225954 Answers: 3 Comments: 0
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x} \\ $$$$ \\ $$
Question Number 225955 Answers: 1 Comments: 10
$${can}\:{we}\:{find}\:{the}\:{perimeter} \\ $$$${of}\:{an}\:{ellipse}? \\ $$
Question Number 225941 Answers: 2 Comments: 1
Question Number 225934 Answers: 1 Comments: 0
$$\:\: \begin{cases}{\lceil\:\frac{\mathrm{8}−\mathrm{2}{x}}{\mathrm{3}}\:\rceil\:;\:{x}\geqslant\:\mathrm{0}}\\{\lfloor\:\frac{\mathrm{3}{x}−\mathrm{1}}{\mathrm{4}}\:\rfloor\:;\:{x}<\mathrm{0}}\end{cases}. \\ $$$$\left.\:\: − −\mathrm{1}\right)+\: \\ $$$$ \\ $$
Question Number 225932 Answers: 1 Comments: 0
$$\:{If},\:\frac{{by}+{cz}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }=\frac{{cz}+{ax}}{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{{ax}+{by}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\:{then}\:{prove}\:{that},\:\frac{{x}}{{a}}=\frac{{y}}{{b}}=\frac{{z}}{{c}} \\ $$
Question Number 225939 Answers: 2 Comments: 0
Question Number 225938 Answers: 6 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com