Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 4

Question Number 224637    Answers: 0   Comments: 0

Question Number 224635    Answers: 1   Comments: 0

Prove that: sin(54°) = (((√5) + 1)/4)

$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\mathrm{sin}\left(\mathrm{54}°\right)\:=\:\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 224634    Answers: 1   Comments: 0

$$\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 224633    Answers: 0   Comments: 0

x+y=2,4 x=2 y=4

$${x}+{y}=\mathrm{2},\mathrm{4} \\ $$$${x}=\mathrm{2} \\ $$$${y}=\mathrm{4} \\ $$

Question Number 224629    Answers: 4   Comments: 0

Question Number 224632    Answers: 0   Comments: 0

Question Number 224623    Answers: 2   Comments: 2

$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 224615    Answers: 0   Comments: 1

The vectors OP, OQ and OR represented by a,b and c respectively: where a=10i+j, b=−2i+7j, c=a+3b, and O is the origin. OR and PR intersects at M where OM=kOR and PM=lPQ and k, l are constants. Find: (i) The equation of the lines of PQ and OR (ii) The coordinayes of the point M (iii)The values of the constants k and l

$${The}\:{vectors}\:{OP},\:{OQ}\:{and}\:{OR}\:{represented} \\ $$$${by}\:{a},{b}\:{and}\:{c}\:{respectively}:\:{where}\:{a}=\mathrm{10}{i}+{j}, \\ $$$${b}=−\mathrm{2}{i}+\mathrm{7}{j},\:{c}={a}+\mathrm{3}{b},\:{and}\:{O}\:{is}\:{the}\:{origin}. \\ $$$${OR}\:{and}\:{PR}\:{intersects}\:{at}\:{M}\:{where} \\ $$$${OM}={kOR}\:{and}\:{PM}={lPQ}\:{and}\:{k},\:{l}\:{are} \\ $$$${constants}.\:{Find}: \\ $$$$\left({i}\right)\:{The}\:{equation}\:{of}\:{the}\:{lines}\:{of}\:{PQ}\:{and} \\ $$$${OR} \\ $$$$\left({ii}\right)\:{The}\:{coordinayes}\:{of}\:{the}\:{point}\:{M} \\ $$$$\left({iii}\right){The}\:{values}\:{of}\:{the}\:{constants}\:{k}\:{and}\:{l} \\ $$$$ \\ $$

Question Number 224614    Answers: 1   Comments: 0

A binary operation ∗ is defined on a set real numbers, R by x∗y = 2x + 2y −((xy)/3) . find: (i) The inverse of x under the operation ∗ (ii) Truth set when m∗7=−2∗m

$${A}\:{binary}\:{operation}\:\ast\:{is}\:{defined}\:{on}\:{a}\:{set} \\ $$$${real}\:{numbers},\:{R}\:{by} \\ $$$${x}\ast{y}\:=\:\mathrm{2}{x}\:+\:\mathrm{2}{y}\:−\frac{{xy}}{\mathrm{3}}\:. \\ $$$${find}: \\ $$$$\left({i}\right)\:{The}\:{inverse}\:{of}\:{x}\:{under}\:{the}\:{operation}\:\ast \\ $$$$\left({ii}\right)\:{Truth}\:{set}\:{when}\:{m}\ast\mathrm{7}=−\mathrm{2}\ast{m} \\ $$

Question Number 224608    Answers: 1   Comments: 1

Question Number 224606    Answers: 1   Comments: 0

α β = 9 (( (α+β))/( (α−β))) =?

$$\:\:\: \alpha\: \beta\:=\:\mathrm{9}\:\: \\ $$$$\:\:\:\:\frac{ \left(\alpha+\beta\right)}{ \left(\alpha−\beta\right)}\:=?\: \\ $$

Question Number 224600    Answers: 0   Comments: 5

i am back guys

$$\mathrm{i}\:\mathrm{am}\:\mathrm{back}\:\mathrm{guys} \\ $$

Question Number 224594    Answers: 0   Comments: 1

let I be the incenter of a non−isosceles ΔABC and let the incircle be tanget to the sides point D,E,F. the line AI intersects (ABC) at A and S. the line SD intersects (ABC) at S and T. let IT ∩ EF =M, (BIC) ∩ (DEF)=K,L. prove that KDLM is a kite.

$$ \\ $$$$\:\:\:\:\mathrm{let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}−\mathrm{isosceles}\:\:\Delta{ABC}\:\:\:\:\:\: \\ $$$$\:\:\:\:\mathrm{and}\:\mathrm{let}\:\mathrm{the}\:\mathrm{incircle}\:\mathrm{be}\:\mathrm{tanget}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{point}\:{D},{E},{F}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{AI}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{A}\:\mathrm{and}\:{S}. \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{SD}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{S}\:\mathrm{and}\:{T}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{let}\:{IT}\:\cap\:{EF}\:={M},\: \left({BIC}\right)\:\cap\: \left({DEF}\right)={K},{L}. \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:{KDLM}\:\mathrm{is}\:\mathrm{a}\:\mathrm{kite}. \\ $$$$ \\ $$$$ \\ $$

Question Number 224592    Answers: 0   Comments: 3

Question Number 224591    Answers: 1   Comments: 0

p is a prime number prove that if p^2 +8 is prime ⇒ ⇒ p^3 +4 is also prime

$$\mathrm{p}\:{is}\:{a}\:{prime}\:{number} \\ $$$${prove}\:{that}\:{if}\:\mathrm{p}^{\mathrm{2}} +\mathrm{8}\:{is}\:{prime}\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{p}^{\mathrm{3}} +\mathrm{4}\:{is}\:{also}\:{prime} \\ $$

Question Number 224587    Answers: 0   Comments: 0

Question Number 224586    Answers: 0   Comments: 0

Question Number 224585    Answers: 0   Comments: 0

Question Number 224570    Answers: 2   Comments: 0

Question Number 224568    Answers: 0   Comments: 1

(√x)=a { ((a∈Z=0)),((a∉Z=1)) :} ∫_0 ^( 3) (√x)dx=?

$$\sqrt{{x}}={a\begin{cases}{{a}\in\mathbb{Z}=\mathrm{0}}\\{{a}\notin\mathbb{Z}=\mathrm{1}}\end{cases}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{3}} \:\sqrt{{x}}{dx}=? \\ $$

Question Number 224562    Answers: 0   Comments: 1

_1 =sin x , _2 =cos x _3 =tan x _n =1+cos x

$$\:\: _{\mathrm{1}} =\mathrm{sin}\:{x}\:,\: _{\mathrm{2}} =\mathrm{cos}\:{x}\: \\ $$$$ _{\mathrm{3}} =\mathrm{tan}\:{x}\: \\ $$$$ _{{n}} =\mathrm{1}+\mathrm{cos}\:{x}\: \\ $$

Question Number 224558    Answers: 0   Comments: 6

Question Number 224556    Answers: 1   Comments: 5

Question Number 224539    Answers: 3   Comments: 0

a^x =m, a^y =n ,a^2 =(m^y n^x )^z prove xyz=1

$${a}^{{x}} ={m},\:{a}^{{y}} ={n}\:,{a}^{\mathrm{2}} =\left({m}^{{y}} {n}^{{x}} \right)^{{z}} \\ $$$${prove}\:{xyz}=\mathrm{1} \\ $$

Question Number 224538    Answers: 2   Comments: 0

32^(4r^2 −8) =1 then find r=?

$$\mathrm{32}^{\mathrm{4r}^{\mathrm{2}} −\mathrm{8}} =\mathrm{1}\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{r}=? \\ $$

Question Number 224531    Answers: 2   Comments: 4

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com