A kind of calculation relatedt
o arctangent integral:
Exere:∫_0 ^1 ((arctan^2 )/(x(1+x^2 )))dx.
Solution:=∫_0 ^1 ((arctan^2 x)/x)dx_(A) −∫_0 ^1 ((x arctan^2 x)/(1+x^2 ))dx_(B) −∫_0 ^1 ((x arctan^2 )/((1+x^2 )^2 ))dx._(C)
A=∫_0 ^1 ((arctan^2 x)/x)dx=∫_0 ^1 arctan^2 xd ln x=−2∫_0 ^1 ((ln x arctan x)/(1+x^2 ))dx
=^(x→tan x) −2∫_0 ^(π/4) x ln tan xdx=^(Fourier series) −2∫_0 ^(π/4) x(−2Σ_(n=1) ^∞ ((cos(4n−2)x)/(2n−1)))dx
=4Σ_(n=0) ^∞ (1/(2n−1))∫_0 ^(π/4) x cos(4n−2)xdx
=4Σ_(n=1) ^∞ (1/(2n−1))∫_0 ^(π/4) x cos(4n−2)x dx
=4Σ_(n=1) ^∞ (1/(2n−1)) ((−4+4cos(((4n−2)π)/4)+(4n−2)π sin(((4n−2)π)/4))/(4(4n−2)^2 ))
=−Σ_(n=1) ^∞ (1/((2n−1)^3 ))+(π/2)Σ_(n=0) ^∞ (((−1)^(n−1) )/((2n−1)^2 ))=−(7/8)Σ_(n=1) ^∞ (1/n^3 )+(π/2)G
= determinant (((−(7/8)ζ(3)+(π/2)G.)))(G Catalan)
B=∫_0 ^1 ((x arctan^2 x)/(1+x^3 ))dx=^(x→tan x) ∫_0 ^(π/4) x^2 tan xdx=−∫_0 ^(π/4) x^2 d ln cos x
=(π^2 /(32))ln 2+2∫_0 ^(π/4) x ln cos xdx
=^(Fourier series) (π^2 /(32))ln 2+2∫_(0 ) ^(π/4) x[−ln 2+Σ_(n=1) ^∞ (((−1)^(n−1) )/n)cos 2nx]dx
=−(π^2 /(32))ln 2−(7/(16))Σ_(n=0) ^∞ (((−1)^(n−1) )/n^3 )+(π/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)^2 ))
=−(π^2 /(32))ln 2−((21)/(64))Σ_(n=1) ^∞ (1/n^3 )+(π/4)G
=−(π^2 /(32))ln 2−((21)/(64))ζ(3)+(π/4)G
C ∫((x arctan^2 x)/((1+x^2 )^2 ))dx=^(x→tan x) ∫_0 ^(π/4) x^2 sin x cos xdx=^(x→(π/2)) (1/(16))∫_0 ^(π/2) x^2 sin xdx
=(1/(16))[2x sin x+(2−x^2 )cos x]_0 ^(π/2) =(π/(16))−(1/8)
∫_0 ^1 ((arctan^2 x)/(x(1+x^2 )^2 ))dx=A−B−C−(1/8)−(π/(16))+(π^2 /(64))ζ(3)+(π/4)G.
Integral calculation of a
kindof arctangent functionl
reated to the above integral:
(1)I(m,n)=∫_0 ^1 ((arctan^m x)/x^n )dx,(n≤m m,n∈N)
(2)J(m,n)=∫_(0 ) ^(+∞) ((arctan^m x)/x^n )dx,(2≤n≤m m,n∈N)
I(1,1)=∫_0 ^1 Σ_(n=1) ^∞ (((−1)^(n−1) x^(2n−2) )/(2n−1))dx=Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)^2 ))=G.
I(2,1)=−(7/8)ζ(3)+(π/2)G
I(3,1)=∫_0 ^1 arctan^3 xd ln x=−3∫_0 ^1 ((arctan^2 x)/(1+x^2 ))ln xdx=^(x→tan x) −3∫_0 ^(π/4) x^2 ln tan xdx
=^(Fourier series) −3∫_0 ^(π/4) x^2 (−2Σ_(n=1) ^∞ ((cos(4n−2)x)/(2n−1)))dx
=(3/2)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)^4 ))+((3π^2 )/(16))Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)^2 ))
=(3/(512))Σ_(n=1) ^∞ (1/((n−(1/4))^4 ))−(3/(512))Σ_(n=1) ^∞ (1/((n−(1/4))^4 ))+((3π^2 )/(16))G
=(1/(1024))[ψ^((3)) ((3/4))−ψ^((3)) ((1/4))]+((3π^2 )/(16))G.
I(4,1)=(π/(1024))[ψ^((3)) −ψ^((3)) ((1/4))]+((93)/(32))ζ(5)+(π^3 /(16))G
I(5,1)=((5π^2 )/(8192))[ψ^((3)) ((3/4))−ψ^((3)) ((1/4))]+(1/(65536))[ψ^((5)) ((1/4))−ψ^((5)) ((3/4))]+((5π^4 )/(256))G
I(2,2)=∫_0 ^1 arctan^2 xd(1/x)−(π^2 /(16))+2∫_0 ^1 ((arctan x)/(x(1+x^2 )))dx
=^(x→tan x) (π^2 /(16))+2∫_0 ^(π/4) x cot xdx=^(x→tan x) −(π^2 /(16))+2∫_0 ^(π/4) (ln 2+Σ_(n=1) ^∞ ((cos 2nx)/n))dx
=−(π^2 /(16))+(π/4)ln 2+Σ_(n=0) ^∞ ((sin((nπ)/2))/n^2 )=−(π^2 /(16))+(π/4)ln 2+Σ_(n=1) ^∞ ((2(−1)^(n−1) )/((2n−1)^2 ))
=−(π^2 /(16))+(π/4)ln 2+G
I(3,2)=−(π^3 /(64))+((3π^2 )/(32))ln 2−((105)/(64))ζ(3)+((3π)/4)G.
I(4,2)=(1/(512))[ψ^((3)) ((3/4))−ψ^((3)) ((1/4))]=(π^4 /(256))+(π^3 /(32))ln 2−((9π)/(64))ζ(3)+((3π^3 )/8)G.
I(3,3)=−((3π^2 )/(32))−(π^3 /(64))+((9π)/8)ln 2−((105)/(32))ζ(3)+((3π)/2)G.
It is evident that I(m,n)has elegant closedforms
value composed of ζ(2k+1),
ψ^((2k+1)) ((3/4))−ψ^((2k+1)) ((1/4)),π^k ,
Catalan constant G(for k=1,2,3,…)
J(2,2)=π ln 2.
J(3,2)=((3π^2 )/4)ln 2−((81)/8)ζ(3).
J(4,2)=(π^3 /2)ln 2−((9π)/4)ζ(3)
J(5,2)=((5π^4 )/(16))ln 2−((45π^2 )/(16))ζ(3)+((465)/(32))ζ(5).
J(3,3)=−(π^3 /(16))+((3π)/2)ln 2.
J(4,3)=−(π^4 /(32))+((3π^2 )/2)ln 2−((21)/4)ζ(3)
J(5,3)=(π^6 /(64))+((5π^3 )/4)ln 2−((45π)/8)ζ(3).
J(4,4)=−(π^3 /(12))+(2π−(π^3 /6))ln 2+((3π)/4)ζ(3)
J(5,4)=−((5π^4 )/(96))+(((5π^2 )/2)−((5π^4 )/(48)))ln 2−(((35)/4)+((15π^2 )/(16)))ζ(3)−((155)/(32))ζ(5).
J(5,5)=(π^5 /(128))−((5π^3 )/(48))+(((5π)/2)−((5π^3 )/6))ln 2+((15π)/4)ζ(3).
It is evident that J(m,n)also has
elegant closed-form values composed of ζ(2k+1),π^k (for k=1,2,3,…).
|