Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182128    Answers: 0   Comments: 0

Question Number 182114    Answers: 0   Comments: 1

Question Number 182109    Answers: 1   Comments: 0

f(x)=3x^2 −2x(√3)−8 g(x)=x^2 −(1/3) gof^(−1) (18)=?

$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}\sqrt{\mathrm{3}}−\mathrm{8}\:\:\:\:\:\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{x}}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\boldsymbol{{gof}}^{−\mathrm{1}} \left(\mathrm{18}\right)=? \\ $$

Question Number 182108    Answers: 2   Comments: 0

A truck, P traveling at 54km/hr passes through a point at 10:30am, while another truck, Q traveling at 90km/hr passes through this same point 30 minutes later. At what time will truck Q overtake P?

A truck, P traveling at 54km/hr passes through a point at 10:30am, while another truck, Q traveling at 90km/hr passes through this same point 30 minutes later. At what time will truck Q overtake P?

Question Number 182103    Answers: 1   Comments: 1

Question Number 182093    Answers: 1   Comments: 2

Solve the equation: ((x−6)/(2020))+((x−5)/(2021))+((x−4)/(2022))=3

$${Solve}\:{the}\:{equation}: \\ $$$$\frac{{x}−\mathrm{6}}{\mathrm{2020}}+\frac{{x}−\mathrm{5}}{\mathrm{2021}}+\frac{{x}−\mathrm{4}}{\mathrm{2022}}=\mathrm{3} \\ $$

Question Number 182082    Answers: 0   Comments: 0

∫_0 ^∞ ∫_0 ^∞ Σ_(n=0) ^∞ Σ_(r=0) ^n (1)^r ∙((x^r y^(2022(n+2)) )/((n−r)!(r!)^2 (2022y^(2022) +2023)^2 ))dxdy

$$\:\:\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{\boldsymbol{\mathrm{r}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\left(\mathrm{1}\right)^{\boldsymbol{\mathrm{r}}} \:\centerdot\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{r}}} \boldsymbol{\mathrm{y}}^{\mathrm{2022}\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)} }{\left(\boldsymbol{\mathrm{n}}−\boldsymbol{\mathrm{r}}\right)!\left(\boldsymbol{\mathrm{r}}!\right)^{\mathrm{2}} \left(\mathrm{2022}\boldsymbol{\mathrm{y}}^{\mathrm{2022}} +\mathrm{2023}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dxdy}} \\ $$$$ \\ $$$$ \\ $$

Question Number 182078    Answers: 2   Comments: 0

Question Number 182077    Answers: 1   Comments: 0

lim_(x→∞) x ln ((((x^2 +2x+2))^(1/4) /( ((16x^2 +2x))^(1/4) −(√x))) )=?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\mathrm{ln}\:\left(\frac{\sqrt[{\mathrm{4}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{2}}}{\:\sqrt[{\mathrm{4}}]{\mathrm{16x}^{\mathrm{2}} +\mathrm{2x}}\:−\sqrt{\mathrm{x}}}\:\right)=? \\ $$

Question Number 182075    Answers: 2   Comments: 1

Question Number 182074    Answers: 2   Comments: 0

Let x+ xy+ y= 54 ; x, y∈ N , Find x+ y

$${Let}\:{x}+\:{xy}+\:{y}=\:\mathrm{54}\:\:\:;\:{x},\:{y}\in\:\mathbb{N}\:,\:{Find}\:{x}+\:{y} \\ $$

Question Number 182073    Answers: 1   Comments: 0

Find the sum of the solutions of the equation: ∣(√x) − 2∣+ (√x) ((√x) − 4)+ 2= 0 ; x> 0

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{solutions}\:{of}\:{the}\:{equation}: \\ $$$$\:\mid\sqrt{{x}}\:−\:\mathrm{2}\mid+\:\sqrt{{x}}\:\left(\sqrt{{x}}\:−\:\mathrm{4}\right)+\:\mathrm{2}=\:\mathrm{0}\:\:\:;\:{x}>\:\mathrm{0} \\ $$

Question Number 182069    Answers: 1   Comments: 1

(1+x^2 )(dy/dx)+3xy=5x solve

$$\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{3xy}=\mathrm{5x} \\ $$$$ \\ $$$$\mathrm{solve} \\ $$

Question Number 182066    Answers: 2   Comments: 0

Question Number 182091    Answers: 1   Comments: 1

Question Number 182050    Answers: 1   Comments: 0

A= [(a,b,c),((−2),3,6),(0,(−2),5) ]and B= [(1,2,4),(0,3,9),((−1),2,2) ] A×B= [((−1),3,(−1)),((−8),d,(31)),((−5),4,e) ]find the missing value

$${A}=\begin{bmatrix}{{a}}&{{b}}&{{c}}\\{−\mathrm{2}}&{\mathrm{3}}&{\mathrm{6}}\\{\mathrm{0}}&{−\mathrm{2}}&{\mathrm{5}}\end{bmatrix}{and}\:{B}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{9}}\\{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{2}}\end{bmatrix} \\ $$$${A}×{B}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{8}}&{{d}}&{\mathrm{31}}\\{−\mathrm{5}}&{\mathrm{4}}&{{e}}\end{bmatrix}{find}\:{the}\:{missing}\:{value} \\ $$

Question Number 182120    Answers: 2   Comments: 0

Question Number 182045    Answers: 2   Comments: 1

∫_(π/6) ^(π/3) (1/(1+(tanx)^(2013) )) dx = ?

$$ \\ $$$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{1}}{\mathrm{1}+\left({tanx}\right)^{\mathrm{2013}} }\:{dx}\:=\:? \\ $$$$ \\ $$

Question Number 182043    Answers: 0   Comments: 0

For a, b, c, d ∈ R a+b+c+d=0 ab, ac, ad, bc, bd, cd ≠0 Prove the inequality: ((ab)/((a+b)^2 ))+((ac)/((a+c)^2 ))+((ad)/((a+d)^2 ))+((bc)/((b+c)^2 ))+((bd)/((b+d)^2 ))+((cd)/((c+d)^2 ))≤−(3/2) When is equality reached?

$${For}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{0} \\ $$$${ab},\:{ac},\:{ad},\:{bc},\:{bd},\:{cd}\:\neq\mathrm{0} \\ $$$${Prove}\:{the}\:{inequality}: \\ $$$$\frac{{ab}}{\left({a}+{b}\right)^{\mathrm{2}} }+\frac{{ac}}{\left({a}+{c}\right)^{\mathrm{2}} }+\frac{{ad}}{\left({a}+{d}\right)^{\mathrm{2}} }+\frac{{bc}}{\left({b}+{c}\right)^{\mathrm{2}} }+\frac{{bd}}{\left({b}+{d}\right)^{\mathrm{2}} }+\frac{{cd}}{\left({c}+{d}\right)^{\mathrm{2}} }\leq−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${When}\:{is}\:{equality}\:{reached}? \\ $$

Question Number 182039    Answers: 1   Comments: 0

if f′′′(x)=f(x) find what is f(x)

$${if}\:{f}'''\left({x}\right)={f}\left({x}\right) \\ $$$${find}\:{what}\:{is}\:{f}\left({x}\right)\: \\ $$

Question Number 182037    Answers: 0   Comments: 0

Question Number 182036    Answers: 0   Comments: 0

Question Number 182031    Answers: 0   Comments: 0

Question Number 182026    Answers: 3   Comments: 0

h(x)= determinant (((sin x cos x tan x)),((cos 2x sin 2x tan 2x)),(( x^3 (1/4)x^4 xsin x))) h′(0) =?

$$\:\:\mathrm{h}\left(\mathrm{x}\right)=\:\begin{vmatrix}{\mathrm{sin}\:\mathrm{x}\:\:\:\:\:\mathrm{cos}\:\mathrm{x}\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{x}}\\{\mathrm{cos}\:\mathrm{2x}\:\:\mathrm{sin}\:\mathrm{2x}\:\:\:\:\:\mathrm{tan}\:\mathrm{2x}}\\{\:\:\:\mathrm{x}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{4}} \:\:\:\:\:\:\mathrm{xsin}\:\mathrm{x}}\end{vmatrix} \\ $$$$\:\:\mathrm{h}'\left(\mathrm{0}\right)\:=? \\ $$

Question Number 182375    Answers: 2   Comments: 1

Question Number 182374    Answers: 2   Comments: 1

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com