Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 389
Question Number 182066 Answers: 2 Comments: 0
Question Number 182091 Answers: 1 Comments: 1
Question Number 182050 Answers: 1 Comments: 0
$${A}=\begin{bmatrix}{{a}}&{{b}}&{{c}}\\{−\mathrm{2}}&{\mathrm{3}}&{\mathrm{6}}\\{\mathrm{0}}&{−\mathrm{2}}&{\mathrm{5}}\end{bmatrix}{and}\:{B}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{9}}\\{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{2}}\end{bmatrix} \\ $$$${A}×{B}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{8}}&{{d}}&{\mathrm{31}}\\{−\mathrm{5}}&{\mathrm{4}}&{{e}}\end{bmatrix}{find}\:{the}\:{missing}\:{value} \\ $$
Question Number 182120 Answers: 2 Comments: 0
Question Number 182045 Answers: 2 Comments: 1
$$ \\ $$$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{1}}{\mathrm{1}+\left({tanx}\right)^{\mathrm{2013}} }\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 182043 Answers: 0 Comments: 0
$${For}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{0} \\ $$$${ab},\:{ac},\:{ad},\:{bc},\:{bd},\:{cd}\:\neq\mathrm{0} \\ $$$${Prove}\:{the}\:{inequality}: \\ $$$$\frac{{ab}}{\left({a}+{b}\right)^{\mathrm{2}} }+\frac{{ac}}{\left({a}+{c}\right)^{\mathrm{2}} }+\frac{{ad}}{\left({a}+{d}\right)^{\mathrm{2}} }+\frac{{bc}}{\left({b}+{c}\right)^{\mathrm{2}} }+\frac{{bd}}{\left({b}+{d}\right)^{\mathrm{2}} }+\frac{{cd}}{\left({c}+{d}\right)^{\mathrm{2}} }\leq−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${When}\:{is}\:{equality}\:{reached}? \\ $$
Question Number 182039 Answers: 1 Comments: 0
$${if}\:{f}'''\left({x}\right)={f}\left({x}\right) \\ $$$${find}\:{what}\:{is}\:{f}\left({x}\right)\: \\ $$
Question Number 182037 Answers: 0 Comments: 0
Question Number 182036 Answers: 0 Comments: 0
Question Number 182031 Answers: 0 Comments: 0
Question Number 182026 Answers: 3 Comments: 0
$$\:\:\mathrm{h}\left(\mathrm{x}\right)=\:\begin{vmatrix}{\mathrm{sin}\:\mathrm{x}\:\:\:\:\:\mathrm{cos}\:\mathrm{x}\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{x}}\\{\mathrm{cos}\:\mathrm{2x}\:\:\mathrm{sin}\:\mathrm{2x}\:\:\:\:\:\mathrm{tan}\:\mathrm{2x}}\\{\:\:\:\mathrm{x}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{4}} \:\:\:\:\:\:\mathrm{xsin}\:\mathrm{x}}\end{vmatrix} \\ $$$$\:\:\mathrm{h}'\left(\mathrm{0}\right)\:=? \\ $$
Question Number 182375 Answers: 2 Comments: 1
Question Number 182374 Answers: 2 Comments: 1
Question Number 182012 Answers: 1 Comments: 0
$${f}\left({x}\right)=\mathrm{9}^{{x}} −{m}\centerdot\mathrm{3}^{{x}} +{m}+\mathrm{6} \\ $$$$\exists{x}\in\mathbb{R},\:{f}\left({x}\right)+{f}\left(−{x}\right)=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\:\mathrm{range}\:\mathrm{of}\:{m}. \\ $$
Question Number 182011 Answers: 1 Comments: 1
$${Is}\:{this}\:{true}\:{for}\:{complex}\:{number}: \\ $$$$\mathrm{4}\mathscr{R}{e}\left({z}_{\mathrm{1}} \overline {{z}_{\mathrm{2}} }\right)=\mid{z}_{\mathrm{1}} +\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} −\mid{z}_{\mathrm{1}} −\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} \\ $$
Question Number 182006 Answers: 1 Comments: 2
Question Number 182000 Answers: 0 Comments: 1
$${if}\:\boldsymbol{{a}}−\mathrm{2}\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{c}}−\mathrm{4}\boldsymbol{{d}}+\mathrm{5}\boldsymbol{{e}}−\mathrm{6}\boldsymbol{{f}}=\mathrm{0},\:{find} \\ $$$${the}\:{maximum}\:{of} \\ $$$$\frac{\mid\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{e}}+\boldsymbol{{f}}\mid}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} +\boldsymbol{{e}}^{\mathrm{2}} +\boldsymbol{{f}}^{\mathrm{2}} }}. \\ $$
Question Number 181998 Answers: 1 Comments: 0
Question Number 181987 Answers: 3 Comments: 0
Question Number 182004 Answers: 3 Comments: 0
$${f}\left({x}\right)=\mathrm{2}^{{x}} +\mathrm{3}^{{x}} −\mathrm{6}^{{x}} \\ $$$$\mathrm{Find}\:{f}\left({x}\right)_{\mathrm{max}} \\ $$
Question Number 182003 Answers: 0 Comments: 0
$$\mathrm{u}_{\mathrm{xx}} −\mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{yy}} +\mathrm{2u}_{\mathrm{y}} −\mathrm{2u}_{\mathrm{x}} =\mathrm{e}^{\mathrm{2x}+\mathrm{3y}} +\mathrm{sin}\left(\mathrm{2x}+\mathrm{y}\right)+\mathrm{xy} \\ $$
Question Number 182001 Answers: 2 Comments: 1
Question Number 181978 Answers: 0 Comments: 0
Question Number 181977 Answers: 0 Comments: 0
Question Number 181976 Answers: 3 Comments: 0
Question Number 181973 Answers: 0 Comments: 1
$$ \\ $$please how can I get the proofs of the Putnam competition in pdf format?
Pg 384 Pg 385 Pg 386 Pg 387 Pg 388 Pg 389 Pg 390 Pg 391 Pg 392 Pg 393
Terms of Service
Privacy Policy
Contact: info@tinkutara.com