Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182533    Answers: 1   Comments: 0

If you walk around a triangle with sides 3, 6, 8 respectively such a way that you keep a distance of 3m from it, then how much distance will you travel?

$${If}\:{you}\:{walk}\:{around}\:{a}\:{triangle}\:{with}\:{sides}\:\mathrm{3},\:\mathrm{6},\:\mathrm{8} \\ $$$${respectively}\:{such}\:{a}\:{way}\:{that}\:{you}\:{keep}\:{a}\:{distance} \\ $$$$\:{of}\:\mathrm{3}{m}\:{from}\:{it},\:{then}\: \\ $$$$\:{how}\:{much}\:{distance}\:{will}\:{you}\:{travel}? \\ $$

Question Number 182532    Answers: 0   Comments: 0

Q.181494 Let′s try it

$${Q}.\mathrm{181494} \\ $$$$\:{Let}'{s}\:{try}\:{it} \\ $$

Question Number 182530    Answers: 3   Comments: 0

If: (a/x^9 ) + (x^9 /a) = 7 find: ((a/x^9 ))^(1/4) + ((x^9 /a))^(1/4)

$${If}:\:\:\:\frac{{a}}{{x}^{\mathrm{9}} }\:+\:\frac{{x}^{\mathrm{9}} }{{a}}\:=\:\mathrm{7} \\ $$$$\:{find}:\:\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}\:+\:\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}} \\ $$

Question Number 182529    Answers: 1   Comments: 0

∫_0 ^1 ((x−1)/((x+1)lnx))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right){lnx}}{dx}=? \\ $$

Question Number 182528    Answers: 0   Comments: 1

lim_(x→0) (x!!)^(1/x) =?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left({x}!!\right)^{\frac{\mathrm{1}}{{x}}} =? \\ $$

Question Number 182514    Answers: 1   Comments: 1

1. prove that the equaion of parabola whose axis of symmetry is parallel to y axisis given as (x−h)^2 =+_− 4p(y−k) 2. if Dis a perpendicular distance of the point p(r,t)from the line (L):(x/r)+(y/t)=1 then find the value of D why not helped me??

$$\mathrm{1}.\:{prove}\:{that}\:{the}\:{equaion}\:{of}\:{parabola} \\ $$$$\:\:{whose}\:{axis}\:{of}\:{symmetry}\:{is}\:{parallel}\: \\ $$$${to}\:{y}\:{axisis}\:{given}\:{as}\:\left({x}−{h}\right)^{\mathrm{2}} =\underset{−} {+}\:\mathrm{4}{p}\left({y}−{k}\right) \\ $$$$\mathrm{2}.\:\:\:{if}\:{Dis}\:{a}\:{perpendicular}\:{distance}\: \\ $$$$\:\:\:{of}\:{the}\:{point}\:{p}\left({r},{t}\right){from}\:{the}\:{line} \\ $$$$\:\:\:\:\left({L}\right):\frac{{x}}{{r}}+\frac{{y}}{{t}}=\mathrm{1}\:\:{then}\:{find}\:{the} \\ $$$$\:\:\:\:\:\:\:{value}\:{of}\:{D} \\ $$$$\:{why}\:{not}\:{helped}\:{me}?? \\ $$

Question Number 182512    Answers: 2   Comments: 0

Question Number 182508    Answers: 1   Comments: 0

Question Number 182507    Answers: 0   Comments: 0

Can a mathematician solve or know everything?

$$\:{Can}\:{a}\:{mathematician}\:{solve}\:{or}\:{know}\:{everything}? \\ $$

Question Number 182506    Answers: 1   Comments: 0

Calculate S = 1×1! + 2×2! + 3×3! + ...+ n×n!

$$\:\:{Calculate}\:{S}\:=\:\mathrm{1}×\mathrm{1}!\:+\:\mathrm{2}×\mathrm{2}!\:+\:\mathrm{3}×\mathrm{3}!\:+\:...+\:{n}×{n}! \\ $$$$\:\:\: \\ $$

Question Number 182500    Answers: 1   Comments: 1

Question Number 182494    Answers: 0   Comments: 4

Question Number 182486    Answers: 0   Comments: 0

Question Number 182474    Answers: 3   Comments: 0

Find the number of sides of two regular polygons that their sides has a ratio 5:4 and of 9° as a difference between their angles.

$${Find}\:{the}\:{number}\:{of}\:{sides}\:{of}\:{two}\:{regular}\:{polygons} \\ $$$$\:{that}\:{their}\:{sides}\:{has}\:{a}\:{ratio}\:\mathrm{5}:\mathrm{4}\:{and}\:{of}\:\mathrm{9}°\:{as}\:{a} \\ $$$$\:{difference}\:{between}\:{their}\:{angles}. \\ $$

Question Number 182472    Answers: 1   Comments: 0

If you walk around a triangle 4m each side such a way that you keep a distance of 2m from it, then how much distance will you travel?

$${If}\:{you}\:{walk}\:{around}\:{a}\:{triangle}\:\mathrm{4}{m}\:{each}\:{side}\:{such} \\ $$$$\:{a}\:{way}\:{that}\:{you}\:{keep}\:{a}\:{distance}\:{of}\:\mathrm{2}{m}\:{from}\:{it},\:{then} \\ $$$${how}\:{much}\:{distance}\:{will}\:{you}\:{travel}? \\ $$

Question Number 182453    Answers: 1   Comments: 0

Question Number 182441    Answers: 2   Comments: 0

Question Number 182438    Answers: 1   Comments: 0

[Help me!] The rate of change of w = x^3 y^2 z + y^3 z^2 − xz^4 at the point Q(0, 1, 2) in the direction V^→ = 2i + j + 2k is: a) −2 b) −3 c) −4 d) No alternative

$$\: \\ $$$$\:\left[\boldsymbol{\mathrm{Help}}\:\:\boldsymbol{\mathrm{me}}!\right] \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{The}}\:\:\boldsymbol{\mathrm{rate}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{change}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{w}}\:\:=\:\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} \boldsymbol{\mathrm{y}}^{\mathrm{2}} \boldsymbol{\mathrm{z}}\:\:+\:\boldsymbol{\mathrm{y}}^{\mathrm{3}} \boldsymbol{\mathrm{z}}^{\mathrm{2}} \:−\:\boldsymbol{\mathrm{xz}}^{\mathrm{4}} \:\:\boldsymbol{\mathrm{at}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{point}}\:\:\boldsymbol{\mathrm{Q}}\left(\mathrm{0},\:\mathrm{1},\:\mathrm{2}\right) \\ $$$$\:\boldsymbol{\mathrm{in}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{direction}}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{V}}}\:\:=\:\:\mathrm{2}\boldsymbol{\mathrm{i}}\:\:+\:\:\boldsymbol{\mathrm{j}}\:\:+\:\:\mathrm{2}\boldsymbol{\mathrm{k}}\:\:\boldsymbol{\mathrm{is}}: \\ $$$$\: \\ $$$$\left.\:\boldsymbol{\mathrm{a}}\right)\:−\mathrm{2} \\ $$$$\left.\:\boldsymbol{\mathrm{b}}\right)\:−\mathrm{3} \\ $$$$\left.\:\boldsymbol{\mathrm{c}}\right)\:−\mathrm{4} \\ $$$$\left.\:\boldsymbol{\mathrm{d}}\right)\:\boldsymbol{\mathrm{No}}\:\:\boldsymbol{\mathrm{alternative}} \\ $$$$\: \\ $$

Question Number 182437    Answers: 1   Comments: 0

Question Number 182436    Answers: 1   Comments: 0

Question Number 182435    Answers: 1   Comments: 0

Question Number 182432    Answers: 1   Comments: 0

∫_R (t^2 /((t^2 +a^2 )^(n+1) ))dt =? / a≠o , nεN^∗

$$\int_{{R}} \frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }{dt}\:=?\:/\:\:{a}\neq{o}\:,\:{n}\epsilon{N}^{\ast} \\ $$

Question Number 182429    Answers: 0   Comments: 1

Question Number 182461    Answers: 2   Comments: 0

Let x be a positive integer multiple of 17 that satisfies the inequality: 0 < ((5(x − 120))/x) < 1 Find the value of x.

$${Let}\:{x}\:{be}\:{a}\:{positive}\:{integer}\:{multiple}\:{of}\:\mathrm{17} \\ $$$${that}\:{satisfies}\:{the}\:{inequality}: \\ $$$$\:\mathrm{0}\:<\:\frac{\mathrm{5}\left({x}\:−\:\mathrm{120}\right)}{{x}}\:<\:\mathrm{1} \\ $$$$\:{Find}\:{the}\:{value}\:{of}\:{x}. \\ $$

Question Number 182459    Answers: 0   Comments: 21

Question Number 182457    Answers: 0   Comments: 0

$$ \\ $$

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com