Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182188    Answers: 2   Comments: 0

((((√5)+2))^(1/3) +(((√5)−2))^(1/3) )^(2014) =?

$$\left(\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}+\mathrm{2}}+\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}−\mathrm{2}}\right)^{\mathrm{2014}} =? \\ $$

Question Number 182183    Answers: 1   Comments: 0

∫_0 ^( 1) e^a a^n da=? n≥1 n∈N

$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{e}}^{\boldsymbol{{a}}} \boldsymbol{{a}}^{\boldsymbol{{n}}} \boldsymbol{{da}}=?\:\:\:\:\:\:\:\:\boldsymbol{{n}}\geqslant\mathrm{1}\:\:\:\:\boldsymbol{{n}}\in\boldsymbol{{N}} \\ $$

Question Number 182178    Answers: 1   Comments: 2

The Circle Has A Radius 5cm And the angle between sector from the chord is 73.7397952916880° and their right triangle is AB=4 cm AC=3 cm Find the area of arc triangle EDB with E^⌢ D^⌢ is arc

$${The}\:{Circle}\:{Has}\:{A}\:{Radius}\:\mathrm{5}{cm} \\ $$$${And}\:{the}\:{angle}\:{between} \\ $$$$\:{sector}\:{from}\:{the}\:{chord}\:{is} \\ $$$$\mathrm{73}.\mathrm{7397952916880}° \\ $$$${and}\:{their}\:{right}\:{triangle}\:{is} \\ $$$${AB}=\mathrm{4}\:{cm} \\ $$$${AC}=\mathrm{3}\:{cm} \\ $$$${Find}\:{the}\:{area}\:{of}\:{arc}\:{triangle} \\ $$$${EDB} \\ $$$${with}\:\overset{\frown} {{E}}\overset{\frown} {{D}}\:{is}\:{arc} \\ $$$$ \\ $$

Question Number 182176    Answers: 1   Comments: 0

Question Number 182170    Answers: 1   Comments: 0

Question Number 182165    Answers: 0   Comments: 1

Question Number 182155    Answers: 3   Comments: 1

Question Number 182149    Answers: 4   Comments: 1

Question Number 182139    Answers: 1   Comments: 1

Find constant a, b, so that y(t)=(t+3)e^(2t) is solution of IVP y^′ =ay+e^(2t) , y(0)=b .

$$\mathrm{Find}\:\mathrm{constant}\:\mathrm{a},\:\mathrm{b},\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{y}\left(\mathrm{t}\right)=\left(\mathrm{t}+\mathrm{3}\right)\mathrm{e}^{\mathrm{2t}} \:\mathrm{is}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{IVP} \\ $$$$\mathrm{y}^{'} =\mathrm{ay}+\mathrm{e}^{\mathrm{2t}} ,\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{b} \\ $$$$ \\ $$$$. \\ $$

Question Number 182135    Answers: 2   Comments: 1

Question Number 182131    Answers: 2   Comments: 0

Solve ((x + a^2 + 2c^2 )/(b + c)) + ((x + b^2 + 2a^2 )/(c + a)) + ((x + c^2 + 2b^2 )/(a + b)) = 0

$$\mathrm{Solve} \\ $$$$\frac{{x}\:+\:{a}^{\mathrm{2}} \:+\:\mathrm{2}{c}^{\mathrm{2}} }{{b}\:+\:{c}}\:+\:\frac{{x}\:+\:{b}^{\mathrm{2}} \:+\:\mathrm{2}{a}^{\mathrm{2}} }{{c}\:+\:{a}}\:+\:\frac{{x}\:+\:{c}^{\mathrm{2}} \:+\:\mathrm{2}{b}^{\mathrm{2}} }{{a}\:+\:{b}}\:=\:\mathrm{0} \\ $$

Question Number 182129    Answers: 0   Comments: 0

Question Number 182128    Answers: 0   Comments: 0

Question Number 182114    Answers: 0   Comments: 1

Question Number 182109    Answers: 1   Comments: 0

f(x)=3x^2 −2x(√3)−8 g(x)=x^2 −(1/3) gof^(−1) (18)=?

$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}\sqrt{\mathrm{3}}−\mathrm{8}\:\:\:\:\:\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{x}}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\boldsymbol{{gof}}^{−\mathrm{1}} \left(\mathrm{18}\right)=? \\ $$

Question Number 182108    Answers: 2   Comments: 0

A truck, P traveling at 54km/hr passes through a point at 10:30am, while another truck, Q traveling at 90km/hr passes through this same point 30 minutes later. At what time will truck Q overtake P?

A truck, P traveling at 54km/hr passes through a point at 10:30am, while another truck, Q traveling at 90km/hr passes through this same point 30 minutes later. At what time will truck Q overtake P?

Question Number 182103    Answers: 1   Comments: 1

Question Number 182093    Answers: 1   Comments: 2

Solve the equation: ((x−6)/(2020))+((x−5)/(2021))+((x−4)/(2022))=3

$${Solve}\:{the}\:{equation}: \\ $$$$\frac{{x}−\mathrm{6}}{\mathrm{2020}}+\frac{{x}−\mathrm{5}}{\mathrm{2021}}+\frac{{x}−\mathrm{4}}{\mathrm{2022}}=\mathrm{3} \\ $$

Question Number 182082    Answers: 0   Comments: 0

∫_0 ^∞ ∫_0 ^∞ Σ_(n=0) ^∞ Σ_(r=0) ^n (1)^r ∙((x^r y^(2022(n+2)) )/((n−r)!(r!)^2 (2022y^(2022) +2023)^2 ))dxdy

$$\:\:\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{\boldsymbol{\mathrm{r}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\left(\mathrm{1}\right)^{\boldsymbol{\mathrm{r}}} \:\centerdot\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{r}}} \boldsymbol{\mathrm{y}}^{\mathrm{2022}\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)} }{\left(\boldsymbol{\mathrm{n}}−\boldsymbol{\mathrm{r}}\right)!\left(\boldsymbol{\mathrm{r}}!\right)^{\mathrm{2}} \left(\mathrm{2022}\boldsymbol{\mathrm{y}}^{\mathrm{2022}} +\mathrm{2023}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dxdy}} \\ $$$$ \\ $$$$ \\ $$

Question Number 182078    Answers: 2   Comments: 0

Question Number 182077    Answers: 1   Comments: 0

lim_(x→∞) x ln ((((x^2 +2x+2))^(1/4) /( ((16x^2 +2x))^(1/4) −(√x))) )=?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\mathrm{ln}\:\left(\frac{\sqrt[{\mathrm{4}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{2}}}{\:\sqrt[{\mathrm{4}}]{\mathrm{16x}^{\mathrm{2}} +\mathrm{2x}}\:−\sqrt{\mathrm{x}}}\:\right)=? \\ $$

Question Number 182075    Answers: 2   Comments: 1

Question Number 182074    Answers: 2   Comments: 0

Let x+ xy+ y= 54 ; x, y∈ N , Find x+ y

$${Let}\:{x}+\:{xy}+\:{y}=\:\mathrm{54}\:\:\:;\:{x},\:{y}\in\:\mathbb{N}\:,\:{Find}\:{x}+\:{y} \\ $$

Question Number 182073    Answers: 1   Comments: 0

Find the sum of the solutions of the equation: ∣(√x) − 2∣+ (√x) ((√x) − 4)+ 2= 0 ; x> 0

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{solutions}\:{of}\:{the}\:{equation}: \\ $$$$\:\mid\sqrt{{x}}\:−\:\mathrm{2}\mid+\:\sqrt{{x}}\:\left(\sqrt{{x}}\:−\:\mathrm{4}\right)+\:\mathrm{2}=\:\mathrm{0}\:\:\:;\:{x}>\:\mathrm{0} \\ $$

Question Number 182069    Answers: 1   Comments: 1

(1+x^2 )(dy/dx)+3xy=5x solve

$$\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{3xy}=\mathrm{5x} \\ $$$$ \\ $$$$\mathrm{solve} \\ $$

Question Number 182066    Answers: 2   Comments: 0

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com