Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 180917    Answers: 1   Comments: 0

Question Number 180890    Answers: 0   Comments: 2

We have 7 sets with 2 subsets each (yes and no are the 2 subsets of each of the 7 sets) how many possible combinations are there if one of the subset is picked for each of the 7 sets.

We have 7 sets with 2 subsets each (yes and no are the 2 subsets of each of the 7 sets) how many possible combinations are there if one of the subset is picked for each of the 7 sets.

Question Number 180889    Answers: 0   Comments: 1

the average of 10 numbers is 5. the sum of their squares is 5000. how large can the largest number among them at most be and how small can the smallest number among them at most be?

$${the}\:{average}\:{of}\:\mathrm{10}\:{numbers}\:{is}\:\mathrm{5}.\:{the} \\ $$$${sum}\:{of}\:{their}\:{squares}\:{is}\:\mathrm{5000}.\:{how}\: \\ $$$${large}\:{can}\:{the}\:{largest}\:{number}\:{among} \\ $$$${them}\:{at}\:{most}\:{be}\:{and}\:{how}\:{small}\:{can}\: \\ $$$${the}\:{smallest}\:{number}\:{among}\:{them} \\ $$$${at}\:{most}\:{be}? \\ $$

Question Number 180886    Answers: 1   Comments: 0

Question Number 180882    Answers: 1   Comments: 1

Question Number 180877    Answers: 1   Comments: 1

Q. find the largest value of such that the positive integers a, b > 1 satisfy. a^b .b^a + a^b + b^a = 5329

$$\boldsymbol{\mathrm{Q}}.\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{largest}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\:>\:\mathrm{1}\:\boldsymbol{\mathrm{satisfy}}. \\ $$$$\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} .\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:+\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} \:+\:\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:=\:\mathrm{5329} \\ $$

Question Number 180874    Answers: 1   Comments: 2

Question Number 180873    Answers: 1   Comments: 2

If a,b,c<0 and abc(a+b+c)=64 Then find min of P=2a+b+c

$$\mathrm{If}\:\:\:\mathrm{a},\mathrm{b},\mathrm{c}<\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{abc}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=\mathrm{64} \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{min}\:\mathrm{of}\:\:\:\mathrm{P}=\mathrm{2a}+\mathrm{b}+\mathrm{c} \\ $$

Question Number 180871    Answers: 0   Comments: 1

Question Number 180867    Answers: 1   Comments: 0

Question Number 180866    Answers: 1   Comments: 0

Question Number 180896    Answers: 0   Comments: 1

find the maximum of Σ_(i=1) ^(100) sin^3 x_i if Σ_(i=1) ^(100) sin x_i =0.

$${find}\:{the}\:{maximum}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\mathrm{sin}^{\mathrm{3}} \:{x}_{{i}} \\ $$$${if}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\mathrm{sin}\:{x}_{{i}} =\mathrm{0}. \\ $$

Question Number 180858    Answers: 1   Comments: 0

Question Number 180856    Answers: 1   Comments: 0

find all values of m∈R such that the equation: ∫_0 ^( x) ((arctany)/y) dy = mx has two real roots: x_1 ∈(−∞;0) , x_2 ∈(0;∞)

$$\mathrm{find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{m}\in\mathbb{R}\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\boldsymbol{\mathrm{x}}} \:\frac{\mathrm{arctan}\boldsymbol{\mathrm{y}}}{\mathrm{y}}\:\mathrm{dy}\:=\:\mathrm{mx} \\ $$$$\mathrm{has}\:\mathrm{two}\:\mathrm{real}\:\mathrm{roots}:\:\:\:\mathrm{x}_{\mathrm{1}} \in\left(−\infty;\mathrm{0}\right)\:,\:\mathrm{x}_{\mathrm{2}} \in\left(\mathrm{0};\infty\right) \\ $$

Question Number 180855    Answers: 0   Comments: 0

Find number of skew symmetric matrices of order 3×3 in which all non diagonal elements are different and belong to the set {−9,−8,−7,...,7,8,9}.

$${Find}\:{number}\:{of}\:{skew}\:{symmetric} \\ $$$${matrices}\:{of}\:{order}\:\mathrm{3}×\mathrm{3}\:{in}\:{which} \\ $$$${all}\:{non}\:{diagonal}\:{elements}\:{are}\: \\ $$$${different}\:{and}\:{belong}\:{to}\:{the}\: \\ $$$${set}\:\left\{−\mathrm{9},−\mathrm{8},−\mathrm{7},...,\mathrm{7},\mathrm{8},\mathrm{9}\right\}. \\ $$

Question Number 180894    Answers: 3   Comments: 2

x^3 +x=1 x^8 +3x^3 =?

$${x}^{\mathrm{3}} +{x}=\mathrm{1} \\ $$$${x}^{\mathrm{8}} +\mathrm{3}{x}^{\mathrm{3}} =? \\ $$

Question Number 180897    Answers: 1   Comments: 5

Question Number 180839    Answers: 1   Comments: 0

Find the derivatives f^′ (x) of the following function with respect to x: f(x)=Sin(π^(Sinx) +π^(Cosx) ). Mastermind

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{derivatives}\:\mathrm{f}^{'} \left(\mathrm{x}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{function}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{Sin}\left(\pi^{\mathrm{Sinx}} +\pi^{\mathrm{Cosx}} \right). \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180838    Answers: 0   Comments: 1

Find all x∈R that are solutions to this question: 0=(1−x−x^2 −...)∙(2−x−x^2 −...) Mastermind

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R}\:\mathrm{that}\:\mathrm{are}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{this} \\ $$$$\mathrm{question}:\: \\ $$$$\mathrm{0}=\left(\mathrm{1}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} −...\right)\centerdot\left(\mathrm{2}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} −...\right) \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180837    Answers: 2   Comments: 0

Without using table, find the values of: (1/((1−(√3))^2 )) − (1/((1+(√3))^2 )) Mastermind

$$\mathrm{Without}\:\mathrm{using}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{values} \\ $$$$\mathrm{of}: \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180836    Answers: 1   Comments: 0

Determine A,B,C such that all of the following function intersect the point (2,2) ; f_1 (x)=Ax + 1, f_2 (x)=Bx^2 + 2, f_3 (x)=Cx^3 + 3 Mastermind

$$\mathrm{Determine}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{such}\:\mathrm{that}\:\mathrm{all}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{function}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{point} \\ $$$$\left(\mathrm{2},\mathrm{2}\right)\:; \\ $$$$\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{Ax}\:+\:\mathrm{1},\:\:\mathrm{f}_{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{Bx}^{\mathrm{2}} \:+\:\mathrm{2},\:\: \\ $$$$\mathrm{f}_{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{Cx}^{\mathrm{3}} \:+\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 180900    Answers: 0   Comments: 0

show that ∫_1 ^( +∞) (((x−⌊x⌋)/x^2 ))dx = 1 − γ

$${show}\:{that}\:\int_{\mathrm{1}} ^{\:+\infty} \left(\frac{{x}−\lfloor{x}\rfloor}{{x}^{\mathrm{2}} }\right){dx}\:=\:\mathrm{1}\:−\:\gamma \\ $$

Question Number 180899    Answers: 1   Comments: 0

H_n = Σ_(k=1) ^n (1/k) show that H_(2n) − H_n = Σ_(k=1) ^n ((1/(2k−1))−(1/(2k)))

$${H}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}} \\ $$$${show}\:{that}\:{H}_{\mathrm{2}{n}} \:−\:{H}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right) \\ $$

Question Number 180902    Answers: 1   Comments: 0

Calculate the root mean square speed of the molecules of a Helium gas kept in a gas cylinder at 400K. [Take R = 8.3 Jmol^(−1) K^(−1) ] The answer provided is 1.58 kms^(−1) Please I need help with the solution

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{root}\:\mathrm{mean}\:\mathrm{square}\: \\ $$$$\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{molecules}\:\mathrm{of}\:\mathrm{a}\:{Helium} \\ $$$$\mathrm{gas}\:\mathrm{kept}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gas}\:\mathrm{cylinder}\:\mathrm{at}\:\mathrm{400K}. \\ $$$$\:\:\:\:\:\:\left[{Take}\:\mathrm{R}\:=\:\mathrm{8}.\mathrm{3}\:{Jmol}^{−\mathrm{1}} {K}^{−\mathrm{1}} \right] \\ $$$${The}\:{answer}\:{provided}\:{is}\:\mathrm{1}.\mathrm{58}\:{kms}^{−\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{I}\:\mathrm{need}\:\mathrm{help}\:\mathrm{with}\:\mathrm{the}\:\mathrm{solution} \\ $$

Question Number 180901    Answers: 1   Comments: 0

∫_1 ^( n) ((⌊x⌋)/x^2 )dx =

$$\int_{\mathrm{1}} ^{\:{n}} \frac{\lfloor{x}\rfloor}{{x}^{\mathrm{2}} }{dx}\:=\: \\ $$

Question Number 180828    Answers: 1   Comments: 1

H_n =1+(1/2)+(1/3)+...+(1/n) H_(2n) =? compute H_(2n) −H_n and H_(n+1) −H_n

$${H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}} \\ $$$${H}_{\mathrm{2}{n}} =?\:{compute}\:{H}_{\mathrm{2}{n}} −{H}_{{n}} \:{and}\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} \\ $$

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com