Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182374    Answers: 2   Comments: 1

Question Number 182012    Answers: 1   Comments: 0

f(x)=9^x −m∙3^x +m+6 ∃x∈R, f(x)+f(−x)=0 find the range of m.

$${f}\left({x}\right)=\mathrm{9}^{{x}} −{m}\centerdot\mathrm{3}^{{x}} +{m}+\mathrm{6} \\ $$$$\exists{x}\in\mathbb{R},\:{f}\left({x}\right)+{f}\left(−{x}\right)=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\:\mathrm{range}\:\mathrm{of}\:{m}. \\ $$

Question Number 182011    Answers: 1   Comments: 1

Is this true for complex number: 4Re(z_1 z_2 ^(−) )=∣z_1 +z_2 ^(−) ∣^2 −∣z_1 −z_2 ^(−) ∣^2

$${Is}\:{this}\:{true}\:{for}\:{complex}\:{number}: \\ $$$$\mathrm{4}\mathscr{R}{e}\left({z}_{\mathrm{1}} \overline {{z}_{\mathrm{2}} }\right)=\mid{z}_{\mathrm{1}} +\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} −\mid{z}_{\mathrm{1}} −\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} \\ $$

Question Number 182006    Answers: 1   Comments: 2

Question Number 182000    Answers: 0   Comments: 1

if a−2b+3c−4d+5e−6f=0, find the maximum of ((∣a+b+c+d+e+f∣)/( (√(a^2 +b^2 +c^2 +d^2 +e^2 +f^2 )))).

$${if}\:\boldsymbol{{a}}−\mathrm{2}\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{c}}−\mathrm{4}\boldsymbol{{d}}+\mathrm{5}\boldsymbol{{e}}−\mathrm{6}\boldsymbol{{f}}=\mathrm{0},\:{find} \\ $$$${the}\:{maximum}\:{of} \\ $$$$\frac{\mid\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{e}}+\boldsymbol{{f}}\mid}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} +\boldsymbol{{e}}^{\mathrm{2}} +\boldsymbol{{f}}^{\mathrm{2}} }}. \\ $$

Question Number 181998    Answers: 1   Comments: 0

Question Number 181987    Answers: 3   Comments: 0

Question Number 182004    Answers: 3   Comments: 0

f(x)=2^x +3^x −6^x Find f(x)_(max)

$${f}\left({x}\right)=\mathrm{2}^{{x}} +\mathrm{3}^{{x}} −\mathrm{6}^{{x}} \\ $$$$\mathrm{Find}\:{f}\left({x}\right)_{\mathrm{max}} \\ $$

Question Number 182003    Answers: 0   Comments: 0

u_(xx) −u_x u_y −u_(yy) +2u_y −2u_x =e^(2x+3y) +sin(2x+y)+xy

$$\mathrm{u}_{\mathrm{xx}} −\mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{yy}} +\mathrm{2u}_{\mathrm{y}} −\mathrm{2u}_{\mathrm{x}} =\mathrm{e}^{\mathrm{2x}+\mathrm{3y}} +\mathrm{sin}\left(\mathrm{2x}+\mathrm{y}\right)+\mathrm{xy} \\ $$

Question Number 182001    Answers: 2   Comments: 1

Question Number 181978    Answers: 0   Comments: 0

Question Number 181977    Answers: 0   Comments: 0

Question Number 181976    Answers: 3   Comments: 0

Question Number 181973    Answers: 0   Comments: 1

please how can I get the proofs of the Putnam competition in pdf format?

$$ \\ $$please how can I get the proofs of the Putnam competition in pdf format?

Question Number 181971    Answers: 1   Comments: 0

How many words can be formed from different letters of the “Your answer is wrong” with not repeating? So that they shouldn′t start with ′o′ neither ′w′ and shouldn′t end with ′w′, and should be′r′ & ′s′ adjacents. Oya...n, Wen...y, Iog...w , Yourws...e : are invalid Enrsow...g : is valid Q.180162

$${How}\:{many}\:{words}\:{can}\:{be}\:{formed}\:{from}\:{different} \\ $$$${letters}\:{of}\:{the}\:``{Your}\:{answer}\:{is}\:{wrong}''\:{with}\:{not} \\ $$$${repeating}?\:{So}\:{that}\:{they}\:{shouldn}'{t}\:{start}\:{with}\:'{o}'\: \\ $$$$\:{neither}\:'{w}'\:{and}\:{shouldn}'{t}\:{end}\:{with}\:'{w}',\:{and} \\ $$$$\:{should}\:{be}'{r}'\:\&\:'{s}'\:{adjacents}. \\ $$$$ \\ $$$$\:\cancel{{O}ya}...{n},\:\cancel{{W}en}...{y},\:{Iog}...\cancel{{w}}\:,\:{You}\cancel{{r}w}\cancel{{s}}...{e}\:\::\:{are}\:{invalid} \\ $$$$\:{Enrsow}...{g}\::\:{is}\:{valid} \\ $$$${Q}.\mathrm{180162} \\ $$

Question Number 181945    Answers: 1   Comments: 0

Question Number 181939    Answers: 2   Comments: 0

If 10 different balls are to be placed in 4 boxes at random , then the probability that two of these boxes contain exactly 2 and 3 balls

$${If}\:\mathrm{10}\:{different}\:{balls}\:{are}\:{to}\:{be}\:{placed} \\ $$$${in}\:\mathrm{4}\:{boxes}\:{at}\:{random}\:,\:{then}\:{the}\:{probability} \\ $$$${that}\:{two}\:{of}\:{these}\:{boxes}\:{contain} \\ $$$${exactly}\:\mathrm{2}\:{and}\:\mathrm{3}\:{balls}\: \\ $$

Question Number 181952    Answers: 0   Comments: 0

Question Number 181954    Answers: 3   Comments: 0

Question Number 181923    Answers: 1   Comments: 0

Question Number 181935    Answers: 2   Comments: 0

Question Number 181918    Answers: 4   Comments: 0

Question Number 181917    Answers: 0   Comments: 1

Question Number 181903    Answers: 1   Comments: 0

Question Number 181902    Answers: 3   Comments: 0

Question Number 181901    Answers: 0   Comments: 0

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com