Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 180151    Answers: 1   Comments: 0

1)twenty men are invited for a dinner and are to be seated around a circular table.how many diffrent arrangment are possible? 2)with ten men and ten women. how many diffrent arrangment are possible that alternate men and women?

$$\left.\mathrm{1}\right){twenty}\:{men}\:{are}\:{invited}\:{for}\:{a}\:{dinner}\:{and}\:{are}\:{to}\: \\ $$$${be}\:{seated}\:{around}\:{a}\:{circular}\:{table}.{how} \\ $$$${many}\:{diffrent}\:{arrangment}\:{are}\:{possible}? \\ $$$$\left.\mathrm{2}\right){with}\:{ten}\:{men}\:{and}\:{ten}\:{women}.\:{how}\:{many} \\ $$$${diffrent}\:{arrangment}\:{are}\:{possible}\:{that} \\ $$$${alternate}\:{men}\:{and}\:{women}? \\ $$$$ \\ $$

Question Number 180149    Answers: 0   Comments: 0

If ω−Brocard′s angle in △ABC then: Π_(cyc) ((1/(sin ω)) − 2 cos A) ≥ 1

$$\mathrm{If}\:\:\omega−\mathrm{Brocard}'\mathrm{s}\:\mathrm{angle}\:\mathrm{in}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{then}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\prod}\:\left(\frac{\mathrm{1}}{\mathrm{sin}\:\omega}\:−\:\mathrm{2}\:\mathrm{cos}\:\mathrm{A}\right)\:\geqslant\:\mathrm{1} \\ $$

Question Number 180145    Answers: 1   Comments: 0

determine 1)L^− [((4s^2 −17s−24)/(s(s+3)(s−4)))] 2)L^− [((5s^2 −4s−7)/((s−3)(s^2 +4)))]

$${determine} \\ $$$$\left.\mathrm{1}\right)\mathcal{L}^{−} \left[\frac{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{17}{s}−\mathrm{24}}{{s}\left({s}+\mathrm{3}\right)\left({s}−\mathrm{4}\right)}\right] \\ $$$$\left.\mathrm{2}\right)\mathcal{L}^{−} \left[\frac{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{4}{s}−\mathrm{7}}{\left({s}−\mathrm{3}\right)\left({s}^{\mathrm{2}} +\mathrm{4}\right)}\right] \\ $$

Question Number 180142    Answers: 0   Comments: 0

Question Number 180139    Answers: 1   Comments: 1

lim_(x→0) ((1/x))^x =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\right)^{{x}} =? \\ $$

Question Number 180122    Answers: 0   Comments: 0

Verifiez si q(x,y)=2xy+2xz+2yz est un produit scalaire.

$${Verifiez}\:{si}\: \\ $$$${q}\left({x},{y}\right)=\mathrm{2}{xy}+\mathrm{2}{xz}+\mathrm{2}{yz}\:{est}\:{un}\: \\ $$$${produit}\:{scalaire}. \\ $$

Question Number 180126    Answers: 1   Comments: 1

Question Number 180115    Answers: 1   Comments: 0

Question Number 180095    Answers: 1   Comments: 0

∫_0 ^5 ∫_0 ^(√(25−x^2 )) (√(36−x^2 −y^2 dx dy))

$$\int_{\mathrm{0}} ^{\mathrm{5}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }} \sqrt{\mathrm{36}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} {dx}\:{dy}} \\ $$

Question Number 180082    Answers: 1   Comments: 3

Sachant que A_1 A_2 =10cm: ∡AAB=75^° 1−Determiner l ′angle x 2−Determiner la distance A_1 A6 3−Determiner la hauteur[h]=A_6 B

$${Sachant}\:{que}\:\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} =\mathrm{10}{cm}:\:\measuredangle\mathrm{AAB}=\mathrm{75}^{°} \\ $$$$\mathrm{1}−{Determiner}\:{l}\:'{angle}\:{x} \\ $$$$\mathrm{2}−{Determiner}\:{la}\:{distance}\:\mathrm{A}_{\mathrm{1}} \mathrm{A6} \\ $$$$\mathrm{3}−{Determiner}\:{la}\:{hauteur}\left[{h}\right]=\mathrm{A}_{\mathrm{6}} \mathrm{B} \\ $$

Question Number 180069    Answers: 4   Comments: 1

a^2 −b^2 = 4 , ab= 2 , a+b= ?

$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\:\mathrm{4}\:,\:{ab}=\:\mathrm{2}\:\:\:,\:{a}+{b}=\:? \\ $$

Question Number 180066    Answers: 2   Comments: 1

Question Number 180062    Answers: 1   Comments: 0

how do you write the parametric equation of a plan in space? it is given 3 points A(x_A ,y_A ,z_A ) ; B(x_B ,y_B ,z_B ) and C(x_C ,y_C ,z_C ).

$${how}\:{do}\:{you}\:{write}\:{the}\:{parametric}\:{equation}\:{of}\:{a}\:{plan}\:{in}\:{space}?\:{it}\:{is}\:{given}\:\mathrm{3}\:{points}\: \\ $$$${A}\left({x}_{{A}} ,{y}_{{A}} ,{z}_{{A}} \right)\:;\:{B}\left({x}_{{B}} ,{y}_{{B}} ,{z}_{{B}} \right)\:{and}\:{C}\left({x}_{{C}} ,{y}_{{C}} ,{z}_{{C}} \right). \\ $$

Question Number 180046    Answers: 0   Comments: 0

pls find ∫_(−∞) ^∞ ((cos x)/((1+x^4 )))dx

$${pls}\:{find}\: \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{{cos}\:{x}}{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{dx} \\ $$

Question Number 180107    Answers: 1   Comments: 6

Question Number 180106    Answers: 3   Comments: 0

lim_(x→∞) (√(x^2 +x))−x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{{x}^{\mathrm{2}} +{x}}−{x} \\ $$

Question Number 180104    Answers: 1   Comments: 1

Question Number 180103    Answers: 0   Comments: 4

Solve 2x^2 =8

$${Solve}\:\mathrm{2}{x}^{\mathrm{2}} =\mathrm{8} \\ $$

Question Number 180101    Answers: 1   Comments: 2

Hello mr. Tinku Tara Please, in the comments part, putting the name of the member whom the comment is for him Commentd by Acem on Mr. w as an example Thank you!

$${Hello}\:{mr}.\:{Tinku}\:{Tara} \\ $$$$ \\ $$$${Please},\:{in}\:{the}\:{comments}\:{part},\:{putting}\:{the}\:{name} \\ $$$$\:{of}\:{the}\:{member}\:{whom}\:{the}\:{comment}\:{is}\:{for}\:{him} \\ $$$$ \\ $$$${Commentd}\:{by}\:{Acem}\:{on}\:{Mr}.\:{w}\:\:{as}\:{an}\:{example} \\ $$$$ \\ $$$${Thank}\:{you}! \\ $$

Question Number 180043    Answers: 4   Comments: 3

Question Number 180027    Answers: 1   Comments: 0

There are 4 identical mathematics books, 3 identical physics books, 2 identical chemistry books and 2 identical biology books. in how many ways can you compile these books such that same books are not mutually adjacent. (an unsolved old question)

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{3}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{biology}\:\mathrm{books}.\:\mathrm{in}\:\mathrm{how}\:\mathrm{many} \\ $$$$\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile}\:\mathrm{these}\:\mathrm{books} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}. \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\right) \\ $$

Question Number 180025    Answers: 1   Comments: 0

4−2cos (2π(13x+9)^2 )= 5sin (π(13x+9)^2 ) x=?

$$\:\:\:\:\:\:\:\mathrm{4}−\mathrm{2cos}\:\left(\mathrm{2}\pi\left(\mathrm{13x}+\mathrm{9}\right)^{\mathrm{2}} \right)=\:\mathrm{5sin}\:\left(\pi\left(\mathrm{13x}+\mathrm{9}\right)^{\mathrm{2}} \right) \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 180018    Answers: 0   Comments: 1

((sin^2 (((3π)/7)))/(sin^2 (((2π)/7)))) + ((sin (((3π)/7)))/(sin (((2π)/7)))) +1−2sin (((5π)/(14))) =?

$$\:\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)}\:+\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}{\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)}\:+\mathrm{1}−\mathrm{2sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{14}}\right)\:=? \\ $$

Question Number 180016    Answers: 0   Comments: 0

Find max and min local of function y= ((x+2)/(x^2 +3sin (3x)+4cos (3x)))

$$\:\mathrm{Find}\:\mathrm{max}\:\mathrm{and}\:\mathrm{min}\:\mathrm{local}\:\mathrm{of}\:\mathrm{function} \\ $$$$\:\mathrm{y}=\:\frac{\mathrm{x}+\mathrm{2}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3sin}\:\left(\mathrm{3x}\right)+\mathrm{4cos}\:\left(\mathrm{3x}\right)} \\ $$

Question Number 180014    Answers: 2   Comments: 0

Given 80^a = 5 and 80^b = 2 then 25^((1−a−2b)/(1+a−4b)) =?

$$\:\:\mathrm{Given}\:\mathrm{80}^{{a}} \:=\:\mathrm{5}\:\mathrm{and}\:\mathrm{80}^{{b}} \:=\:\mathrm{2} \\ $$$$\:\mathrm{then}\:\mathrm{25}^{\frac{\mathrm{1}−{a}−\mathrm{2}{b}}{\mathrm{1}+{a}−\mathrm{4}{b}}} \:=?\: \\ $$

Question Number 179999    Answers: 1   Comments: 1

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com