Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182066    Answers: 2   Comments: 0

Question Number 182091    Answers: 1   Comments: 1

Question Number 182050    Answers: 1   Comments: 0

A= [(a,b,c),((−2),3,6),(0,(−2),5) ]and B= [(1,2,4),(0,3,9),((−1),2,2) ] A×B= [((−1),3,(−1)),((−8),d,(31)),((−5),4,e) ]find the missing value

$${A}=\begin{bmatrix}{{a}}&{{b}}&{{c}}\\{−\mathrm{2}}&{\mathrm{3}}&{\mathrm{6}}\\{\mathrm{0}}&{−\mathrm{2}}&{\mathrm{5}}\end{bmatrix}{and}\:{B}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{9}}\\{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{2}}\end{bmatrix} \\ $$$${A}×{B}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{8}}&{{d}}&{\mathrm{31}}\\{−\mathrm{5}}&{\mathrm{4}}&{{e}}\end{bmatrix}{find}\:{the}\:{missing}\:{value} \\ $$

Question Number 182120    Answers: 2   Comments: 0

Question Number 182045    Answers: 2   Comments: 1

∫_(π/6) ^(π/3) (1/(1+(tanx)^(2013) )) dx = ?

$$ \\ $$$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{1}}{\mathrm{1}+\left({tanx}\right)^{\mathrm{2013}} }\:{dx}\:=\:? \\ $$$$ \\ $$

Question Number 182043    Answers: 0   Comments: 0

For a, b, c, d ∈ R a+b+c+d=0 ab, ac, ad, bc, bd, cd ≠0 Prove the inequality: ((ab)/((a+b)^2 ))+((ac)/((a+c)^2 ))+((ad)/((a+d)^2 ))+((bc)/((b+c)^2 ))+((bd)/((b+d)^2 ))+((cd)/((c+d)^2 ))≤−(3/2) When is equality reached?

$${For}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{0} \\ $$$${ab},\:{ac},\:{ad},\:{bc},\:{bd},\:{cd}\:\neq\mathrm{0} \\ $$$${Prove}\:{the}\:{inequality}: \\ $$$$\frac{{ab}}{\left({a}+{b}\right)^{\mathrm{2}} }+\frac{{ac}}{\left({a}+{c}\right)^{\mathrm{2}} }+\frac{{ad}}{\left({a}+{d}\right)^{\mathrm{2}} }+\frac{{bc}}{\left({b}+{c}\right)^{\mathrm{2}} }+\frac{{bd}}{\left({b}+{d}\right)^{\mathrm{2}} }+\frac{{cd}}{\left({c}+{d}\right)^{\mathrm{2}} }\leq−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${When}\:{is}\:{equality}\:{reached}? \\ $$

Question Number 182039    Answers: 1   Comments: 0

if f′′′(x)=f(x) find what is f(x)

$${if}\:{f}'''\left({x}\right)={f}\left({x}\right) \\ $$$${find}\:{what}\:{is}\:{f}\left({x}\right)\: \\ $$

Question Number 182037    Answers: 0   Comments: 0

Question Number 182036    Answers: 0   Comments: 0

Question Number 182031    Answers: 0   Comments: 0

Question Number 182026    Answers: 3   Comments: 0

h(x)= determinant (((sin x cos x tan x)),((cos 2x sin 2x tan 2x)),(( x^3 (1/4)x^4 xsin x))) h′(0) =?

$$\:\:\mathrm{h}\left(\mathrm{x}\right)=\:\begin{vmatrix}{\mathrm{sin}\:\mathrm{x}\:\:\:\:\:\mathrm{cos}\:\mathrm{x}\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{x}}\\{\mathrm{cos}\:\mathrm{2x}\:\:\mathrm{sin}\:\mathrm{2x}\:\:\:\:\:\mathrm{tan}\:\mathrm{2x}}\\{\:\:\:\mathrm{x}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{4}} \:\:\:\:\:\:\mathrm{xsin}\:\mathrm{x}}\end{vmatrix} \\ $$$$\:\:\mathrm{h}'\left(\mathrm{0}\right)\:=? \\ $$

Question Number 182375    Answers: 2   Comments: 1

Question Number 182374    Answers: 2   Comments: 1

Question Number 182012    Answers: 1   Comments: 0

f(x)=9^x −m∙3^x +m+6 ∃x∈R, f(x)+f(−x)=0 find the range of m.

$${f}\left({x}\right)=\mathrm{9}^{{x}} −{m}\centerdot\mathrm{3}^{{x}} +{m}+\mathrm{6} \\ $$$$\exists{x}\in\mathbb{R},\:{f}\left({x}\right)+{f}\left(−{x}\right)=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\:\mathrm{range}\:\mathrm{of}\:{m}. \\ $$

Question Number 182011    Answers: 1   Comments: 1

Is this true for complex number: 4Re(z_1 z_2 ^(−) )=∣z_1 +z_2 ^(−) ∣^2 −∣z_1 −z_2 ^(−) ∣^2

$${Is}\:{this}\:{true}\:{for}\:{complex}\:{number}: \\ $$$$\mathrm{4}\mathscr{R}{e}\left({z}_{\mathrm{1}} \overline {{z}_{\mathrm{2}} }\right)=\mid{z}_{\mathrm{1}} +\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} −\mid{z}_{\mathrm{1}} −\overline {{z}_{\mathrm{2}} }\mid^{\mathrm{2}} \\ $$

Question Number 182006    Answers: 1   Comments: 2

Question Number 182000    Answers: 0   Comments: 1

if a−2b+3c−4d+5e−6f=0, find the maximum of ((∣a+b+c+d+e+f∣)/( (√(a^2 +b^2 +c^2 +d^2 +e^2 +f^2 )))).

$${if}\:\boldsymbol{{a}}−\mathrm{2}\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{c}}−\mathrm{4}\boldsymbol{{d}}+\mathrm{5}\boldsymbol{{e}}−\mathrm{6}\boldsymbol{{f}}=\mathrm{0},\:{find} \\ $$$${the}\:{maximum}\:{of} \\ $$$$\frac{\mid\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{e}}+\boldsymbol{{f}}\mid}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} +\boldsymbol{{e}}^{\mathrm{2}} +\boldsymbol{{f}}^{\mathrm{2}} }}. \\ $$

Question Number 181998    Answers: 1   Comments: 0

Question Number 181987    Answers: 3   Comments: 0

Question Number 182004    Answers: 3   Comments: 0

f(x)=2^x +3^x −6^x Find f(x)_(max)

$${f}\left({x}\right)=\mathrm{2}^{{x}} +\mathrm{3}^{{x}} −\mathrm{6}^{{x}} \\ $$$$\mathrm{Find}\:{f}\left({x}\right)_{\mathrm{max}} \\ $$

Question Number 182003    Answers: 0   Comments: 0

u_(xx) −u_x u_y −u_(yy) +2u_y −2u_x =e^(2x+3y) +sin(2x+y)+xy

$$\mathrm{u}_{\mathrm{xx}} −\mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{yy}} +\mathrm{2u}_{\mathrm{y}} −\mathrm{2u}_{\mathrm{x}} =\mathrm{e}^{\mathrm{2x}+\mathrm{3y}} +\mathrm{sin}\left(\mathrm{2x}+\mathrm{y}\right)+\mathrm{xy} \\ $$

Question Number 182001    Answers: 2   Comments: 1

Question Number 181978    Answers: 0   Comments: 0

Question Number 181977    Answers: 0   Comments: 0

Question Number 181976    Answers: 3   Comments: 0

Question Number 181973    Answers: 0   Comments: 1

please how can I get the proofs of the Putnam competition in pdf format?

$$ \\ $$please how can I get the proofs of the Putnam competition in pdf format?

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com