Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 389

Question Number 182770    Answers: 1   Comments: 0

Question Number 182769    Answers: 1   Comments: 0

∫_0 ^(π/4) (dx/(sin (x−1)−1)) =?

$$\:\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{{dx}}{\mathrm{sin}\:\left({x}−\mathrm{1}\right)−\mathrm{1}}\:=?\: \\ $$

Question Number 182793    Answers: 0   Comments: 0

Suppose now that Allie is actually 70 years old, and that her life expectancy (if cured) is 12 years rather than 20 . Which procedure now has the greather expected value ? What if her life expectancy is 8 years?

$$\:{Suppose}\:{now}\:{that}\:{Allie}\:{is}\:{actually} \\ $$$$\mathrm{70}\:{years}\:{old},\:{and}\:{that}\:{her}\:{life}\:{expectancy} \\ $$$$\left({if}\:{cured}\right)\:{is}\:\mathrm{12}\:{years}\:{rather}\:{than} \\ $$$$\mathrm{20}\:.\:{Which}\:{procedure}\:{now}\:{has}\:{the} \\ $$$${greather}\:{expected}\:{value}\:?\:{What}\:{if}\:{her} \\ $$$${life}\:{expectancy}\:{is}\:\mathrm{8}\:{years}? \\ $$

Question Number 182737    Answers: 1   Comments: 0

Question Number 182726    Answers: 2   Comments: 4

∫_0 ^1 t(√((1−t)/(1+t)))dt=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}{dt}=? \\ $$

Question Number 182720    Answers: 0   Comments: 0

Question Number 182721    Answers: 2   Comments: 0

Question Number 182718    Answers: 2   Comments: 4

If , 7^( n) ≡^(10) 7^( 19) then find the 1st digit of the numer , 8^( n+4) .

$$ \\ $$$$\:\:\:\:\:\:\mathrm{If}\:,\:\:\:\:\mathrm{7}^{\:{n}} \:\overset{\mathrm{10}} {\equiv}\:\mathrm{7}^{\:\mathrm{19}} \\ $$$$\:\:\:\:\:\:\:{then}\:\:{find}\:{the}\:\:\mathrm{1}{st}\:{digit} \\ $$$$\:\:\:\:{of}\:\:{the}\:{numer}\:\:,\:\:\:\mathrm{8}^{\:{n}+\mathrm{4}} \:.\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 182716    Answers: 1   Comments: 0

Question Number 182714    Answers: 0   Comments: 0

Question Number 182715    Answers: 1   Comments: 1

Question Number 182705    Answers: 1   Comments: 0

A father has $320 to go a sporting event with his children. If he takes tickets of $50 he lacks money, if he takes tickets of $40 he has money left over. Find the number of children.

$${A}\:{father}\:{has}\:\$\mathrm{320}\:{to}\:{go}\:{a}\:{sporting}\:{event}\:{with} \\ $$$$\:{his}\:{children}.\:{If}\:{he}\:{takes}\:{tickets}\:{of}\:\$\mathrm{50}\:{he} \\ $$$$\:{lacks}\:{money},\:{if}\:{he}\:{takes}\:{tickets}\:{of}\:\$\mathrm{40}\:{he} \\ $$$$\:{has}\:{money}\:{left}\:{over}.\:{Find}\:{the}\:{number}\:{of}\: \\ $$$$\:{children}. \\ $$

Question Number 182704    Answers: 2   Comments: 0

On a path there was an odd number of rocks with a distance of 10m between them, we want to put them all where the middle one is, if we start to collect from one of the ends and when we finish we have walked 3km in total, how many rocks are there?

$${On}\:{a}\:{path}\:{there}\:{was}\:{an}\:{odd}\:{number}\:{of}\:{rocks} \\ $$$$\:{with}\:{a}\:{distance}\:{of}\:\mathrm{10}{m}\:{between}\:{them},\:{we}\: \\ $$$$\:{want}\:{to}\:{put}\:{them}\:{all}\:{where}\:{the}\:{middle}\:{one}\:{is}, \\ $$$$\:{if}\:{we}\:{start}\:{to}\:{collect}\:{from}\:{one}\:{of}\:{the}\:{ends}\:{and} \\ $$$$\:{when}\:{we}\:{finish}\:{we}\:{have}\:{walked}\:\mathrm{3}{km}\:{in}\:{total}, \\ $$$$\:{how}\:{many}\:{rocks}\:{are}\:{there}? \\ $$

Question Number 182702    Answers: 0   Comments: 1

log_2 (x+1)−x>0

$$\mathrm{log}_{\mathrm{2}} \left({x}+\mathrm{1}\right)−{x}>\mathrm{0} \\ $$

Question Number 182695    Answers: 1   Comments: 2

If two events A and B are such that P(A^c )=0.3 ; P(B)=0.4 and P(A∩B^c )= 0.5 then P((B/(A∪B^c )))=? (A) 0.20 (B) 0.25 (C) 0.30 (D) 0.35

$$\:\:\mathrm{If}\:\mathrm{two}\:\mathrm{events}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{such}\: \\ $$$$\:\:\mathrm{that}\:\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \right)=\mathrm{0}.\mathrm{3}\:;\:\mathrm{P}\left(\mathrm{B}\right)=\mathrm{0}.\mathrm{4}\:\mathrm{and} \\ $$$$\:\:\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}^{\mathrm{c}} \right)=\:\mathrm{0}.\mathrm{5}\:\mathrm{then}\:\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}\cup\mathrm{B}^{\mathrm{c}} }\right)=? \\ $$$$\:\left(\mathrm{A}\right)\:\mathrm{0}.\mathrm{20}\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{0}.\mathrm{25}\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{0}.\mathrm{30}\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{0}.\mathrm{35} \\ $$$$\:\: \\ $$

Question Number 182694    Answers: 1   Comments: 0

Question Number 182681    Answers: 5   Comments: 6

Solve (√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14)) ; a∈ R^(+★) @Mr. Rasheed, yesterday i solved it on a draft paper When i came today to write it down on the notebook i got into a maze, do you have an easy way to deal with? “if you have time” i lost that paper, and this formula makes me laugh at myself, it′s for 13 y/o “confused face” Sure Every friend can share!

$$\:{Solve}\:\sqrt{\mathrm{39}−\:\mathrm{10}\:{a}\:−{a}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:\mathrm{2}\:\sqrt{\mathrm{14}}\:\:\:;\:{a}\in\:\mathbb{R}^{+\bigstar} \\ $$$$\:@{Mr}.\:{Rasheed},\:{yesterday}\:{i}\:{solved}\:{it}\:{on}\:{a}\:{draft}\:{paper} \\ $$$$\:{When}\:{i}\:{came}\:{today}\:{to}\:{write}\:{it}\:{down}\:{on} \\ $$$$\:{the}\:{notebook}\:{i}\:{got}\:{into}\:{a}\:{maze},\:{do}\:{you}\:{have} \\ $$$$\:{an}\:{easy}\:{way}\:{to}\:{deal}\:{with}?\:``{if}\:{you}\:{have}\:{time}'' \\ $$$$\:{i}\:{lost}\:{that}\:{paper},\:{and}\:{this}\:{formula}\:{makes}\:{me} \\ $$$$\:{laugh}\:{at}\:{myself},\:{it}'{s}\:{for}\:\mathrm{13}\:{y}/{o}\:``{confused}\:{face}''\: \\ $$$$\:{Sure}\:{Every}\:{friend}\:{can}\:{share}! \\ $$

Question Number 182676    Answers: 2   Comments: 0

Question Number 182675    Answers: 2   Comments: 0

Question Number 182659    Answers: 1   Comments: 0

lim_(n→∞) (((n!))^(1/n) /n)=?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{{n}}]{{n}!}}{{n}}=? \\ $$

Question Number 182657    Answers: 0   Comments: 0

as we can know for Q_1 , set the funvction in question as f(x) and make the first step as: a=1,f(x)=x^2 −7x+3ln x df(x)=2x−7+(3/x)=h(x) set h(x)=0⇒x=(1/2)&x=3 so,the monotonicity of f(x) is f(n)<f((1/2))_(∣n<(1/2)) ,f((1/2))>f(2),f(2)<f(p)_(∣p>2.) Q_1 has been proved finished Q_(2 ) ,set ax^2 −(a+6)x+3ln x>−6 when x∈[2,3e], make the f(x) dive two part as g(x)=ax^2 −(6+a)x&k(x)=−3(ln x+2), the middle value of g(x) is x=((a+6)/(2a)) when x=3e, k_(min) (3e)=−15, x=2, k_(max) (2)=−3(ln 2+2) g(2)=2a−12>k_(max) (x)⇒a>3−(3/2)ln 2 when x=(1/2)+(3/a), g(x)=−(((a+6)^2 )/(4a))>−3(ln (((a+6)/(2a)))+2)&a>0&2<(1/2)+(3/a)<3e

$${as}\:{we}\:{can}\:{know}\:{for}\:{Q}_{\mathrm{1}} ,\:{set}\:{the}\:{funvction}\:{in}\:{question}\:{as}\:{f}\left({x}\right) \\ $$$${and}\:{make}\:{the}\:{first}\:{step}\:{as}: \\ $$$${a}=\mathrm{1},{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{3ln}\:{x} \\ $$$${df}\left({x}\right)=\mathrm{2}{x}−\mathrm{7}+\frac{\mathrm{3}}{{x}}={h}\left({x}\right) \\ $$$${set}\:{h}\left({x}\right)=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}}\&{x}=\mathrm{3} \\ $$$${so},{the}\:{monotonicity}\:{of}\:{f}\left({x}\right)\:{is}\:{f}\left({n}\right)<{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{\mid{n}<\frac{\mathrm{1}}{\mathrm{2}}} ,{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)>{f}\left(\mathrm{2}\right),{f}\left(\mathrm{2}\right)<{f}\left({p}\underset{\mid{p}>\mathrm{2}.} {\right)} \\ $$$${Q}_{\mathrm{1}} \:{has}\:{been}\:{proved}\:{finished} \\ $$$${Q}_{\mathrm{2}\:} \:,{set}\:{ax}^{\mathrm{2}} −\left({a}+\mathrm{6}\right){x}+\mathrm{3ln}\:{x}>−\mathrm{6}\:{when}\:{x}\in\left[\mathrm{2},\mathrm{3}{e}\right], \\ $$$${make}\:{the}\:{f}\left({x}\right)\:{dive}\:{two}\:{part}\:{as} \\ $$$$\:{g}\left({x}\right)={ax}^{\mathrm{2}} −\left(\mathrm{6}+{a}\right){x\&k}\left({x}\right)=−\mathrm{3}\left(\mathrm{ln}\:{x}+\mathrm{2}\right), \\ $$$$\:{the}\:{middle}\:{value}\:{of}\:{g}\left({x}\right)\:{is}\:{x}=\frac{{a}+\mathrm{6}}{\mathrm{2}{a}} \\ $$$${when}\:{x}=\mathrm{3}{e},\:{k}_{{min}} \left(\mathrm{3}{e}\right)=−\mathrm{15},\:\:{x}=\mathrm{2},\:{k}_{{max}} \left(\mathrm{2}\right)=−\mathrm{3}\left(\mathrm{ln}\:\mathrm{2}+\mathrm{2}\right) \\ $$$${g}\left(\mathrm{2}\right)=\mathrm{2}{a}−\mathrm{12}>{k}_{{max}} \left({x}\right)\Rightarrow{a}>\mathrm{3}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{{a}},\:{g}\left({x}\right)=−\frac{\left({a}+\mathrm{6}\right)^{\mathrm{2}} }{\mathrm{4}{a}}>−\mathrm{3}\left(\mathrm{ln}\:\left(\frac{{a}+\mathrm{6}}{\mathrm{2}{a}}\right)+\mathrm{2}\right)\&{a}>\mathrm{0\&2}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{{a}}<\mathrm{3}{e} \\ $$$$ \\ $$

Question Number 182650    Answers: 0   Comments: 0

Question Number 182649    Answers: 1   Comments: 0

f(x;y)=((x^2 +y^2 )/(x^2 +y^4 )) lim_(x→∞) (lim_(y→0) f(x;y))=? lim_(y→∞) (lim_(x→∞) f(x;y))=?

$$\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)=\frac{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{4}} }\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$$$\underset{\boldsymbol{{y}}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$

Question Number 182648    Answers: 3   Comments: 0

∫_0 ^(π/4) ((sec^2 x)/(tan x−sec x)) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{sec}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 182646    Answers: 0   Comments: 2

prove that lim_(n→∞) [((((n+1)!∙(2n+1)!!))^(1/(n+1)) /(n+1))−(((n!∙(2n−1)!!))^(1/n) /n)]=(2/e^2 )

$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!\centerdot\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}{{n}+\mathrm{1}}−\frac{\sqrt[{{n}}]{{n}!\centerdot\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}{{n}}\right]=\frac{\mathrm{2}}{{e}^{\mathrm{2}} } \\ $$

Question Number 182644    Answers: 0   Comments: 5

solve for x>0 (1+(1/x))^x >(5/2)

$${solve}\:{for}\:{x}>\mathrm{0} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} >\frac{\mathrm{5}}{\mathrm{2}} \\ $$

  Pg 384      Pg 385      Pg 386      Pg 387      Pg 388      Pg 389      Pg 390      Pg 391      Pg 392      Pg 393   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com