Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 380

Question Number 183563    Answers: 1   Comments: 1

repost an unsolved question Q182552 Find the period of the following: a• sin 4x sin 3x b• sin πx+ cos x c• ((2 sin^2 3x− 3 tan 4x+ 4 cot 6x)/(∣cosec 8x∣− sec^3 10x+ (√(cot 12x))))

$$\mathrm{repost}\:\mathrm{an}\:\mathrm{unsolved}\:\mathrm{question}\:\mathrm{Q182552} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}: \\ $$$$\:{a}\bullet\:\mathrm{sin}\:\mathrm{4}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\:{b}\bullet\:\mathrm{sin}\:\pi{x}+\:\mathrm{cos}\:{x} \\ $$$$\:{c}\bullet\:\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}{x}−\:\mathrm{3}\:\mathrm{tan}\:\mathrm{4}{x}+\:\mathrm{4}\:\mathrm{cot}\:\mathrm{6}{x}}{\mid\mathrm{cosec}\:\mathrm{8}{x}\mid−\:\mathrm{sec}^{\mathrm{3}} \:\mathrm{10}{x}+\:\sqrt{\mathrm{cot}\:\mathrm{12}{x}}} \\ $$

Question Number 183559    Answers: 1   Comments: 0

∫_1 ^∞ (dx/(x^2 +(√x))) = ?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{{dx}}{{x}^{\mathrm{2}} +\sqrt{{x}}}\:=\:?\: \\ $$

Question Number 183558    Answers: 3   Comments: 1

Question Number 183556    Answers: 1   Comments: 0

Question Number 183551    Answers: 1   Comments: 0

Question Number 183536    Answers: 1   Comments: 1

radius of convergence of serie: Σ_(nεN) ((cos(((3π)/3)))/5^n )z^n

$${radius}\:{of}\:{convergence}\:{of}\:{serie}: \\ $$$$\underset{{n}\epsilon{N}} {\sum}\frac{{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{3}}\right)}{\mathrm{5}^{{n}} }{z}^{{n}} \\ $$

Question Number 183535    Answers: 2   Comments: 0

Who is greater? 70^(71) or 71^(70)

$${Who}\:{is}\:{greater}?\:\mathrm{70}^{\mathrm{71}} \:{or}\:\:\mathrm{71}^{\mathrm{70}} \\ $$

Question Number 183533    Answers: 2   Comments: 1

Question Number 183532    Answers: 2   Comments: 0

Question Number 183531    Answers: 0   Comments: 0

Question Number 183528    Answers: 0   Comments: 3

lim_(x→∞) Σ_(k=1) ^n ( 3(√(1+(k^2 /n^3 ))) −1) = ?

$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\:\mathrm{3}\sqrt{\mathrm{1}+\frac{\mathrm{k}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{3}} }}\:−\mathrm{1}\right)\:\:=\:\:\:? \\ $$

Question Number 183527    Answers: 1   Comments: 2

Question Number 183524    Answers: 1   Comments: 0

Question Number 183521    Answers: 0   Comments: 0

When a bipolar transistor is turned on according to a scheme with a common base, the current gain coefficient is α=0.975. What will be the current gain of a bipolar transistor if it is turned on according to a scheme with a common emitter? a. 18.5 b. 81 c. 25 d. 39

$${When}\:{a}\:{bipolar}\:{transistor}\:{is}\:{turned}\:{on}\: \\ $$$${according}\:{to}\:{a}\:{scheme}\:{with}\:{a}\:{common}\:{base},\: \\ $$$${the}\:{current}\:{gain}\:{coefficient}\:{is}\:\alpha=\mathrm{0}.\mathrm{975}. \\ $$$${What}\:{will}\:{be}\:{the}\:{current}\:{gain}\:{of}\:{a}\:{bipolar} \\ $$$${transistor}\:{if}\:{it}\:{is}\:{turned}\:{on}\:{according}\:{to} \\ $$$${a}\:{scheme}\:{with}\:{a}\:{common}\:{emitter}? \\ $$$${a}.\:\mathrm{18}.\mathrm{5} \\ $$$${b}.\:\mathrm{81} \\ $$$${c}.\:\mathrm{25} \\ $$$${d}.\:\mathrm{39} \\ $$

Question Number 183507    Answers: 0   Comments: 1

Question Number 183500    Answers: 1   Comments: 0

Question Number 183485    Answers: 2   Comments: 1

L=lim_(x→0) ((2sin x −2tan x +x^3 )/(6x−2sin 3x −9x^3 )) L= ((lim_(x→0) ((2sin x −2tan x +x^3 )/x^5 ))/(lim_(x→0) ((6x−2sin 3x −9x^3 )/x^5 ))) = (L_1 /L_2 )

$$\:\boldsymbol{\mathrm{L}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} } \\ $$$$\:\:\boldsymbol{\mathrm{L}}=\:\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}\:=\:\frac{\boldsymbol{\mathrm{L}}_{\mathrm{1}} }{\boldsymbol{\mathrm{L}}_{\mathrm{2}} } \\ $$

Question Number 183484    Answers: 0   Comments: 0

determinant ((),())

$$\begin{matrix}{}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183483    Answers: 0   Comments: 0

lim_(x→0^+ ) ((1−cos (√x))/( (√(x−(√(x−(√(x−(√(x−...)))))))))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}}{\:\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−...}}}}}\:=? \\ $$

Question Number 183480    Answers: 1   Comments: 1

Question Number 183479    Answers: 0   Comments: 0

determinant (((x+2=)),())

$$\begin{matrix}{{x}+\mathrm{2}=}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183478    Answers: 1   Comments: 4

To Administrator Tinku Tara Dear sirs! please have a look at Q183382 and other posts of CElcedricjunior sir. He disobeys rules of the forum and intentionally and maciliously posts his answers as “comment” to the questions just to place his answers before the answers of other people. besides he ignores all kind advises of other people who asked him and showed him to post answers as “answer”, not as “comment”.

$$\underline{{To}\:{Administrator}\:{Tinku}\:{Tara}} \\ $$$${Dear}\:{sirs}! \\ $$$${please}\:{have}\:{a}\:{look}\:{at}\:{Q}\mathrm{183382}\:{and} \\ $$$${other}\:{posts}\:{of}\:{CElcedricjunior}\:{sir}. \\ $$$${He}\:{disobeys}\:{rules}\:{of}\:{the}\:{forum}\:{and}\: \\ $$$${intentionally}\:{and}\:{maciliously}\:{posts}\: \\ $$$${his}\:{answers}\:{as}\:``{comment}''\:{to}\:{the}\: \\ $$$${questions}\:{just}\:{to}\:{place}\:{his}\:{answers}\: \\ $$$${before}\:{the}\:{answers}\:{of}\:{other}\:{people}.\: \\ $$$${besides}\:{he}\:{ignores}\:{all}\:{kind}\:{advises}\: \\ $$$${of}\:{other}\:{people}\:{who}\:{asked}\:{him}\:{and}\: \\ $$$${showed}\:{him}\:{to}\:{post}\:{answers}\:{as}\: \\ $$$$``{answer}'',\:{not}\:{as}\:``{comment}''. \\ $$

Question Number 183477    Answers: 0   Comments: 0

determinant (((P(x)=3x(4−x)=12x−3x2)),(),(),(),())

$$\begin{matrix}{{P}\left({x}\right)=\mathrm{3}{x}\left(\mathrm{4}−{x}\right)=\mathrm{12}{x}−\mathrm{3}{x}\mathrm{2}}\\{}\\{}\\{}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183465    Answers: 1   Comments: 0

Find the least value of (1−2x)(1−x). M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\left(\mathrm{1}−\mathrm{2x}\right)\left(\mathrm{1}−\mathrm{x}\right). \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 183464    Answers: 2   Comments: 0

Find the Maximum value of 3x(4−x) M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{3x}\left(\mathrm{4}−\mathrm{x}\right) \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 183459    Answers: 2   Comments: 0

It is given f(x)=(1+x)^n , n∈N. Find f(0)+f^′ (0)+((f^(′′) (0))/(2!))+((f′′′(0))/(3!))+...+((f^((n)) (0))/(n!)) .

$$\:\:{It}\:{is}\:{given}\:{f}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{n}} \:,\:{n}\in\mathbb{N}.\:{Find} \\ $$$$\:\:{f}\left(\mathrm{0}\right)+{f}^{'} \left(\mathrm{0}\right)+\frac{{f}^{''} \left(\mathrm{0}\right)}{\mathrm{2}!}+\frac{{f}'''\left(\mathrm{0}\right)}{\mathrm{3}!}+...+\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:\:. \\ $$

  Pg 375      Pg 376      Pg 377      Pg 378      Pg 379      Pg 380      Pg 381      Pg 382      Pg 383      Pg 384   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com