Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 380
Question Number 181318 Answers: 2 Comments: 1
$${if}\:{x}+{y}+{z}=\mathrm{0},\:{find}\:{the}\:{maximum}\:{of} \\ $$$$\frac{\mid{x}+\mathrm{2}{y}+\mathrm{3}{z}\mid}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}. \\ $$
Question Number 181313 Answers: 2 Comments: 0
$${Montrer}\:{que} \\ $$$$\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} \:\:\:{est}\:{divisible}\:{par}\:\mathrm{7} \\ $$
Question Number 181296 Answers: 1 Comments: 0
Question Number 181312 Answers: 0 Comments: 0
Question Number 181280 Answers: 1 Comments: 0
Question Number 181279 Answers: 3 Comments: 0
Question Number 181275 Answers: 1 Comments: 7
$${what}\:{is}\:{the}\:{sum}\:{of}\:{all} \\ $$$${even}\:{factors}\:{of}\:\mathrm{1000}? \\ $$
Question Number 181260 Answers: 2 Comments: 0
$${Calcul}\: \\ $$$$\underset{{n}=\mathrm{3}} {\overset{+\infty} {\sum}}\:\frac{\mathrm{2}{n}−\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)\left({n}−\mathrm{2}\right)}=...?? \\ $$
Question Number 181256 Answers: 0 Comments: 7
$$\frac{\mathrm{1}}{{f}}=\left({n}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{{R}_{\mathrm{1}} }−\frac{\mathrm{1}}{{R}_{\mathrm{2}} }\right)\:\:{lense}'{s}\:{maker}\:{equation}. \\ $$$${when}\:{is}\:{positive}\:{or}\:{negative}\:{R}_{\mathrm{1}} \:{and}\:\:{R}_{\mathrm{2}} ? \\ $$
Question Number 181253 Answers: 0 Comments: 5
$${define}\:{microscopic}\:{and}\:{macroscopic} \\ $$$${with}\:{one}\:{one}\:{example}. \\ $$
Question Number 181243 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x}\:: \\ $$$$\frac{{x}\:−\:{a}^{\mathrm{2}} }{{b}\:+\:{c}}\:+\:\frac{{x}\:−\:{b}^{\mathrm{2}} }{{c}\:+\:{a}}\:+\:\frac{{x}\:−\:{c}^{\mathrm{2}} }{{a}\:+\:{b}}\:=\:\mathrm{4}\left({a}\:+\:{b}\:+\:{c}\right) \\ $$
Question Number 181238 Answers: 1 Comments: 0
$${calculer} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}{artan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right) \\ $$
Question Number 181232 Answers: 3 Comments: 1
Question Number 181221 Answers: 1 Comments: 0
Question Number 181219 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{D}.\mathrm{E} \\ $$$$\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{y}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$ \\ $$$$. \\ $$
Question Number 181218 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Differential}\:\mathrm{equation}: \\ $$$$\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{y}=\mathrm{2y}\left(\mathrm{lnx}−\mathrm{lny}\right) \\ $$$$ \\ $$$$. \\ $$
Question Number 181217 Answers: 1 Comments: 0
Question Number 181207 Answers: 1 Comments: 0
$${cacul} \\ $$$$\left.\forall{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{nx}^{{n}} \\ $$
Question Number 181201 Answers: 3 Comments: 0
Question Number 181183 Answers: 1 Comments: 0
$$\Omega_{\boldsymbol{\mathrm{n}}} \:=\:\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{...}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{2}^{\mathrm{2}} }&{\mathrm{2}^{\mathrm{3}} }&{...}&{\mathrm{2}^{\boldsymbol{\mathrm{n}}} }\\{\mathrm{1}}&{\mathrm{3}^{\mathrm{2}} }&{\mathrm{3}^{\mathrm{3}} }&{...}&{\mathrm{3}^{\boldsymbol{\mathrm{n}}} }\\{...}&{...}&{...}&{...}&{...}\\{\mathrm{1}}&{\mathrm{n}^{\mathrm{2}} }&{\mathrm{n}^{\mathrm{3}} }&{...}&{\mathrm{n}^{\boldsymbol{\mathrm{n}}} }\end{vmatrix}\:\:,\:\:\:\mathrm{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\boldsymbol{\mathrm{n}}}]{\frac{\Omega_{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\Omega_{\boldsymbol{\mathrm{n}}} }}\: \\ $$
Question Number 181182 Answers: 1 Comments: 0
$${For}\:{what}\:{values}\:{of}\:{a}\:{does}\:{the}\:{system} \\ $$$${of}\:{equations}\:{only}\:{have}\:{one}\:{solution}: \\ $$$$\begin{cases}{{a}\left({x}^{\mathrm{4}} +\mathrm{1}\right)={y}+\mathrm{2}−\mid{x}\mid}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}}\end{cases} \\ $$
Question Number 181173 Answers: 0 Comments: 1
Question Number 181172 Answers: 0 Comments: 2
$${write}\:{snell}'{s}\:{law}\:{that}\:{light}\:{move}\:{a}\: \\ $$$${concentrative}\:{medium}\:{to}\:{nonconcentrative} \\ $$$${medium}\:{and}\:{show}\:{with}\:{a}\:{shape}. \\ $$
Question Number 181171 Answers: 0 Comments: 1
$${prove}\:{snell}'{s}\:{law} \\ $$
Question Number 181152 Answers: 0 Comments: 0
$$\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{integral}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)\boldsymbol{{ln}}\left(\mathrm{1}−\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}=??? \\ $$
Question Number 181151 Answers: 4 Comments: 0
Pg 375 Pg 376 Pg 377 Pg 378 Pg 379 Pg 380 Pg 381 Pg 382 Pg 383 Pg 384
Terms of Service
Privacy Policy
Contact: info@tinkutara.com