Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 380

Question Number 175863    Answers: 0   Comments: 0

Question Number 175860    Answers: 2   Comments: 0

Question Number 175849    Answers: 2   Comments: 0

2^(2a) +2^a = 10 what is a?

$$\mathrm{2}^{\mathrm{2}{a}} +\mathrm{2}^{{a}} =\:\mathrm{10} \\ $$$${what}\:{is}\:{a}? \\ $$

Question Number 175839    Answers: 2   Comments: 0

If w, x, y and z be four consecutive terms of any AP, then show that w^2 −z^2 =3(x^2 −y^2 ).

$${If}\:{w},\:{x},\:{y}\:{and}\:{z}\:{be}\:{four}\:{consecutive} \\ $$$${terms}\:{of}\:{any}\:{AP},\:{then}\:{show}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{w}^{\mathrm{2}} −{z}^{\mathrm{2}} =\mathrm{3}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right). \\ $$

Question Number 175838    Answers: 2   Comments: 0

If x,y and z be the pth, qth and rth terms of an AP, show that determinant ((p,q,r),(x,y,z),(1,1,1))=0

$${If}\:{x},{y}\:{and}\:{z}\:{be}\:{the}\:{pth},\:{qth}\:{and}\:{rth} \\ $$$${terms}\:{of}\:{an}\:{AP},\:{show}\:{that} \\ $$$$\begin{vmatrix}{{p}}&{{q}}&{{r}}\\{{x}}&{{y}}&{{z}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$

Question Number 175836    Answers: 2   Comments: 1

Question Number 175834    Answers: 0   Comments: 4

xe^x^(1/) = e solve for x

$${xe}^{\overset{\mathrm{1}/} {{x}}} =\:{e} \\ $$$${solve}\:{for}\:{x} \\ $$

Question Number 175833    Answers: 0   Comments: 0

Question Number 176750    Answers: 0   Comments: 2

Is there general form of α^n + β^n and α^n − β^n ???? e.g: α^3 + β^3 = (α + β)[(α + β)^2 − 3αβ]

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{general}\:\mathrm{form}\:\mathrm{of} \\ $$$$\alpha^{\mathrm{n}} \:\:\:+\:\:\:\beta^{\mathrm{n}} \:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\alpha^{\mathrm{n}} \:\:\:−\:\:\:\beta^{\mathrm{n}} \:\:\:\:\:???? \\ $$$$ \\ $$$$\mathrm{e}.\mathrm{g}:\:\:\:\:\alpha^{\mathrm{3}} \:\:\:+\:\:\:\beta^{\mathrm{3}} \:\:\:\:=\:\:\:\:\left(\alpha\:\:\:+\:\:\:\beta\right)\left[\left(\alpha\:\:\:+\:\:\:\beta\right)^{\mathrm{2}} \:\:\:−\:\:\:\mathrm{3}\alpha\beta\right] \\ $$

Question Number 175829    Answers: 2   Comments: 0

The 2^(nd) term of a Geometric Progresion (G.P) is equal to the 8^(th) term of an Arithmetic Progresion (A.P). The first terms, common difference and common ratio are all equal and non−zero. Find the sum of the first five terms of the Geometric Progresion(G.P)

$$\mathrm{The}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Geometric}\:\mathrm{Progresion} \\ $$$$\left(\mathrm{G}.\mathrm{P}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{8}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{Arithmetic} \\ $$$$\mathrm{Progresion}\:\left(\mathrm{A}.\mathrm{P}\right).\:\mathrm{The}\:\mathrm{first}\:\mathrm{terms},\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{and}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{are}\:\mathrm{all}\:\mathrm{equal} \\ $$$$\mathrm{and}\:\mathrm{non}−\mathrm{zero}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{five} \\ $$$$\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Geometric}\:\mathrm{Progresion}\left(\mathrm{G}.\mathrm{P}\right) \\ $$

Question Number 175827    Answers: 0   Comments: 4

Question Number 175821    Answers: 1   Comments: 1

Question Number 175815    Answers: 2   Comments: 0

If n≥1 a and b are positive real numbers Then prove that: ((a^n + b^n )/(a + b)) ≥ ((a^(n−1) + b^(n−1) )/2)

$$\mathrm{If}\:\:\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \:\:+\:\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} }{\mathrm{a}\:\:+\:\:\mathrm{b}}\:\:\geqslant\:\:\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \:\:+\:\:\mathrm{b}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} }{\mathrm{2}} \\ $$

Question Number 175814    Answers: 2   Comments: 1

Question Number 175806    Answers: 1   Comments: 0

Question Number 175801    Answers: 2   Comments: 5

solve the follwing equation x(√(x )) + y(√(y )) = 3 and x(√(y )) + y(√(x )) = 2 someone solve the above equations in the following way x^3 + y^3 + 2xy(√(xy )) = 9.....(1) and x^2 y + y^2 x + 2xy(√(xy )) = 4......(2) (1) − (2) ⇒ (x − y)(x^2 − y^2 ) = 5 hence x = 3 and y = 2 which is obiviusly does not satisfy the original equations. where is the fallacy in the above solution? Please explain.

$${solve}\:{the}\:{follwing}\:{equation} \\ $$$${x}\sqrt{{x}\:}\:\:\:+\:\:{y}\sqrt{{y}\:}\:\:=\:\:\mathrm{3}\:\:\:{and}\:\:\:{x}\sqrt{{y}\:}\:\:+\:{y}\sqrt{{x}\:}\:\:=\:\:\mathrm{2} \\ $$$${someone}\:{solve}\:{the}\:{above}\:{equations}\:{in}\:{the}\:{following}\:{way}\: \\ $$$${x}^{\mathrm{3}} +\:{y}^{\mathrm{3}} +\:\mathrm{2}{xy}\sqrt{{xy}\:}\:\:=\:\mathrm{9}.....\left(\mathrm{1}\right)\:\:\:\:{and}\:\:\:{x}^{\mathrm{2}} {y}\:\:+\:\:{y}^{\mathrm{2}} {x}\:\:+\:\mathrm{2}{xy}\sqrt{{xy}\:}\:\:=\:\:\mathrm{4}......\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:−\:\left(\mathrm{2}\right)\:\:\:\Rightarrow\:\:\left({x}\:−\:{y}\right)\left({x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:\right)\:=\:\mathrm{5} \\ $$$${hence}\:\:{x}\:=\:\mathrm{3}\:\:{and}\:\:{y}\:=\:\mathrm{2}\:\:{which}\:{is}\:{obiviusly}\:{does}\:{not}\:\:{satisfy}\:{the} \\ $$$$\:{original}\:{equations}. \\ $$$${where}\:{is}\:{the}\:{fallacy}\:\:{in}\:{the}\:{above}\:{solution}?\:\:\mathrm{Please}\:\mathrm{explain}. \\ $$

Question Number 175800    Answers: 1   Comments: 0

Find prime numbers of 3 digits such that equal to sum of 3 diffrent numbers of prime

$$\:\mathrm{Find}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{3}\:\mathrm{digits}\:\mathrm{such}\:\mathrm{that}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\:\mathrm{sum}\:\mathrm{of}\:\mathrm{3}\:\mathrm{diffrent}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\:\:\mathrm{prime} \\ $$

Question Number 175793    Answers: 0   Comments: 2

if xy+y^2 +zx = 48; where x,y,z are three positive real numbers then find the maximum possible value of the product (xyz)

$$\:\:\mathrm{if}\:\mathrm{xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{zx}\:=\:\mathrm{48};\:\mathrm{where}\:\mathrm{x},\mathrm{y},\mathrm{z} \\ $$$$\:\:\mathrm{are}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible} \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{product}\:\left(\mathrm{xyz}\right) \\ $$

Question Number 175799    Answers: 2   Comments: 0

For x ,y ε Z^+ such that 7x+9y=405. Find max value of x−y.

$$\:\:\mathrm{For}\:\mathrm{x}\:,\mathrm{y}\:\varepsilon\:\mathbb{Z}^{+} \:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\mathrm{7x}+\mathrm{9y}=\mathrm{405}.\:\mathrm{Find}\:\mathrm{max}\:\mathrm{value} \\ $$$$\:\:\mathrm{of}\:\mathrm{x}−\mathrm{y}. \\ $$

Question Number 175785    Answers: 2   Comments: 3

Question Number 175780    Answers: 0   Comments: 0

find the range of the function f(x) = cosx{sinx + (√(sin^2 x + sin^2 α )) }

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{cosx}\left\{\mathrm{sin}{x}\:+\:\sqrt{\mathrm{sin}^{\mathrm{2}} {x}\:+\:\mathrm{sin}^{\mathrm{2}} \alpha\:\:}\:\right\}\:\: \\ $$

Question Number 175770    Answers: 0   Comments: 0

P_n = e^( ((1/1) −(1/2)) +((1/3) −(1/4)) +...+((1/(n−1)) −(1/n))) = e^( (1−(1/2) +(1/3) −(1/4) +...+(1/(n−1)) −(1/n))) = e^( Σ_(k=1) ^n (( (−1 )^( k+1) )/k)) ∴ P = lim_( n→∞) (e^( Σ_(k=1) ^n (((−1)^( k+1) )/k)) ) = e^( lim_( n→∞) ( Σ_(k=1) ^n (((−1)^(k+1) )/k))) = e^( ln(2)) = 2

$$ \\ $$$$\:\:\:\mathrm{P}_{{n}} \:=\:{e}^{\:\left(\frac{\mathrm{1}}{\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\left(\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\right)\:+...+\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\:+...+\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\:{e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\:\left(−\mathrm{1}\:\right)^{\:{k}+\mathrm{1}} }{{k}}} \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:\:\mathrm{P}\:=\:{lim}_{\:{n}\rightarrow\infty} \left({e}^{\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{k}+\mathrm{1}} }{{k}}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{lim}_{\:{n}\rightarrow\infty} \left(\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{e}^{\:{ln}\left(\mathrm{2}\right)} =\:\mathrm{2} \\ $$

Question Number 175766    Answers: 1   Comments: 1

Number of even composite factors of 2520?

$${Number}\:{of}\:\:{even}\:{composite}\:{factors}\:{of}\:\mathrm{2520}? \\ $$

Question Number 175765    Answers: 1   Comments: 0

lim_(x→∞) (1+(2/x))^(−x) =?

$${li}\underset{{x}\rightarrow\infty} {{m}}\left(\mathrm{1}+\frac{\mathrm{2}}{{x}}\right)^{−{x}} =? \\ $$

Question Number 175762    Answers: 0   Comments: 0

lim_(x→0) ([((nsinx )/x)]+[((ntanx )/x)]) , where [:] denotes the greatest integer function and n∈I−{0}

$$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\left(\left[\frac{\boldsymbol{\mathrm{nsinx}}\:}{\boldsymbol{\mathrm{x}}}\right]+\left[\frac{\boldsymbol{\mathrm{ntanx}}\:}{\boldsymbol{\mathrm{x}}}\right]\right)\:,\:\boldsymbol{\mathrm{where}}\:\left[:\right]\:\boldsymbol{\mathrm{denotes}} \\ $$$$\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{greatest}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{function}}\:\:\boldsymbol{\mathrm{and}}\: \\ $$$$\:\:\boldsymbol{\mathrm{n}}\in\mathbb{I}−\left\{\mathrm{0}\right\} \\ $$

Question Number 175758    Answers: 1   Comments: 0

  Pg 375      Pg 376      Pg 377      Pg 378      Pg 379      Pg 380      Pg 381      Pg 382      Pg 383      Pg 384   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com