Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 380

Question Number 182716    Answers: 1   Comments: 0

Question Number 182714    Answers: 0   Comments: 0

Question Number 182715    Answers: 1   Comments: 1

Question Number 182705    Answers: 1   Comments: 0

A father has $320 to go a sporting event with his children. If he takes tickets of $50 he lacks money, if he takes tickets of $40 he has money left over. Find the number of children.

$${A}\:{father}\:{has}\:\$\mathrm{320}\:{to}\:{go}\:{a}\:{sporting}\:{event}\:{with} \\ $$$$\:{his}\:{children}.\:{If}\:{he}\:{takes}\:{tickets}\:{of}\:\$\mathrm{50}\:{he} \\ $$$$\:{lacks}\:{money},\:{if}\:{he}\:{takes}\:{tickets}\:{of}\:\$\mathrm{40}\:{he} \\ $$$$\:{has}\:{money}\:{left}\:{over}.\:{Find}\:{the}\:{number}\:{of}\: \\ $$$$\:{children}. \\ $$

Question Number 182704    Answers: 2   Comments: 0

On a path there was an odd number of rocks with a distance of 10m between them, we want to put them all where the middle one is, if we start to collect from one of the ends and when we finish we have walked 3km in total, how many rocks are there?

$${On}\:{a}\:{path}\:{there}\:{was}\:{an}\:{odd}\:{number}\:{of}\:{rocks} \\ $$$$\:{with}\:{a}\:{distance}\:{of}\:\mathrm{10}{m}\:{between}\:{them},\:{we}\: \\ $$$$\:{want}\:{to}\:{put}\:{them}\:{all}\:{where}\:{the}\:{middle}\:{one}\:{is}, \\ $$$$\:{if}\:{we}\:{start}\:{to}\:{collect}\:{from}\:{one}\:{of}\:{the}\:{ends}\:{and} \\ $$$$\:{when}\:{we}\:{finish}\:{we}\:{have}\:{walked}\:\mathrm{3}{km}\:{in}\:{total}, \\ $$$$\:{how}\:{many}\:{rocks}\:{are}\:{there}? \\ $$

Question Number 182702    Answers: 0   Comments: 1

log_2 (x+1)−x>0

$$\mathrm{log}_{\mathrm{2}} \left({x}+\mathrm{1}\right)−{x}>\mathrm{0} \\ $$

Question Number 182695    Answers: 1   Comments: 2

If two events A and B are such that P(A^c )=0.3 ; P(B)=0.4 and P(A∩B^c )= 0.5 then P((B/(A∪B^c )))=? (A) 0.20 (B) 0.25 (C) 0.30 (D) 0.35

$$\:\:\mathrm{If}\:\mathrm{two}\:\mathrm{events}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{such}\: \\ $$$$\:\:\mathrm{that}\:\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \right)=\mathrm{0}.\mathrm{3}\:;\:\mathrm{P}\left(\mathrm{B}\right)=\mathrm{0}.\mathrm{4}\:\mathrm{and} \\ $$$$\:\:\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}^{\mathrm{c}} \right)=\:\mathrm{0}.\mathrm{5}\:\mathrm{then}\:\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}\cup\mathrm{B}^{\mathrm{c}} }\right)=? \\ $$$$\:\left(\mathrm{A}\right)\:\mathrm{0}.\mathrm{20}\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{0}.\mathrm{25}\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{0}.\mathrm{30}\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{0}.\mathrm{35} \\ $$$$\:\: \\ $$

Question Number 182694    Answers: 1   Comments: 0

Question Number 182681    Answers: 5   Comments: 6

Solve (√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14)) ; a∈ R^(+★) @Mr. Rasheed, yesterday i solved it on a draft paper When i came today to write it down on the notebook i got into a maze, do you have an easy way to deal with? “if you have time” i lost that paper, and this formula makes me laugh at myself, it′s for 13 y/o “confused face” Sure Every friend can share!

$$\:{Solve}\:\sqrt{\mathrm{39}−\:\mathrm{10}\:{a}\:−{a}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:\mathrm{2}\:\sqrt{\mathrm{14}}\:\:\:;\:{a}\in\:\mathbb{R}^{+\bigstar} \\ $$$$\:@{Mr}.\:{Rasheed},\:{yesterday}\:{i}\:{solved}\:{it}\:{on}\:{a}\:{draft}\:{paper} \\ $$$$\:{When}\:{i}\:{came}\:{today}\:{to}\:{write}\:{it}\:{down}\:{on} \\ $$$$\:{the}\:{notebook}\:{i}\:{got}\:{into}\:{a}\:{maze},\:{do}\:{you}\:{have} \\ $$$$\:{an}\:{easy}\:{way}\:{to}\:{deal}\:{with}?\:``{if}\:{you}\:{have}\:{time}'' \\ $$$$\:{i}\:{lost}\:{that}\:{paper},\:{and}\:{this}\:{formula}\:{makes}\:{me} \\ $$$$\:{laugh}\:{at}\:{myself},\:{it}'{s}\:{for}\:\mathrm{13}\:{y}/{o}\:``{confused}\:{face}''\: \\ $$$$\:{Sure}\:{Every}\:{friend}\:{can}\:{share}! \\ $$

Question Number 182676    Answers: 2   Comments: 0

Question Number 182675    Answers: 2   Comments: 0

Question Number 182659    Answers: 1   Comments: 0

lim_(n→∞) (((n!))^(1/n) /n)=?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{{n}}]{{n}!}}{{n}}=? \\ $$

Question Number 182657    Answers: 0   Comments: 0

as we can know for Q_1 , set the funvction in question as f(x) and make the first step as: a=1,f(x)=x^2 −7x+3ln x df(x)=2x−7+(3/x)=h(x) set h(x)=0⇒x=(1/2)&x=3 so,the monotonicity of f(x) is f(n)<f((1/2))_(∣n<(1/2)) ,f((1/2))>f(2),f(2)<f(p)_(∣p>2.) Q_1 has been proved finished Q_(2 ) ,set ax^2 −(a+6)x+3ln x>−6 when x∈[2,3e], make the f(x) dive two part as g(x)=ax^2 −(6+a)x&k(x)=−3(ln x+2), the middle value of g(x) is x=((a+6)/(2a)) when x=3e, k_(min) (3e)=−15, x=2, k_(max) (2)=−3(ln 2+2) g(2)=2a−12>k_(max) (x)⇒a>3−(3/2)ln 2 when x=(1/2)+(3/a), g(x)=−(((a+6)^2 )/(4a))>−3(ln (((a+6)/(2a)))+2)&a>0&2<(1/2)+(3/a)<3e

$${as}\:{we}\:{can}\:{know}\:{for}\:{Q}_{\mathrm{1}} ,\:{set}\:{the}\:{funvction}\:{in}\:{question}\:{as}\:{f}\left({x}\right) \\ $$$${and}\:{make}\:{the}\:{first}\:{step}\:{as}: \\ $$$${a}=\mathrm{1},{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{3ln}\:{x} \\ $$$${df}\left({x}\right)=\mathrm{2}{x}−\mathrm{7}+\frac{\mathrm{3}}{{x}}={h}\left({x}\right) \\ $$$${set}\:{h}\left({x}\right)=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}}\&{x}=\mathrm{3} \\ $$$${so},{the}\:{monotonicity}\:{of}\:{f}\left({x}\right)\:{is}\:{f}\left({n}\right)<{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{\mid{n}<\frac{\mathrm{1}}{\mathrm{2}}} ,{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)>{f}\left(\mathrm{2}\right),{f}\left(\mathrm{2}\right)<{f}\left({p}\underset{\mid{p}>\mathrm{2}.} {\right)} \\ $$$${Q}_{\mathrm{1}} \:{has}\:{been}\:{proved}\:{finished} \\ $$$${Q}_{\mathrm{2}\:} \:,{set}\:{ax}^{\mathrm{2}} −\left({a}+\mathrm{6}\right){x}+\mathrm{3ln}\:{x}>−\mathrm{6}\:{when}\:{x}\in\left[\mathrm{2},\mathrm{3}{e}\right], \\ $$$${make}\:{the}\:{f}\left({x}\right)\:{dive}\:{two}\:{part}\:{as} \\ $$$$\:{g}\left({x}\right)={ax}^{\mathrm{2}} −\left(\mathrm{6}+{a}\right){x\&k}\left({x}\right)=−\mathrm{3}\left(\mathrm{ln}\:{x}+\mathrm{2}\right), \\ $$$$\:{the}\:{middle}\:{value}\:{of}\:{g}\left({x}\right)\:{is}\:{x}=\frac{{a}+\mathrm{6}}{\mathrm{2}{a}} \\ $$$${when}\:{x}=\mathrm{3}{e},\:{k}_{{min}} \left(\mathrm{3}{e}\right)=−\mathrm{15},\:\:{x}=\mathrm{2},\:{k}_{{max}} \left(\mathrm{2}\right)=−\mathrm{3}\left(\mathrm{ln}\:\mathrm{2}+\mathrm{2}\right) \\ $$$${g}\left(\mathrm{2}\right)=\mathrm{2}{a}−\mathrm{12}>{k}_{{max}} \left({x}\right)\Rightarrow{a}>\mathrm{3}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{{a}},\:{g}\left({x}\right)=−\frac{\left({a}+\mathrm{6}\right)^{\mathrm{2}} }{\mathrm{4}{a}}>−\mathrm{3}\left(\mathrm{ln}\:\left(\frac{{a}+\mathrm{6}}{\mathrm{2}{a}}\right)+\mathrm{2}\right)\&{a}>\mathrm{0\&2}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{{a}}<\mathrm{3}{e} \\ $$$$ \\ $$

Question Number 182650    Answers: 0   Comments: 0

Question Number 182649    Answers: 1   Comments: 0

f(x;y)=((x^2 +y^2 )/(x^2 +y^4 )) lim_(x→∞) (lim_(y→0) f(x;y))=? lim_(y→∞) (lim_(x→∞) f(x;y))=?

$$\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)=\frac{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{4}} }\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$$$\underset{\boldsymbol{{y}}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$

Question Number 182648    Answers: 3   Comments: 0

∫_0 ^(π/4) ((sec^2 x)/(tan x−sec x)) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{sec}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 182646    Answers: 0   Comments: 2

prove that lim_(n→∞) [((((n+1)!∙(2n+1)!!))^(1/(n+1)) /(n+1))−(((n!∙(2n−1)!!))^(1/n) /n)]=(2/e^2 )

$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!\centerdot\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}{{n}+\mathrm{1}}−\frac{\sqrt[{{n}}]{{n}!\centerdot\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}{{n}}\right]=\frac{\mathrm{2}}{{e}^{\mathrm{2}} } \\ $$

Question Number 182644    Answers: 0   Comments: 5

solve for x>0 (1+(1/x))^x >(5/2)

$${solve}\:{for}\:{x}>\mathrm{0} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} >\frac{\mathrm{5}}{\mathrm{2}} \\ $$

Question Number 182640    Answers: 0   Comments: 0

which software is the best for mathematics problems solving by video edit maker?

$${which}\:{software}\:{is}\:{the}\:{best}\:{for} \\ $$$${mathematics}\:{problems}\:{solving}\:{by}\:{video} \\ $$$${edit}\:{maker}? \\ $$

Question Number 182636    Answers: 0   Comments: 2

∫_(−1) ^3 (1/x^2 ) dx=?

$$\underset{−\mathrm{1}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx}=? \\ $$

Question Number 182632    Answers: 1   Comments: 0

If log _(11) (3p)=log _(13) (q+6p) = log _(143) (q^2 ) find (p/q).

$$\:\:\mathrm{If}\:\mathrm{log}\:_{\mathrm{11}} \left(\mathrm{3p}\right)=\mathrm{log}\:_{\mathrm{13}} \left(\mathrm{q}+\mathrm{6p}\right)\:=\:\mathrm{log}\:_{\mathrm{143}} \left(\mathrm{q}^{\mathrm{2}} \right) \\ $$$$\:\mathrm{find}\:\frac{\mathrm{p}}{\mathrm{q}}. \\ $$

Question Number 182629    Answers: 0   Comments: 0

Π_(n=2) ^∞ e(1−(1/n^2 ))^n^2 = ?

$$\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\prod}}\:\boldsymbol{\mathrm{e}}\left(\mathrm{1}−\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right)^{\boldsymbol{\mathrm{n}}^{\mathrm{2}} } \:=\:\:? \\ $$

Question Number 182627    Answers: 1   Comments: 0

(((1+(√5))/2))^(15) =((a+b(√5))/2) find a+b

$$\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{15}} =\frac{{a}+{b}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${find}\:{a}+{b} \\ $$

Question Number 182623    Answers: 2   Comments: 1

Question Number 182620    Answers: 1   Comments: 0

Question Number 182613    Answers: 2   Comments: 0

  Pg 375      Pg 376      Pg 377      Pg 378      Pg 379      Pg 380      Pg 381      Pg 382      Pg 383      Pg 384   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com