Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 369

Question Number 184753    Answers: 1   Comments: 0

Question Number 184744    Answers: 1   Comments: 1

given that the 5th term of an AP is more than its firs term by 12. and the 6th term is more than the first term by 10. find the fist term? common difference and 100th term

$${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$

Question Number 184739    Answers: 1   Comments: 1

Number of linear functions be defined f:[−1, 1]→[0,2] is a)1 b)2 c)3 d)4

$${Number}\:{of}\:{linear}\:{functions}\: \\ $$$${be}\:{defined}\:{f}:\left[−\mathrm{1},\:\mathrm{1}\right]\rightarrow\left[\mathrm{0},\mathrm{2}\right]\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:{c}\right)\mathrm{3}\:\:\:{d}\right)\mathrm{4} \\ $$

Question Number 184738    Answers: 1   Comments: 0

α , β are roots of , x^( 2) −x−1=0 ( α > β ) and , t_( n) = ((α^( n) − β^( n) )/(α−β)) ( n ∈ N ), if , b_1 =1 , b_( n) = t_( n−1) +t_( n−2) ( n ≥2 ) find the value of S = Σ_(n=1) ^∞ (( b_( n) )/(10^( n) )) =?

$$ \\ $$$$\alpha\:\:,\:\beta\:\:{are}\:{roots}\:{of}\:\:,\:{x}^{\:\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\:\:\alpha\:>\:\beta\:\right)\:{and}\:,\:\:{t}_{\:{n}} =\:\frac{\alpha^{\:{n}} −\:\beta^{\:{n}} }{\alpha−\beta} \\ $$$$\:\left(\:{n}\:\in\:\mathbb{N}\:\right),\:{if}\:,\:{b}_{\mathrm{1}} =\mathrm{1}\:,\:{b}_{\:{n}} =\:{t}_{\:{n}−\mathrm{1}} +{t}_{\:{n}−\mathrm{2}} \\ $$$$\:\:\:\left(\:{n}\:\geqslant\mathrm{2}\:\right)\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{b}_{\:{n}} }{\mathrm{10}^{\:{n}} }\:=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 184735    Answers: 0   Comments: 3

f(x,y)=((√(3xy^2 )))(((x^5 y^2 ))^(1/5) ) f^′ (x,y)=? f′′(x,y)=?

$$ \\ $$$${f}\left({x},{y}\right)=\left(\sqrt{\mathrm{3}{xy}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} {y}^{\mathrm{2}} }\right) \\ $$$${f}^{'} \left({x},{y}\right)=?\:\:\:\:\:{f}''\left({x},{y}\right)=? \\ $$$$ \\ $$

Question Number 184731    Answers: 1   Comments: 0

Express this function in both its Cartesian and polar form f(z) = ze^(iz) . Help!

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184728    Answers: 5   Comments: 0

x^( 2) − 3x +1=0 α , β are roots : ( α^( 3) +(1/β) )^( 3) + ( β^^( 3) +(1/α) )^( 3) = ?

$$ \\ $$$$\:\:\:\:\:\:{x}^{\:\mathrm{2}} −\:\mathrm{3}{x}\:+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\alpha\:,\:\beta\:{are}\:{roots}\:: \\ $$$$\:\:\:\left(\:\alpha^{\:\mathrm{3}} \:+\frac{\mathrm{1}}{\beta}\:\right)^{\:\mathrm{3}} \:+\:\left(\:\beta^{\:^{\:\mathrm{3}} } \:+\frac{\mathrm{1}}{\alpha}\:\right)^{\:\mathrm{3}} =\:? \\ $$$$ \\ $$

Question Number 184726    Answers: 1   Comments: 0

Question Number 184724    Answers: 0   Comments: 1

Question Number 184720    Answers: 1   Comments: 0

y=((√(3xy^2 )))(((x^5 y^2 ))^(1/5) ) y′=? y^(′′) =?

$$ \\ $$$${y}=\left(\sqrt{\mathrm{3}{xy}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} {y}^{\mathrm{2}} }\right) \\ $$$${y}'=?\:\:\:\:\:\:{y}^{''} =? \\ $$

Question Number 184719    Answers: 1   Comments: 0

Question Number 184718    Answers: 2   Comments: 0

Question Number 184706    Answers: 1   Comments: 0

deg[3p(x)+Q(x)]=6 deg[p(x)+x^4 ]=5 deg[(((x^4 +1)p(x^2 ))/(x^3 ∙Q(x)))]=? deg=degree

$$\mathrm{deg}\left[\mathrm{3p}\left(\mathrm{x}\right)+\mathrm{Q}\left(\mathrm{x}\right)\right]=\mathrm{6} \\ $$$$\mathrm{deg}\left[\mathrm{p}\left(\mathrm{x}\right)+\mathrm{x}^{\mathrm{4}} \right]=\mathrm{5} \\ $$$$\mathrm{deg}\left[\frac{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)\mathrm{p}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{3}} \centerdot\mathrm{Q}\left(\mathrm{x}\right)}\right]=? \\ $$$$\mathrm{deg}=\mathrm{degree}\: \\ $$

Question Number 184705    Answers: 0   Comments: 0

Question Number 184683    Answers: 1   Comments: 0

x′′ − (5/t) x′ + (8/t^2 ) x = ((2 ln t)/t^2 ) solve the differential eqn

$${x}''\:−\:\frac{\mathrm{5}}{{t}}\:{x}'\:+\:\frac{\mathrm{8}}{{t}^{\mathrm{2}} }\:{x}\:=\:\frac{\mathrm{2}\:{ln}\:{t}}{{t}^{\mathrm{2}} } \\ $$$${solve}\:{the}\:{differential}\:{eqn} \\ $$

Question Number 184669    Answers: 0   Comments: 3

Question Number 184668    Answers: 0   Comments: 0

Question Number 184656    Answers: 1   Comments: 0

prove that the area of a triangle whose two sides are A^− and B^− is given by (1/2)∣A×B∣. Also find the direction−cosine of normal to this area. Help!

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{whose}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{are}\:\overset{−} {\mathrm{A}}\:\mathrm{and}\:\overset{−} {\mathrm{B}}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{A}×\mathrm{B}\mid. \\ $$$$\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{direction}−\mathrm{cosine} \\ $$$$\mathrm{of}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{this}\:\mathrm{area}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184655    Answers: 1   Comments: 0

prove that an angle inscribe in a semi−circle is a right angle. Help!

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{inscribe}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{semi}−\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184645    Answers: 1   Comments: 0

Question Number 184633    Answers: 1   Comments: 0

Question Number 184638    Answers: 0   Comments: 6

Question Number 184618    Answers: 1   Comments: 0

If xy≤ax^2 +2y^2 is always true for any 1≤x≤2, 2≤y≤3 Then find the range of a.

$$\mathrm{If}\:{xy}\leqslant{ax}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\mathrm{1}\leqslant{x}\leqslant\mathrm{2},\:\mathrm{2}\leqslant{y}\leqslant\mathrm{3} \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$

Question Number 184622    Answers: 1   Comments: 0

Solve for real numbers: sinx (√(1 − sin^2 x)) = 1 + cosy (√(1 − cos^2 y))

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{sinx}\:\sqrt{\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\:=\:\mathrm{1}\:+\:\mathrm{cosy}\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}^{\mathrm{2}} \mathrm{y}}\: \\ $$

Question Number 184620    Answers: 3   Comments: 1

Question Number 184609    Answers: 2   Comments: 0

  Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com