Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 369

Question Number 183865    Answers: 1   Comments: 0

Question Number 183864    Answers: 4   Comments: 2

Question Number 183863    Answers: 1   Comments: 0

Question Number 183850    Answers: 0   Comments: 0

𝚺_(n=1) ^∞ (1/(n^3 (((6n)),((3n)) )))

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{3}} \begin{pmatrix}{\mathrm{6}\boldsymbol{\mathrm{n}}}\\{\mathrm{3}\boldsymbol{\mathrm{n}}}\end{pmatrix}} \\ $$

Question Number 183848    Answers: 2   Comments: 1

Question Number 183847    Answers: 5   Comments: 0

Question Number 183846    Answers: 4   Comments: 0

Question Number 183845    Answers: 2   Comments: 0

Question Number 183844    Answers: 2   Comments: 0

Question Number 183843    Answers: 1   Comments: 0

Question Number 183835    Answers: 2   Comments: 0

Resoudre le systeme abc =30 a+b+c =10 ab+bc+ac=31

$${Resoudre}\:{le}\:{systeme} \\ $$$$\:\:\mathrm{abc}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{30} \\ $$$$\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}\:\:\:\:\:\:\:=\mathrm{10} \\ $$$$\:\:\:\mathrm{ab}+\mathrm{bc}+\mathrm{ac}=\mathrm{31} \\ $$$$ \\ $$

Question Number 183827    Answers: 1   Comments: 0

calcul: S=Σ_(n=2 ) ^(+oo) (n/((n^2 −1)^2 ))

$${calcul}:\:\:{S}=\underset{{n}=\mathrm{2}\:\:} {\overset{+{oo}} {\sum}}\frac{{n}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 183825    Answers: 1   Comments: 0

solve for x by using lambert function 2^x +3x=8

$${solve}\:{for}\:{x}\:{by}\:{using}\:{lambert}\:{function} \\ $$$$\mathrm{2}^{{x}} +\mathrm{3}{x}=\mathrm{8} \\ $$

Question Number 183815    Answers: 1   Comments: 0

Question Number 183814    Answers: 1   Comments: 0

determine eigen values and eigen vectors for each λ . and verify Ax=λx A= [(((√3)/2),(−(1/2))),((1/2),( ((√3)/2))) ]

$${determine}\:{eigen}\:{values}\:{and}\:{eigen}\:{vectors}\:{for} \\ $$$${each}\:\lambda\:.\:{and}\:{verify}\:{Ax}=\lambda{x} \\ $$$${A}=\begin{bmatrix}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}&{−\frac{\mathrm{1}}{\mathrm{2}}}\\{\frac{\mathrm{1}}{\mathrm{2}}}&{\:\:\:\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{bmatrix} \\ $$

Question Number 183806    Answers: 1   Comments: 0

∫ ((√(x+(√(x^2 +25))))/x) dx =?

$$\:\:\int\:\frac{\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}}}{{x}}\:{dx}\:=? \\ $$

Question Number 183803    Answers: 1   Comments: 0

Question Number 183783    Answers: 0   Comments: 0

Question Number 183777    Answers: 2   Comments: 1

Question Number 183776    Answers: 0   Comments: 0

Question Number 183773    Answers: 2   Comments: 0

In a square (ABCD) there is a quarter of a circle ADC (AD = DC), put a point N in the arc AC such that AN = 1 and NC = 2(√2) find BN.

$$\:{In}\:{a}\:{square}\:\left({ABCD}\right)\:{there}\:{is}\:{a}\:{quarter}\:{of} \\ $$$$\:{a}\:{circle}\:{ADC}\:\left({AD}\:=\:{DC}\right),\:{put}\:{a}\:{point}\:{N} \\ $$$$\:{in}\:{the}\:{arc}\:{AC}\:{such}\:{that}\:{AN}\:=\:\mathrm{1}\:{and}\:{NC}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:{find}\:{BN}.\: \\ $$$$\: \\ $$

Question Number 183767    Answers: 1   Comments: 0

Question Number 183766    Answers: 1   Comments: 0

Question Number 183769    Answers: 0   Comments: 4

solve for x: x^x^x =2^(2048) by using lambert function

$${solve}\:{for}\:{x}: \\ $$$${x}^{{x}^{{x}} } =\mathrm{2}^{\mathrm{2048}} \\ $$$${by}\:{using}\:{lambert}\:{function} \\ $$

Question Number 183761    Answers: 1   Comments: 0

Solve the differential equation for the function given by U(x,t). { (((∂U/∂t) = 2(∂^2 U/∂x^2 ) , 0 < x < π)),((U(0,t) = 0, U(π,t) = 0, t > 0)) :} U(x,0) = 25x

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{given}\:\mathrm{by}\:{U}\left({x},{t}\right). \\ $$$$\begin{cases}{\frac{\partial{U}}{\partial{t}}\:=\:\mathrm{2}\frac{\partial^{\mathrm{2}} {U}}{\partial{x}^{\mathrm{2}} }\:,\:\mathrm{0}\:<\:{x}\:<\:\pi}\\{{U}\left(\mathrm{0},{t}\right)\:=\:\mathrm{0},\:{U}\left(\pi,{t}\right)\:=\:\mathrm{0},\:{t}\:>\:\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{U}\left({x},\mathrm{0}\right)\:=\:\mathrm{25}{x} \\ $$

Question Number 183795    Answers: 2   Comments: 0

  Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com