Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 369

Question Number 183342    Answers: 3   Comments: 0

Find: 3 − (2/(3 − (2/(3 − (2/(...)))))) = ?

$$\mathrm{Find}:\:\:\:\:\:\mathrm{3}\:−\:\frac{\mathrm{2}}{\mathrm{3}\:−\:\frac{\mathrm{2}}{\mathrm{3}\:−\:\frac{\mathrm{2}}{...}}}\:=\:? \\ $$

Question Number 183330    Answers: 0   Comments: 2

S = sinhx+sinh^2 x + sinh^3 x+...+sinh^n x=?

$$\:\:{S}\:=\:{sinhx}+{sinh}^{\mathrm{2}} {x}\:+\:{sinh}^{\mathrm{3}} {x}+...+{sinh}^{{n}} {x}=? \\ $$

Question Number 183326    Answers: 2   Comments: 1

Question Number 183325    Answers: 1   Comments: 1

Question Number 183324    Answers: 2   Comments: 1

Find the minimum distance between C_f , C_g ; C_f : y^2 = 4ax , C_g : x^2 + y^2 −24ay+ 128a^2 = 0

$${Find}\:{the}\:{minimum}\:{distance}\:{between}\:{C}_{{f}} \:,\:{C}_{{g}} \\ $$$$\:;\:{C}_{{f}} \::\:{y}^{\mathrm{2}} =\:\mathrm{4}{ax}\:,\:{C}_{{g}} :\:{x}^{\mathrm{2}} +\:{y}^{\mathrm{2}} −\mathrm{24}{ay}+\:\mathrm{128}{a}^{\mathrm{2}} =\:\mathrm{0} \\ $$

Question Number 183320    Answers: 1   Comments: 0

∫^(π/2) _0 (dx/(cox(x/2)∙cos(x/2^2 )∙∙∙∙∙cos(x/2^n )))=?

$$\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{cox}\frac{{x}}{\mathrm{2}}\centerdot{cos}\frac{{x}}{\mathrm{2}^{\mathrm{2}} }\centerdot\centerdot\centerdot\centerdot\centerdot{cos}\frac{{x}}{\mathrm{2}^{{n}} }}=? \\ $$

Question Number 183318    Answers: 0   Comments: 0

Question Number 183307    Answers: 1   Comments: 1

Question Number 183301    Answers: 0   Comments: 3

(((1067)),((249)) )+ (((1067)),((250)) )=?

$$\begin{pmatrix}{\mathrm{1067}}\\{\mathrm{249}}\end{pmatrix}+\begin{pmatrix}{\mathrm{1067}}\\{\mathrm{250}}\end{pmatrix}=? \\ $$

Question Number 183294    Answers: 0   Comments: 0

Question Number 183293    Answers: 1   Comments: 0

Help! A beam being lifted by two forces where F1makes an angle of 23° degrees with the y axis acts in the second quadrant F2 acts in the first quadrant making an angle of 32° degrees with the y axis and the resultant force is 67 N, determine F1 and F2.

$$\: \\ $$$$\:\mathrm{Help}! \\ $$$$\: \\ $$$$\:\mathrm{A}\:\mathrm{beam}\:\mathrm{being}\:\mathrm{lifted}\:\mathrm{by}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{where}\: \\ $$$$\:\mathrm{F1makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{23}°\:\mathrm{degrees}\:\mathrm{with}\:\mathrm{the}\:\mathrm{y} \\ $$$$\:\mathrm{axis}\:\mathrm{acts}\:\mathrm{in}\:\mathrm{the}\:\mathrm{second}\:\mathrm{quadrant}\:\mathrm{F2}\:\mathrm{acts}\:\mathrm{in} \\ $$$$\:\mathrm{the}\:\mathrm{first}\:\mathrm{quadrant}\:\mathrm{making}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{32}° \\ $$$$\:\mathrm{degrees}\:\mathrm{with}\:\mathrm{the}\:\mathrm{y}\:\mathrm{axis}\:\mathrm{and}\:\mathrm{the}\:\mathrm{resultant} \\ $$$$\:\mathrm{force}\:\mathrm{is}\:\mathrm{67}\:\mathrm{N},\:\mathrm{determine}\:\mathrm{F1}\:\mathrm{and}\:\mathrm{F2}. \\ $$$$\: \\ $$

Question Number 183285    Answers: 0   Comments: 0

Question Number 183281    Answers: 2   Comments: 1

Question Number 183279    Answers: 1   Comments: 0

∫ ((sin x+cos x)/((tan x−cot x)^3 )) dx =?

$$\:\:\int\:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\left(\mathrm{tan}\:{x}−\mathrm{cot}\:{x}\right)^{\mathrm{3}} }\:{dx}\:=? \\ $$

Question Number 183272    Answers: 0   Comments: 0

Question Number 183270    Answers: 1   Comments: 5

Question Number 183269    Answers: 0   Comments: 0

Question Number 183247    Answers: 0   Comments: 0

∫_0 ^(π/2) cos(t)ln(tant)dt

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({t}\right){ln}\left({tant}\right){dt} \\ $$

Question Number 183246    Answers: 3   Comments: 0

Question Number 183243    Answers: 1   Comments: 0

∫ (((√(sin x)) −(√(cos x)))/( (√(sin x)) + (√(cos x)))) dx =?

$$\:\:\int\:\frac{\sqrt{\mathrm{sin}\:{x}}\:−\sqrt{\mathrm{cos}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}}\:+\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\:=? \\ $$

Question Number 183241    Answers: 1   Comments: 0

Find the equation of the line which is tangent to the parabola y^2 =12x and forms an angle of 45° with the line y=3x−4.

$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{which} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{parabola}\:{y}^{\mathrm{2}} =\mathrm{12}{x} \\ $$$${and}\:{forms}\:{an}\:{angle}\:{of}\:\mathrm{45}°\:{with}\: \\ $$$${the}\:{line}\:{y}=\mathrm{3}{x}−\mathrm{4}. \\ $$

Question Number 183240    Answers: 1   Comments: 0

find the value of cofficent μ in the following system from the determinat: 2x_1 +μx_2 +x_3 =0 (μ−1)x_1 −x_2 +2x_3 =0 4x_1 +x^2 +4x^3 =0

$${find}\:{the}\:{value}\:{of}\:{cofficent}\:\mu\:{in}\:{the}\:{following} \\ $$$${system}\:{from}\:{the}\:{determinat}: \\ $$$$\mathrm{2}{x}_{\mathrm{1}} +\mu{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{0} \\ $$$$\left(\mu−\mathrm{1}\right){x}_{\mathrm{1}} −{x}_{\mathrm{2}} +\mathrm{2}{x}_{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{4}{x}_{\mathrm{1}} +{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} =\mathrm{0} \\ $$

Question Number 183239    Answers: 0   Comments: 0

determine eigenvalues and digonalize by row operation [(4,(−9),6,(12)),(9,(−1),4,6),(2,(−11),8,(16)),((−1),( 3),0,(−1)) ]

$${determine}\:{eigenvalues}\:{and}\:{digonalize} \\ $$$${by}\:{row}\:{operation} \\ $$$$\begin{bmatrix}{\mathrm{4}}&{−\mathrm{9}}&{\mathrm{6}}&{\mathrm{12}}\\{\mathrm{9}}&{−\mathrm{1}}&{\mathrm{4}}&{\mathrm{6}}\\{\mathrm{2}}&{−\mathrm{11}}&{\mathrm{8}}&{\mathrm{16}}\\{−\mathrm{1}}&{\:\:\:\:\mathrm{3}}&{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix} \\ $$$$ \\ $$

Question Number 183236    Answers: 1   Comments: 2

dererminer la valeur x?

$${dererminer}\:\:{la}\:{valeur}\:{x}? \\ $$

Question Number 183227    Answers: 4   Comments: 1

Question Number 183216    Answers: 1   Comments: 2

  Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com