Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 369

Question Number 184828    Answers: 0   Comments: 1

Find x in terms of c ∀ 0<c<(2/(3(√3))) (3x^2 −1)(3x^2 +36x−1)^2 ={4(x^3 −x−c)+9(7x^2 +1)}^2

$${Find}\:{x}\:{in}\:{terms}\:{of}\:\:\:{c}\:\:\forall\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left\{\mathrm{4}\left({x}^{\mathrm{3}} −{x}−{c}\right)+\mathrm{9}\left(\mathrm{7}{x}^{\mathrm{2}} +\mathrm{1}\right)\right\}^{\mathrm{2}} \\ $$

Question Number 184823    Answers: 1   Comments: 0

Lim_( x→ 0^( +) ) (( 1− cos ( 1− cos((√x) )))/x^( 4) )

$$ \\ $$$$\:\:\:\mathrm{Lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \:\:\frac{\:\:\mathrm{1}−\:\:\mathrm{cos}\:\left(\:\mathrm{1}−\:\mathrm{cos}\left(\sqrt{{x}}\:\right)\right)}{{x}^{\:\mathrm{4}} } \\ $$

Question Number 184822    Answers: 1   Comments: 0

Question Number 184819    Answers: 2   Comments: 0

For 0≤x≤1 , maximum value of f(x)=x(√(1−x+(√(1−x)))) is __

$$\:\:{For}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:{maximum}\:{value} \\ $$$$\:\:{of}\:{f}\left({x}\right)={x}\sqrt{\mathrm{1}−{x}+\sqrt{\mathrm{1}−{x}}}\:{is}\:\_\_ \\ $$

Question Number 184798    Answers: 0   Comments: 1

Show that lim_(x→0) (x/(∣x∣)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mid{x}\mid}\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184797    Answers: 0   Comments: 1

Show that lim_(x→0) ((e^(1/x) −1)/(e^(1/x) +1)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184796    Answers: 1   Comments: 2

Evaluate lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{6}}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3}}\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{{x}−\frac{\pi}{\mathrm{6}}} \\ $$

Question Number 184795    Answers: 1   Comments: 1

Evaluate lim_(x→0) ((1−cos x(√(cos 2x)) )/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:}{{x}^{\mathrm{2}} } \\ $$

Question Number 184794    Answers: 4   Comments: 2

Evaluate lim_(x→2) ((x^5 −32)/(x^3 −8))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{5}} −\mathrm{32}}{{x}^{\mathrm{3}} −\mathrm{8}} \\ $$

Question Number 184793    Answers: 1   Comments: 0

Evaluate lim_(x→2) ((x^2 −4)/( (√(3x−2))−(√(x+2))))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{\mathrm{3}{x}−\mathrm{2}}−\sqrt{{x}+\mathrm{2}}} \\ $$$$ \\ $$

Question Number 184792    Answers: 1   Comments: 2

Evaluate lim_(x→0) ((tan x−sin x)/(sin^3 x))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}} \\ $$$$ \\ $$

Question Number 184791    Answers: 0   Comments: 2

Evaluate lim_(x→0) ((e^x +e^(−x) −2)/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{e}^{{x}} +{e}^{−{x}} −\mathrm{2}}{{x}^{\mathrm{2}} } \\ $$

Question Number 184790    Answers: 2   Comments: 2

Evaluate lim_(x→0) (((1+x)^6 −1)/((1+x)^5 −1))

$${Evaluate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{6}} −\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{5}} −\mathrm{1}} \\ $$

Question Number 184787    Answers: 0   Comments: 2

x^4 +16x^3 +9x^2 +256x+256=0 Find the values of x?

$$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 184775    Answers: 1   Comments: 2

(1/(6 + (9/(6 + ((25)/(6 + ((49)/(6 + ((81)/(6+ ......)) )) )) )) )) =?

$$\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{6}\:+\:\frac{\mathrm{9}}{\mathrm{6}\:+\:\:\frac{\mathrm{25}}{\mathrm{6}\:\:+\:\:\frac{\mathrm{49}}{\mathrm{6}\:+\:\frac{\mathrm{81}}{\mathrm{6}+\:......}\:\:\:\:\:}\:\:\:\:\:}\:\:}\:\:\:\:\:\:\:\:}\:\:=? \\ $$$$ \\ $$$$ \\ $$

Question Number 184774    Answers: 1   Comments: 2

Calcul the sum 1.Σx(1+x^2 )^(1/2) 2.Σxarctan(x) 3.Σe^x sinx 4.Σ(2x+1)^(20) 5.Σ(√(a^2 −x^2 )) a>0 6.Σxsinx

$${Calcul}\:{the}\:{sum} \\ $$$$\mathrm{1}.\Sigma{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2}.\Sigma{xarctan}\left({x}\right) \\ $$$$\mathrm{3}.\Sigma{e}^{{x}} {sinx} \\ $$$$\mathrm{4}.\Sigma\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{20}} \\ $$$$\mathrm{5}.\Sigma\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:}\:{a}>\mathrm{0} \\ $$$$\mathrm{6}.\Sigma{xsinx} \\ $$

Question Number 184773    Answers: 2   Comments: 1

lim_(x→1) ((ax+b)/( (√(1+3x))−2))=c 2a−2b+3c=? (a,b,c)≠0 pease solution????

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{ax}+\mathrm{b}}{\:\sqrt{\mathrm{1}+\mathrm{3x}}−\mathrm{2}}=\mathrm{c} \\ $$$$\mathrm{2a}−\mathrm{2b}+\mathrm{3c}=? \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\neq\mathrm{0} \\ $$$$\mathrm{pease}\:\mathrm{solution}???? \\ $$

Question Number 184769    Answers: 0   Comments: 2

Question Number 184768    Answers: 1   Comments: 1

Σ_(n=o) ^(+oo) (x^n /(4n^2 −1))

$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 184757    Answers: 2   Comments: 2

Which function has a crisis point? a)y=x^3 +2x+6 b)y=(x)^(1/4) c)y=((15)/x) d)y=e^x e)y=(x)^(1/3)

$$\mathrm{Which}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{crisis}\:\mathrm{point}? \\ $$$$\left.\mathrm{a}\right)\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}+\mathrm{6} \\ $$$$\left.\mathrm{b}\right)\mathrm{y}=\sqrt[{\mathrm{4}}]{\mathrm{x}} \\ $$$$\left.\mathrm{c}\right)\mathrm{y}=\frac{\mathrm{15}}{\mathrm{x}} \\ $$$$\left.\mathrm{d}\right)\mathrm{y}=\mathrm{e}^{\boldsymbol{\mathrm{x}}} \\ $$$$\left.\mathrm{e}\right)\mathrm{y}=\sqrt[{\mathrm{3}}]{\mathrm{x}} \\ $$

Question Number 184753    Answers: 1   Comments: 0

Question Number 184744    Answers: 1   Comments: 1

given that the 5th term of an AP is more than its firs term by 12. and the 6th term is more than the first term by 10. find the fist term? common difference and 100th term

$${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$

Question Number 184739    Answers: 1   Comments: 1

Number of linear functions be defined f:[−1, 1]→[0,2] is a)1 b)2 c)3 d)4

$${Number}\:{of}\:{linear}\:{functions}\: \\ $$$${be}\:{defined}\:{f}:\left[−\mathrm{1},\:\mathrm{1}\right]\rightarrow\left[\mathrm{0},\mathrm{2}\right]\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:{c}\right)\mathrm{3}\:\:\:{d}\right)\mathrm{4} \\ $$

Question Number 184738    Answers: 1   Comments: 0

α , β are roots of , x^( 2) −x−1=0 ( α > β ) and , t_( n) = ((α^( n) − β^( n) )/(α−β)) ( n ∈ N ), if , b_1 =1 , b_( n) = t_( n−1) +t_( n−2) ( n ≥2 ) find the value of S = Σ_(n=1) ^∞ (( b_( n) )/(10^( n) )) =?

$$ \\ $$$$\alpha\:\:,\:\beta\:\:{are}\:{roots}\:{of}\:\:,\:{x}^{\:\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\:\:\alpha\:>\:\beta\:\right)\:{and}\:,\:\:{t}_{\:{n}} =\:\frac{\alpha^{\:{n}} −\:\beta^{\:{n}} }{\alpha−\beta} \\ $$$$\:\left(\:{n}\:\in\:\mathbb{N}\:\right),\:{if}\:,\:{b}_{\mathrm{1}} =\mathrm{1}\:,\:{b}_{\:{n}} =\:{t}_{\:{n}−\mathrm{1}} +{t}_{\:{n}−\mathrm{2}} \\ $$$$\:\:\:\left(\:{n}\:\geqslant\mathrm{2}\:\right)\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{b}_{\:{n}} }{\mathrm{10}^{\:{n}} }\:=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 184735    Answers: 0   Comments: 3

f(x,y)=((√(3xy^2 )))(((x^5 y^2 ))^(1/5) ) f^′ (x,y)=? f′′(x,y)=?

$$ \\ $$$${f}\left({x},{y}\right)=\left(\sqrt{\mathrm{3}{xy}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} {y}^{\mathrm{2}} }\right) \\ $$$${f}^{'} \left({x},{y}\right)=?\:\:\:\:\:{f}''\left({x},{y}\right)=? \\ $$$$ \\ $$

Question Number 184731    Answers: 1   Comments: 0

Express this function in both its Cartesian and polar form f(z) = ze^(iz) . Help!

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

  Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com