Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 369

Question Number 184435    Answers: 1   Comments: 0

Question Number 184434    Answers: 2   Comments: 0

(2a−b)b+(5/(3a))−7b^2 +3a=0 Evaluer b en fonction de a

$$\left(\mathrm{2}{a}−{b}\right){b}+\frac{\mathrm{5}}{\mathrm{3}{a}}−\mathrm{7}{b}^{\mathrm{2}} +\mathrm{3}{a}=\mathrm{0} \\ $$$${Evaluer}\:\:\boldsymbol{{b}}\:{en}\:{fonction}\:{de}\:\boldsymbol{{a}} \\ $$

Question Number 184431    Answers: 2   Comments: 0

If { ((a+(1/b)=(7/3))),((b+(1/c)=4)),((c+(1/a)=1)) :} find 2022∙abc

$${If}\:\:\:\begin{cases}{\mathrm{a}+\frac{\mathrm{1}}{\mathrm{b}}=\frac{\mathrm{7}}{\mathrm{3}}}\\{\mathrm{b}+\frac{\mathrm{1}}{\mathrm{c}}=\mathrm{4}}\\{\mathrm{c}+\frac{\mathrm{1}}{\mathrm{a}}=\mathrm{1}}\end{cases}\:\:\:\mathrm{find}\:\:\mathrm{2022}\centerdot\mathrm{abc} \\ $$

Question Number 184424    Answers: 2   Comments: 1

Help please: { ((x+x^(−1) −(√2)=0)),((x^(2017) +x^(2017) +(√2)=?)) :}

$${Help}\:{please}: \\ $$$$\begin{cases}{{x}+{x}^{−\mathrm{1}} −\sqrt{\mathrm{2}}=\mathrm{0}}\\{{x}^{\mathrm{2017}} +{x}^{\mathrm{2017}} +\sqrt{\mathrm{2}}=?}\end{cases} \\ $$

Question Number 184401    Answers: 2   Comments: 3

U_n = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1) with U_0 =1 find U_(n ) in terms of n (question Q173132 reposted)

$${U}_{{n}} \:=\:\left(\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }\right){U}_{{n}−\mathrm{1}} \:{with}\:{U}_{\mathrm{0}} =\mathrm{1} \\ $$$${find}\:{U}_{{n}\:} \:{in}\:{terms}\:{of}\:{n}\:\: \\ $$$$ \\ $$$$\left({question}\:{Q}\mathrm{173132}\:{reposted}\right) \\ $$

Question Number 184399    Answers: 0   Comments: 0

what is the nature of the integral: ∫_0 ^1 (e^(sint) /t^a )dt .αεR

$${what}\:{is}\:{the}\:{nature}\:{of}\:{the}\:{integral}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{e}^{{sint}} }{{t}^{{a}} }{dt}\:.\alpha\epsilon{R} \\ $$

Question Number 184398    Answers: 1   Comments: 0

Question Number 184387    Answers: 2   Comments: 1

Question Number 184384    Answers: 0   Comments: 7

Question Number 184383    Answers: 0   Comments: 0

Question Number 184378    Answers: 3   Comments: 0

lim_(x→∞) (−ln((21)/(10)))^(2x) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(−\mathrm{ln}\frac{\mathrm{21}}{\mathrm{10}}\right)^{\mathrm{2x}} =? \\ $$

Question Number 184376    Answers: 1   Comments: 0

2^x =x^2 x=2 x=4 x=−0.76666 ??????????????????? solution please

$$\mathrm{2}^{\mathrm{x}} =\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{x}=\mathrm{2} \\ $$$$\mathrm{x}=\mathrm{4} \\ $$$$\mathrm{x}=−\mathrm{0}.\mathrm{76666} \\ $$$$??????????????????? \\ $$$$\mathrm{solution}\:\mathrm{please} \\ $$

Question Number 184373    Answers: 0   Comments: 0

Question Number 184370    Answers: 1   Comments: 1

Question Number 184352    Answers: 3   Comments: 0

Question Number 184351    Answers: 5   Comments: 0

f(x)=((a^x +b^x +c^x )/x) with a+b+c=0 prove f(7)=f(5)×f(2)

$${f}\left({x}\right)=\frac{{a}^{{x}} +{b}^{{x}} +{c}^{{x}} }{{x}}\:{with}\:{a}+{b}+{c}=\mathrm{0} \\ $$$${prove}\:{f}\left(\mathrm{7}\right)={f}\left(\mathrm{5}\right)×{f}\left(\mathrm{2}\right) \\ $$

Question Number 184356    Answers: 2   Comments: 0

Question Number 184349    Answers: 1   Comments: 0

I_n = ∫_0 ^( 1) (1−x^2 )^n dx Relate I_n and I_(n−1) Find I_n in terms of n hence deduce that Σ_(k=0) ^n (((−1)^k ((n),(k) ))/(2k+1))=((2^(2n) (n!)^2 )/((2n+1)!))

$${I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$${Relate}\:{I}_{{n}} \:{and}\:{I}_{{n}−\mathrm{1}} \\ $$$${Find}\:{I}_{{n}} \:{in}\:{terms}\:{of}\:{n} \\ $$$${hence}\:{deduce}\:{that}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}}{\mathrm{2}{k}+\mathrm{1}}=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$

Question Number 184346    Answers: 1   Comments: 0

∫ ((xdx)/(a+bx)) = ?

$$\:\:\int\:\frac{{xdx}}{{a}+{bx}}\:=\:? \\ $$

Question Number 184341    Answers: 1   Comments: 1

lim_(x→∞) (x^2 /3^x )=?

$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{{x}^{\mathrm{2}} }{\mathrm{3}^{{x}} }=? \\ $$

Question Number 184331    Answers: 0   Comments: 0

Question Number 184329    Answers: 3   Comments: 0

lim_(x→0) ((tan^(−1) (p+x)−tan^(−1) (p−x))/x)=?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}}=? \\ $$

Question Number 184320    Answers: 0   Comments: 4

All-time Universal Formula determinant (((OLD+1=NEW))) Year:-The above formula applies every year. Month:-It also applies every month. Day:-It also applies every day. .... Second:-It also applies every second. ... SO, along with Happy New Year! also: Happy New Month! Happy New Day! .... Happy New Second! ...

$$\boldsymbol{\mathrm{All}}-\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{Universal}}\:\boldsymbol{\mathrm{Formula}} \\ $$$$\:\begin{array}{|c|}{\boldsymbol{\mathrm{OLD}}+\mathrm{1}=\boldsymbol{\mathrm{NEW}}}\\\hline\end{array}\: \\ $$$$\boldsymbol{{Year}}:-\boldsymbol{\mathcal{T}{he}}\:\boldsymbol{{above}}\:\boldsymbol{{formula}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\boldsymbol{{year}}. \\ $$$$\boldsymbol{{Month}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{month}}. \\ $$$$\boldsymbol{{Day}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\boldsymbol{{day}}. \\ $$$$.... \\ $$$$\boldsymbol{{Second}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\:\boldsymbol{{second}}. \\ $$$$... \\ $$$$\boldsymbol{\mathrm{SO}}, \\ $$$$\boldsymbol{\mathrm{along}}\:\boldsymbol{\mathrm{with}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Year}}! \\ $$$$\boldsymbol{\mathrm{also}}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Month}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Day}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Second}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:... \\ $$$$ \\ $$

Question Number 184311    Answers: 1   Comments: 0

Question Number 184310    Answers: 0   Comments: 0

Question Number 184307    Answers: 1   Comments: 0

Show that the boundary−value problem y′′+λy=0 y(0)=0, y(L)=0 has only the trival solution y=0 for the cases λ=0 and λ<0. let L be a non−zero real number. ?

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{boundary}−\mathrm{value} \\ $$$$\mathrm{problem}\:\mathrm{y}''+\lambda\mathrm{y}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}, \\ $$$$\mathrm{y}\left(\mathrm{L}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{only}\:\mathrm{the}\:\mathrm{trival}\:\mathrm{solution} \\ $$$$\mathrm{y}=\mathrm{0}\:\mathrm{for}\:\mathrm{the}\:\mathrm{cases}\:\lambda=\mathrm{0}\:\mathrm{and}\:\lambda<\mathrm{0}. \\ $$$$\mathrm{let}\:\mathrm{L}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{zero}\:\mathrm{real}\:\mathrm{number}. \\ $$$$ \\ $$$$ \\ $$$$? \\ $$

  Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com