Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 366

Question Number 184914    Answers: 0   Comments: 1

Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

$$ \\ $$ Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

Question Number 184913    Answers: 0   Comments: 0

Question Number 184903    Answers: 1   Comments: 0

lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=?? let x=2t { ((x→0)),((t→0)) :} lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=lim_(t→0) ((e^(2t) +e^(−2t) −2)/(4t^2 ))=(1/4)lim_(t→0) (((e^t −e^(−t) )/t))^2 =(1/4)lim_(t→0) (((e^t −1)/t)+((e^(−t) −1)/(−t)))^2 =(1/4)(1+1)^2 =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=?? \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{2t}\:\begin{cases}{\mathrm{x}\rightarrow\mathrm{0}}\\{\mathrm{t}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{2t}} +\mathrm{e}^{−\mathrm{2t}} −\mathrm{2}}{\mathrm{4t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} }{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}{\mathrm{t}}+\frac{\mathrm{e}^{−\mathrm{t}} −\mathrm{1}}{−\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 184901    Answers: 2   Comments: 1

lim_((2/x)→2) ((100+x)/(101x))

$$\underset{\frac{\mathrm{2}}{{x}}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{100}+{x}}{\mathrm{101}{x}} \\ $$

Question Number 184893    Answers: 1   Comments: 0

find the set of critical points for: 1: f (x) = (x/(⌊ x ⌋+⌊ −x⌋)) −x 2 : g(x) = (x/(⌊ x ⌋ +⌊ −x ⌋)) +x

$$ \\ $$$$\:\:\:\:{find}\:{the}\:{set}\:{of}\: \\ $$$$\:\:\:\:{critical}\:{points}\:{for}: \\ $$$$\:\:\:\mathrm{1}:\:\:\:{f}\:\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor+\lfloor\:−{x}\rfloor}\:−{x}\:\:\:\: \\ $$$$\:\:\:\:\mathrm{2}\::\:\:{g}\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor\:+\lfloor\:−{x}\:\rfloor}\:+{x} \\ $$

Question Number 184891    Answers: 3   Comments: 0

lim_(x→π) ((x−π)/(sinx))=?

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{{x}−\pi}{{sinx}}=? \\ $$

Question Number 184883    Answers: 1   Comments: 0

lim_(x→2) ((√(x−2))/(x−2))=?

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{2}}=? \\ $$

Question Number 184882    Answers: 1   Comments: 0

lim_(x→0) ((ln(7x+1))/x)=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{7}{x}+\mathrm{1}\right)}{{x}}=? \\ $$

Question Number 184881    Answers: 1   Comments: 0

lim_(x→0) ((((√2)sinx)/x))^((sin(x/2)cos(x/2))/x) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}{sinx}}{{x}}\right)^{\frac{{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}{{x}}} =? \\ $$

Question Number 184880    Answers: 1   Comments: 0

lim_(x→(1/π)) ((π^(−1) −x)/((1−(xπ)^2 )/π^2 ))=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\pi}} {\mathrm{lim}}\:\:\frac{\pi^{−\mathrm{1}} −{x}}{\frac{\mathrm{1}−\left({x}\pi\right)^{\mathrm{2}} }{\pi^{\mathrm{2}} }}=? \\ $$

Question Number 184879    Answers: 1   Comments: 0

lim_(x→(1/4)) 3x=(3/4) x=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\mathrm{4}}} {\mathrm{lim}}\:\mathrm{3}{x}=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 184878    Answers: 1   Comments: 0

lim_(x→0) ((ln(1+sinx))/(sinx))=? with out H′L Roule

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+{sinx}\right)}{{sinx}}=? \\ $$$${with}\:{out}\:{H}'{L}\:{Roule} \\ $$

Question Number 184877    Answers: 1   Comments: 0

Find the sum of the last ten digits: 5^(23) ∙ 2^(2022) − 2023

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{ten}\:\mathrm{digits}: \\ $$$$\mathrm{5}^{\mathrm{23}} \:\centerdot\:\mathrm{2}^{\mathrm{2022}} \:−\:\mathrm{2023} \\ $$

Question Number 184875    Answers: 1   Comments: 0

Question Number 184873    Answers: 1   Comments: 0

Find the real number satisfying x=(√(1+(√(1+(√(1+x))))))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfying} \\ $$$$\:\mathrm{x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}}}} \\ $$

Question Number 184872    Answers: 0   Comments: 0

An odd function f(x) whose domain is R satisfies f(x)=f(x+2). When x ∈ (0, 1), f(x)=−2x^2 +ax−2. If f has 2023 zeros in [0, 1011]. Then the range of a can be ? A. [−6, −2(√2)] B. [−4, −2(√2)] C. [−8, −6] D. [−6, −4]

$$\mathrm{An}\:\mathrm{odd}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{whose}\:\mathrm{domain}\:\mathrm{is}\:\mathbb{R} \\ $$$$\mathrm{satisfies}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right).\:\mathrm{When}\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right), \\ $$$${f}\left({x}\right)=−\mathrm{2}{x}^{\mathrm{2}} +{ax}−\mathrm{2}. \\ $$$$\mathrm{If}\:{f}\:\mathrm{has}\:\mathrm{2023}\:\mathrm{zeros}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{1011}\right].\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{range}\:\mathrm{of}\:{a}\:\mathrm{can}\:\mathrm{be}\:? \\ $$$$\mathrm{A}.\:\left[−\mathrm{6},\:−\mathrm{2}\sqrt{\mathrm{2}}\right]\:\:\:\:\:\:\:\:\mathrm{B}.\:\left[−\mathrm{4},\:−\mathrm{2}\sqrt{\mathrm{2}}\right] \\ $$$$\mathrm{C}.\:\left[−\mathrm{8},\:−\mathrm{6}\right]\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}.\:\left[−\mathrm{6},\:−\mathrm{4}\right] \\ $$

Question Number 184869    Answers: 1   Comments: 0

Question Number 184866    Answers: 1   Comments: 1

Question Number 184861    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 3(cos^2 πx + sinπy) + 2 = 9 + 3 ∣sinπx ∙ sinπy∣−sinπy

$$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:\:;\:\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{3}\left(\mathrm{cos}^{\mathrm{2}} \pi\mathrm{x}\:+\:\mathrm{sin}\pi\mathrm{y}\right)\:+\:\mathrm{2}\:=\:\mathrm{9}\:+\:\mathrm{3}\:\mid\mathrm{sin}\pi\mathrm{x}\:\centerdot\:\mathrm{sin}\pi\mathrm{y}\mid−\mathrm{sin}\pi\mathrm{y} \\ $$

Question Number 184859    Answers: 2   Comments: 0

Lim_( x→∞) x^( 4) ( 1− cos (1− cos((2/x))))=?

$$ \\ $$$$\:\mathrm{Lim}_{\:{x}\rightarrow\infty} \:{x}^{\:\mathrm{4}} \:\left(\:\mathrm{1}−\:{cos}\:\left(\mathrm{1}−\:{cos}\left(\frac{\mathrm{2}}{{x}}\right)\right)\right)=? \\ $$$$ \\ $$

Question Number 184858    Answers: 1   Comments: 0

Σ_(n=o) ^(+oo) (((−1)^n x^(2n+1) )/(4n^2 −1))

$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 184856    Answers: 0   Comments: 0

f(x)= (√( ∣ x_ ^ ∣ −∣ x−_ ^ ⌊ax⌋ ∣)) ; a ∈ [ 3 , 4 ) find : { (( D_( f) =? (domain ))),(( R_( f) =? (range ))) :}

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\sqrt{\:\mid\:\underset{} {\overset{} {{x}}}\:\:\mid\:−\mid\:\:{x}\underset{} {\overset{} {−}}\lfloor{ax}\rfloor\:\mid} \\ $$$$\:\:\:\:\:\:;\:\:\:{a}\:\in\:\left[\:\mathrm{3}\:,\:\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:{find}\::\:\:\:\begin{cases}{\:\:{D}_{\:{f}} \:=?\:\left({domain}\:\right)}\\{\:\:\mathcal{R}_{\:{f}} \:=?\:\left({range}\:\right)}\end{cases} \\ $$$$ \\ $$

Question Number 184845    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 1. 4sin^2 πx−4sinπx + 2 = 2sin^2 πy−1 2. 4sinπx = 4sinπy − 7 − (1/(sin^2 πx))

$$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:;\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{1}.\:\mathrm{4sin}^{\mathrm{2}} \pi\mathrm{x}−\mathrm{4sin}\pi\mathrm{x}\:+\:\mathrm{2}\:=\:\mathrm{2sin}^{\mathrm{2}} \pi\mathrm{y}−\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{4sin}\pi\mathrm{x}\:=\:\mathrm{4sin}\pi\mathrm{y}\:−\:\mathrm{7}\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \pi\mathrm{x}} \\ $$

Question Number 184843    Answers: 0   Comments: 0

Question Number 184841    Answers: 1   Comments: 0

Question Number 184839    Answers: 3   Comments: 0

xy − 3x = 27 −5y find all (x , y) in Z^2

$${xy}\:−\:\mathrm{3}{x}\:=\:\mathrm{27}\:−\mathrm{5}{y} \\ $$$${find}\:{all}\:\left({x}\:,\:{y}\right)\:{in}\:\mathbb{Z}^{\mathrm{2}} \\ $$

  Pg 361      Pg 362      Pg 363      Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com