Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 366

Question Number 184942    Answers: 0   Comments: 2

f(x )= x + ⌊ x + (( ⌊ x_ ^ ⌋)/(⌊ (x^( 2) /(1 +x^( 2) )) ⌋+1)) ⌋ ⇒ f^( −1) (x )=?

$$ \\ $$$$\:\:\:\:{f}\left({x}\:\right)=\:{x}\:+\:\lfloor\:\:{x}\:+\:\frac{\:\lfloor\:\:\underset{} {\overset{} {{x}}}\:\:\rfloor}{\lfloor\:\:\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{1}\:+{x}^{\:\mathrm{2}} }\:\:\:\rfloor+\mathrm{1}}\:\rfloor \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{f}^{\:−\mathrm{1}} \:\left({x}\:\right)=? \\ $$

Question Number 184941    Answers: 0   Comments: 0

Determiner une relation entre les coeficients de x,y,z pour que z=x+y a_1 x+b_1 y+c_1 z=u a_2 x+b_2 y+c_2 z=v a_3 x+b_3 y+c_3 z=w

$${Determiner}\:{une}\:{relation}\:{entre} \\ $$$${les}\:{coeficients}\:{de}\:{x},{y},{z}\: \\ $$$${pour}\:{que}\:\:{z}={x}+{y} \\ $$$$ \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}={u} \\ $$$${a}_{\mathrm{2}} {x}+{b}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} {z}={v} \\ $$$${a}_{\mathrm{3}} {x}+{b}_{\mathrm{3}} {y}+{c}_{\mathrm{3}} {z}={w} \\ $$$$ \\ $$

Question Number 184939    Answers: 1   Comments: 0

What′s the convergent equation of this series? x_1 ^2 +x_2 ^2 +x_3 ^2 +...+x_n ^2 Help!

$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{convergent}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{series}? \\ $$$$\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} +...+\mathrm{x}_{\mathrm{n}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184938    Answers: 2   Comments: 0

If , { (( f : [ (√2) , +∞ ) → R )),(( f (x ) = x^( 2) + ⌊ (( 1)/(1 − ⌊ x^( 2) ⌋)) ⌋ )) :} ⇒ ⌊ f^( −1) ( π ) ⌋ = ?

$$ \\ $$$$\:\:\:\:\:\mathrm{If}\:\:,\:\:\begin{cases}{\:\:{f}\:\::\:\:\left[\:\sqrt{\mathrm{2}}\:,\:+\infty\:\right)\:\rightarrow\:\mathbb{R}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\:{f}\:\left({x}\:\right)\:=\:{x}^{\:\mathrm{2}} \:\:+\:\lfloor\:\frac{\:\mathrm{1}}{\mathrm{1}\:−\:\lfloor\:{x}^{\:\mathrm{2}} \:\rfloor}\:\rfloor\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\lfloor\:\:{f}^{\:−\mathrm{1}} \:\left(\:\pi\:\right)\:\rfloor\:=\:? \\ $$$$ \\ $$$$ \\ $$

Question Number 184937    Answers: 0   Comments: 0

find the laplace transform of the differential equation below (dy/dt) + 5y(t) + 6∫_0 ^t y(τ)dτ = u(t) where y(0) = 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{transform}\:\mathrm{of}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\mathrm{below} \\ $$$$\frac{{dy}}{{dt}}\:+\:\mathrm{5}{y}\left({t}\right)\:+\:\mathrm{6}\int_{\mathrm{0}} ^{{t}} {y}\left(\tau\right){d}\tau\:=\:{u}\left({t}\right)\:\mathrm{where}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{2} \\ $$

Question Number 184936    Answers: 1   Comments: 0

Use Laplace transform to solve the differential equation ((d^2 v(t))/dt^2 ) +6((dv(t))/dt) + 8v(t) = 2u(t) when v(0) = 1 and v^• (0) = −2

$$\mathrm{Use}\:\mathrm{Laplace}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation} \\ $$$$\:\frac{{d}^{\mathrm{2}} {v}\left({t}\right)}{{dt}^{\mathrm{2}} }\:+\mathrm{6}\frac{{dv}\left({t}\right)}{{dt}}\:+\:\mathrm{8}{v}\left({t}\right)\:=\:\mathrm{2}{u}\left({t}\right)\:\: \\ $$$$\mathrm{when}\:{v}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\mathrm{and}\:\overset{\bullet} {{v}}\left(\mathrm{0}\right)\:=\:−\mathrm{2} \\ $$

Question Number 184932    Answers: 1   Comments: 0

Question Number 184927    Answers: 2   Comments: 0

s=(2/(11^0 ))+(6/(11))+((10)/(11^2 ))+((14)/(11^3 ))+((18)/(11^4 ))+∙∙∙∙ s=?

$${s}=\frac{\mathrm{2}}{\mathrm{11}^{\mathrm{0}} }+\frac{\mathrm{6}}{\mathrm{11}}+\frac{\mathrm{10}}{\mathrm{11}^{\mathrm{2}} }+\frac{\mathrm{14}}{\mathrm{11}^{\mathrm{3}} }+\frac{\mathrm{18}}{\mathrm{11}^{\mathrm{4}} }+\centerdot\centerdot\centerdot\centerdot \\ $$$${s}=? \\ $$

Question Number 184925    Answers: 1   Comments: 1

Question Number 184920    Answers: 1   Comments: 0

Investigate the series (1/(1×2))+(1/(2×3))+(1/(3×4))+(1/(4×5))+... Does it Converges or Diverges?

$$\mathrm{Investigate}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}×\mathrm{5}}+... \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{Converges}\:\mathrm{or}\:\mathrm{Diverges}? \\ $$

Question Number 184918    Answers: 2   Comments: 2

Show that 1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+... is not convergent Hi

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\:\mathrm{is}\: \\ $$$$\mathrm{not}\:\mathrm{convergent} \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184915    Answers: 0   Comments: 2

Consider the series below 1+5+25+125+... Investigate whether it is convergent or divergent. Thanks

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below} \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{25}+\mathrm{125}+...\:\mathrm{Investigate} \\ $$$$\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\: \\ $$$$\mathrm{divergent}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 184914    Answers: 0   Comments: 1

Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

$$ \\ $$ Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

Question Number 184913    Answers: 0   Comments: 0

Question Number 184903    Answers: 1   Comments: 0

lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=?? let x=2t { ((x→0)),((t→0)) :} lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=lim_(t→0) ((e^(2t) +e^(−2t) −2)/(4t^2 ))=(1/4)lim_(t→0) (((e^t −e^(−t) )/t))^2 =(1/4)lim_(t→0) (((e^t −1)/t)+((e^(−t) −1)/(−t)))^2 =(1/4)(1+1)^2 =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=?? \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{2t}\:\begin{cases}{\mathrm{x}\rightarrow\mathrm{0}}\\{\mathrm{t}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{2t}} +\mathrm{e}^{−\mathrm{2t}} −\mathrm{2}}{\mathrm{4t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} }{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}{\mathrm{t}}+\frac{\mathrm{e}^{−\mathrm{t}} −\mathrm{1}}{−\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 184901    Answers: 2   Comments: 1

lim_((2/x)→2) ((100+x)/(101x))

$$\underset{\frac{\mathrm{2}}{{x}}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{100}+{x}}{\mathrm{101}{x}} \\ $$

Question Number 184893    Answers: 1   Comments: 0

find the set of critical points for: 1: f (x) = (x/(⌊ x ⌋+⌊ −x⌋)) −x 2 : g(x) = (x/(⌊ x ⌋ +⌊ −x ⌋)) +x

$$ \\ $$$$\:\:\:\:{find}\:{the}\:{set}\:{of}\: \\ $$$$\:\:\:\:{critical}\:{points}\:{for}: \\ $$$$\:\:\:\mathrm{1}:\:\:\:{f}\:\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor+\lfloor\:−{x}\rfloor}\:−{x}\:\:\:\: \\ $$$$\:\:\:\:\mathrm{2}\::\:\:{g}\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor\:+\lfloor\:−{x}\:\rfloor}\:+{x} \\ $$

Question Number 184891    Answers: 3   Comments: 0

lim_(x→π) ((x−π)/(sinx))=?

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{{x}−\pi}{{sinx}}=? \\ $$

Question Number 184883    Answers: 1   Comments: 0

lim_(x→2) ((√(x−2))/(x−2))=?

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{2}}=? \\ $$

Question Number 184882    Answers: 1   Comments: 0

lim_(x→0) ((ln(7x+1))/x)=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{7}{x}+\mathrm{1}\right)}{{x}}=? \\ $$

Question Number 184881    Answers: 1   Comments: 0

lim_(x→0) ((((√2)sinx)/x))^((sin(x/2)cos(x/2))/x) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}{sinx}}{{x}}\right)^{\frac{{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}{{x}}} =? \\ $$

Question Number 184880    Answers: 1   Comments: 0

lim_(x→(1/π)) ((π^(−1) −x)/((1−(xπ)^2 )/π^2 ))=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\pi}} {\mathrm{lim}}\:\:\frac{\pi^{−\mathrm{1}} −{x}}{\frac{\mathrm{1}−\left({x}\pi\right)^{\mathrm{2}} }{\pi^{\mathrm{2}} }}=? \\ $$

Question Number 184879    Answers: 1   Comments: 0

lim_(x→(1/4)) 3x=(3/4) x=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\mathrm{4}}} {\mathrm{lim}}\:\mathrm{3}{x}=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 184878    Answers: 1   Comments: 0

lim_(x→0) ((ln(1+sinx))/(sinx))=? with out H′L Roule

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+{sinx}\right)}{{sinx}}=? \\ $$$${with}\:{out}\:{H}'{L}\:{Roule} \\ $$

Question Number 184877    Answers: 1   Comments: 0

Find the sum of the last ten digits: 5^(23) ∙ 2^(2022) − 2023

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{ten}\:\mathrm{digits}: \\ $$$$\mathrm{5}^{\mathrm{23}} \:\centerdot\:\mathrm{2}^{\mathrm{2022}} \:−\:\mathrm{2023} \\ $$

Question Number 184875    Answers: 1   Comments: 0

  Pg 361      Pg 362      Pg 363      Pg 364      Pg 365      Pg 366      Pg 367      Pg 368      Pg 369      Pg 370   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com