Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 366
Question Number 185013 Answers: 4 Comments: 3
Question Number 185012 Answers: 0 Comments: 2
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\left(\mathrm{kx}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{Im}\left(\mathrm{e}^{\mathrm{ikx}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{Im}\left(\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{e}^{\mathrm{ix}} \right)^{\mathrm{k}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{Im}\left(\frac{\mathrm{1}−\mathrm{e}^{\mathrm{i}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{\mathrm{ix}} }\right) \\ $$$$\frac{\mathrm{1}−\mathrm{e}^{\mathrm{i}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{\mathrm{ix}} }=\frac{\mathrm{e}^{\mathrm{i}\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}} \left(\mathrm{e}^{−\mathrm{i}\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}} −\mathrm{e}^{\mathrm{i}\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}} \right)}{\mathrm{e}^{\mathrm{i}\frac{\mathrm{x}}{\mathrm{2}}} \left(\mathrm{e}^{−\mathrm{i}\frac{\mathrm{x}}{\mathrm{2}}} −\mathrm{e}^{\mathrm{i}\frac{\mathrm{x}}{\mathrm{2}}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{e}^{\mathrm{in}\frac{\mathrm{x}}{\mathrm{2}}} ×\frac{−\mathrm{2sin}\left(\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}\right)}{−\mathrm{2sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{e}^{\mathrm{in}\frac{\mathrm{x}}{\mathrm{2}}} \frac{\mathrm{sin}\left(\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\left(\mathrm{kx}\right)=\frac{\mathrm{sin}\left(\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}\:\right)}{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\mathrm{Im}\left(\mathrm{e}^{\mathrm{in}\frac{\mathrm{x}}{\mathrm{2}}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{sin}\left(\left(\mathrm{n}+\mathrm{1}\right)\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\mathrm{sin}\left(\frac{\mathrm{nx}}{\mathrm{2}}\right) \\ $$
Question Number 185011 Answers: 0 Comments: 0
Question Number 185010 Answers: 0 Comments: 0
Question Number 185009 Answers: 0 Comments: 0
Question Number 185008 Answers: 1 Comments: 0
Question Number 184994 Answers: 0 Comments: 1
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+....+\sqrt{\mathrm{70}}}}}}=? \\ $$
Question Number 184992 Answers: 1 Comments: 0
$${prove}\:{that}: \\ $$$$\int_{{o}} ^{\mathrm{1}} \frac{{sint}}{{e}^{{t}} −\mathrm{1}}=\underset{{n}={o}} {\sum}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 185000 Answers: 0 Comments: 0
$${A}\:{man}\:{walks}\:{along}\:{straight}\:{path}\: \\ $$$$\:{at}\:{a}\:{speed}\:\mathrm{4}\:{ft}/{s}.\:{A}\:{spotlight}\:{is} \\ $$$$\:{located}\:{on}\:{the}\:{ground}\:\mathrm{20}\:{ft}\:{from}\: \\ $$$$\:{the}\:{path}\:{and}\:{is}\:{kept}\:{focused}\:{on}\:{the}\:{man}. \\ $$$$\:{At}\:{what}\:{rate}\:{is}\:{spotlight}\:{rotating} \\ $$$$\:{when}\:{the}\:{man}\:{is}\:\mathrm{15}\:{ft}\:{from}\:{the}\: \\ $$$${point}\:{on}\:{the}\:{path}\:{closest}\:{to}\:{the}\:{light}?\: \\ $$$$\: \\ $$
Question Number 184989 Answers: 1 Comments: 0
$$\mathrm{2}^{\mathrm{x}} =\mathrm{4x} \\ $$$$\mathrm{x}=? \\ $$$$\mathrm{solution}??? \\ $$
Question Number 184988 Answers: 1 Comments: 0
Question Number 185116 Answers: 1 Comments: 0
Question Number 184980 Answers: 2 Comments: 0
$$\sqrt{\mathrm{7}}\:\:+\:\:\sqrt{\mathrm{6}}\:\:=\:\:\mathrm{a} \\ $$$$\sqrt{\mathrm{7}}\:−\:\sqrt{\mathrm{6}}\:=\:? \\ $$
Question Number 184969 Answers: 1 Comments: 2
$$\:\: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}\:+\:\frac{\mathrm{1}}{\mathrm{6}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{9}^{\mathrm{2}} }{\mathrm{6}+......}\:\:\:}\:\:}\:\:}\:\:\:\:}\:\:=\:\boldsymbol{\pi} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{provet}}\:\:\boldsymbol{\mathrm{that}}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 184960 Answers: 2 Comments: 0
Question Number 184959 Answers: 2 Comments: 0
Question Number 184958 Answers: 1 Comments: 0
Question Number 184955 Answers: 2 Comments: 0
Question Number 184944 Answers: 1 Comments: 0
$${please}\:{you}\:{help}\:{me} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{sin}\left({k}\right)=?? \\ $$
Question Number 184942 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:{f}\left({x}\:\right)=\:{x}\:+\:\lfloor\:\:{x}\:+\:\frac{\:\lfloor\:\:\underset{} {\overset{} {{x}}}\:\:\rfloor}{\lfloor\:\:\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{1}\:+{x}^{\:\mathrm{2}} }\:\:\:\rfloor+\mathrm{1}}\:\rfloor \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{f}^{\:−\mathrm{1}} \:\left({x}\:\right)=? \\ $$
Question Number 184941 Answers: 0 Comments: 0
$${Determiner}\:{une}\:{relation}\:{entre} \\ $$$${les}\:{coeficients}\:{de}\:{x},{y},{z}\: \\ $$$${pour}\:{que}\:\:{z}={x}+{y} \\ $$$$ \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}={u} \\ $$$${a}_{\mathrm{2}} {x}+{b}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} {z}={v} \\ $$$${a}_{\mathrm{3}} {x}+{b}_{\mathrm{3}} {y}+{c}_{\mathrm{3}} {z}={w} \\ $$$$ \\ $$
Question Number 184939 Answers: 1 Comments: 0
$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{convergent}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{series}? \\ $$$$\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} +...+\mathrm{x}_{\mathrm{n}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 184938 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{If}\:\:,\:\:\begin{cases}{\:\:{f}\:\::\:\:\left[\:\sqrt{\mathrm{2}}\:,\:+\infty\:\right)\:\rightarrow\:\mathbb{R}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\:{f}\:\left({x}\:\right)\:=\:{x}^{\:\mathrm{2}} \:\:+\:\lfloor\:\frac{\:\mathrm{1}}{\mathrm{1}\:−\:\lfloor\:{x}^{\:\mathrm{2}} \:\rfloor}\:\rfloor\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\lfloor\:\:{f}^{\:−\mathrm{1}} \:\left(\:\pi\:\right)\:\rfloor\:=\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 184937 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{transform}\:\mathrm{of}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\mathrm{below} \\ $$$$\frac{{dy}}{{dt}}\:+\:\mathrm{5}{y}\left({t}\right)\:+\:\mathrm{6}\int_{\mathrm{0}} ^{{t}} {y}\left(\tau\right){d}\tau\:=\:{u}\left({t}\right)\:\mathrm{where}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{2} \\ $$
Question Number 184936 Answers: 1 Comments: 0
$$\mathrm{Use}\:\mathrm{Laplace}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation} \\ $$$$\:\frac{{d}^{\mathrm{2}} {v}\left({t}\right)}{{dt}^{\mathrm{2}} }\:+\mathrm{6}\frac{{dv}\left({t}\right)}{{dt}}\:+\:\mathrm{8}{v}\left({t}\right)\:=\:\mathrm{2}{u}\left({t}\right)\:\: \\ $$$$\mathrm{when}\:{v}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\mathrm{and}\:\overset{\bullet} {{v}}\left(\mathrm{0}\right)\:=\:−\mathrm{2} \\ $$
Question Number 184932 Answers: 1 Comments: 0
Pg 361 Pg 362 Pg 363 Pg 364 Pg 365 Pg 366 Pg 367 Pg 368 Pg 369 Pg 370
Terms of Service
Privacy Policy
Contact: info@tinkutara.com