Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 359

Question Number 185000    Answers: 0   Comments: 0

A man walks along straight path at a speed 4 ft/s. A spotlight is located on the ground 20 ft from the path and is kept focused on the man. At what rate is spotlight rotating when the man is 15 ft from the point on the path closest to the light?

$${A}\:{man}\:{walks}\:{along}\:{straight}\:{path}\: \\ $$$$\:{at}\:{a}\:{speed}\:\mathrm{4}\:{ft}/{s}.\:{A}\:{spotlight}\:{is} \\ $$$$\:{located}\:{on}\:{the}\:{ground}\:\mathrm{20}\:{ft}\:{from}\: \\ $$$$\:{the}\:{path}\:{and}\:{is}\:{kept}\:{focused}\:{on}\:{the}\:{man}. \\ $$$$\:{At}\:{what}\:{rate}\:{is}\:{spotlight}\:{rotating} \\ $$$$\:{when}\:{the}\:{man}\:{is}\:\mathrm{15}\:{ft}\:{from}\:{the}\: \\ $$$${point}\:{on}\:{the}\:{path}\:{closest}\:{to}\:{the}\:{light}?\: \\ $$$$\: \\ $$

Question Number 184989    Answers: 1   Comments: 0

2^x =4x x=? solution???

$$\mathrm{2}^{\mathrm{x}} =\mathrm{4x} \\ $$$$\mathrm{x}=? \\ $$$$\mathrm{solution}??? \\ $$

Question Number 184988    Answers: 1   Comments: 0

Question Number 185116    Answers: 1   Comments: 0

Question Number 184980    Answers: 2   Comments: 0

(√7) + (√6) = a (√7) − (√6) = ?

$$\sqrt{\mathrm{7}}\:\:+\:\:\sqrt{\mathrm{6}}\:\:=\:\:\mathrm{a} \\ $$$$\sqrt{\mathrm{7}}\:−\:\sqrt{\mathrm{6}}\:=\:? \\ $$

Question Number 184969    Answers: 1   Comments: 2

3 + (1/(6+(3^2 /(6+(5^2 /(6+(7^2 /(6+(9^2 /(6+......)) )) )) )) )) = 𝛑 provet that.

$$\:\: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}\:+\:\frac{\mathrm{1}}{\mathrm{6}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{9}^{\mathrm{2}} }{\mathrm{6}+......}\:\:\:}\:\:}\:\:}\:\:\:\:}\:\:=\:\boldsymbol{\pi} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{provet}}\:\:\boldsymbol{\mathrm{that}}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 184960    Answers: 2   Comments: 0

Question Number 184959    Answers: 2   Comments: 0

Question Number 184958    Answers: 1   Comments: 0

Question Number 184955    Answers: 2   Comments: 0

Question Number 184944    Answers: 1   Comments: 0

please you help me Σ_(k=0) ^n sin(k)=??

$${please}\:{you}\:{help}\:{me} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{sin}\left({k}\right)=?? \\ $$

Question Number 184942    Answers: 0   Comments: 2

f(x )= x + ⌊ x + (( ⌊ x_ ^ ⌋)/(⌊ (x^( 2) /(1 +x^( 2) )) ⌋+1)) ⌋ ⇒ f^( −1) (x )=?

$$ \\ $$$$\:\:\:\:{f}\left({x}\:\right)=\:{x}\:+\:\lfloor\:\:{x}\:+\:\frac{\:\lfloor\:\:\underset{} {\overset{} {{x}}}\:\:\rfloor}{\lfloor\:\:\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{1}\:+{x}^{\:\mathrm{2}} }\:\:\:\rfloor+\mathrm{1}}\:\rfloor \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{f}^{\:−\mathrm{1}} \:\left({x}\:\right)=? \\ $$

Question Number 184941    Answers: 0   Comments: 0

Determiner une relation entre les coeficients de x,y,z pour que z=x+y a_1 x+b_1 y+c_1 z=u a_2 x+b_2 y+c_2 z=v a_3 x+b_3 y+c_3 z=w

$${Determiner}\:{une}\:{relation}\:{entre} \\ $$$${les}\:{coeficients}\:{de}\:{x},{y},{z}\: \\ $$$${pour}\:{que}\:\:{z}={x}+{y} \\ $$$$ \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}={u} \\ $$$${a}_{\mathrm{2}} {x}+{b}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} {z}={v} \\ $$$${a}_{\mathrm{3}} {x}+{b}_{\mathrm{3}} {y}+{c}_{\mathrm{3}} {z}={w} \\ $$$$ \\ $$

Question Number 184939    Answers: 1   Comments: 0

What′s the convergent equation of this series? x_1 ^2 +x_2 ^2 +x_3 ^2 +...+x_n ^2 Help!

$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{convergent}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{series}? \\ $$$$\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} +...+\mathrm{x}_{\mathrm{n}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184938    Answers: 2   Comments: 0

If , { (( f : [ (√2) , +∞ ) → R )),(( f (x ) = x^( 2) + ⌊ (( 1)/(1 − ⌊ x^( 2) ⌋)) ⌋ )) :} ⇒ ⌊ f^( −1) ( π ) ⌋ = ?

$$ \\ $$$$\:\:\:\:\:\mathrm{If}\:\:,\:\:\begin{cases}{\:\:{f}\:\::\:\:\left[\:\sqrt{\mathrm{2}}\:,\:+\infty\:\right)\:\rightarrow\:\mathbb{R}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\:{f}\:\left({x}\:\right)\:=\:{x}^{\:\mathrm{2}} \:\:+\:\lfloor\:\frac{\:\mathrm{1}}{\mathrm{1}\:−\:\lfloor\:{x}^{\:\mathrm{2}} \:\rfloor}\:\rfloor\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\lfloor\:\:{f}^{\:−\mathrm{1}} \:\left(\:\pi\:\right)\:\rfloor\:=\:? \\ $$$$ \\ $$$$ \\ $$

Question Number 184937    Answers: 0   Comments: 0

find the laplace transform of the differential equation below (dy/dt) + 5y(t) + 6∫_0 ^t y(τ)dτ = u(t) where y(0) = 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{transform}\:\mathrm{of}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\mathrm{below} \\ $$$$\frac{{dy}}{{dt}}\:+\:\mathrm{5}{y}\left({t}\right)\:+\:\mathrm{6}\int_{\mathrm{0}} ^{{t}} {y}\left(\tau\right){d}\tau\:=\:{u}\left({t}\right)\:\mathrm{where}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{2} \\ $$

Question Number 184936    Answers: 1   Comments: 0

Use Laplace transform to solve the differential equation ((d^2 v(t))/dt^2 ) +6((dv(t))/dt) + 8v(t) = 2u(t) when v(0) = 1 and v^• (0) = −2

$$\mathrm{Use}\:\mathrm{Laplace}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation} \\ $$$$\:\frac{{d}^{\mathrm{2}} {v}\left({t}\right)}{{dt}^{\mathrm{2}} }\:+\mathrm{6}\frac{{dv}\left({t}\right)}{{dt}}\:+\:\mathrm{8}{v}\left({t}\right)\:=\:\mathrm{2}{u}\left({t}\right)\:\: \\ $$$$\mathrm{when}\:{v}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\mathrm{and}\:\overset{\bullet} {{v}}\left(\mathrm{0}\right)\:=\:−\mathrm{2} \\ $$

Question Number 184932    Answers: 1   Comments: 0

Question Number 184927    Answers: 2   Comments: 0

s=(2/(11^0 ))+(6/(11))+((10)/(11^2 ))+((14)/(11^3 ))+((18)/(11^4 ))+∙∙∙∙ s=?

$${s}=\frac{\mathrm{2}}{\mathrm{11}^{\mathrm{0}} }+\frac{\mathrm{6}}{\mathrm{11}}+\frac{\mathrm{10}}{\mathrm{11}^{\mathrm{2}} }+\frac{\mathrm{14}}{\mathrm{11}^{\mathrm{3}} }+\frac{\mathrm{18}}{\mathrm{11}^{\mathrm{4}} }+\centerdot\centerdot\centerdot\centerdot \\ $$$${s}=? \\ $$

Question Number 184925    Answers: 1   Comments: 1

Question Number 184920    Answers: 1   Comments: 0

Investigate the series (1/(1×2))+(1/(2×3))+(1/(3×4))+(1/(4×5))+... Does it Converges or Diverges?

$$\mathrm{Investigate}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}×\mathrm{5}}+... \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{Converges}\:\mathrm{or}\:\mathrm{Diverges}? \\ $$

Question Number 184918    Answers: 2   Comments: 2

Show that 1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+... is not convergent Hi

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\:\mathrm{is}\: \\ $$$$\mathrm{not}\:\mathrm{convergent} \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184915    Answers: 0   Comments: 2

Consider the series below 1+5+25+125+... Investigate whether it is convergent or divergent. Thanks

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below} \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{25}+\mathrm{125}+...\:\mathrm{Investigate} \\ $$$$\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\: \\ $$$$\mathrm{divergent}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 184914    Answers: 0   Comments: 1

Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

$$ \\ $$ Lindsey randomly selects 2 distinct days each lveek to go to the gym. Jess randomly selects 3 distinct days each tveek to go to the same gym. What is the probability that Lindsey and Jess will both be at the gym on the same day at least once in any given week? Express your anslver as a common fraction.

Question Number 184913    Answers: 0   Comments: 0

Question Number 184903    Answers: 1   Comments: 0

lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=?? let x=2t { ((x→0)),((t→0)) :} lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=lim_(t→0) ((e^(2t) +e^(−2t) −2)/(4t^2 ))=(1/4)lim_(t→0) (((e^t −e^(−t) )/t))^2 =(1/4)lim_(t→0) (((e^t −1)/t)+((e^(−t) −1)/(−t)))^2 =(1/4)(1+1)^2 =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=?? \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{2t}\:\begin{cases}{\mathrm{x}\rightarrow\mathrm{0}}\\{\mathrm{t}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{2t}} +\mathrm{e}^{−\mathrm{2t}} −\mathrm{2}}{\mathrm{4t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} }{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}{\mathrm{t}}+\frac{\mathrm{e}^{−\mathrm{t}} −\mathrm{1}}{−\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

  Pg 354      Pg 355      Pg 356      Pg 357      Pg 358      Pg 359      Pg 360      Pg 361      Pg 362      Pg 363   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com