Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 359
Question Number 184769 Answers: 0 Comments: 2
Question Number 184768 Answers: 1 Comments: 1
$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$
Question Number 184757 Answers: 2 Comments: 2
$$\mathrm{Which}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{crisis}\:\mathrm{point}? \\ $$$$\left.\mathrm{a}\right)\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}+\mathrm{6} \\ $$$$\left.\mathrm{b}\right)\mathrm{y}=\sqrt[{\mathrm{4}}]{\mathrm{x}} \\ $$$$\left.\mathrm{c}\right)\mathrm{y}=\frac{\mathrm{15}}{\mathrm{x}} \\ $$$$\left.\mathrm{d}\right)\mathrm{y}=\mathrm{e}^{\boldsymbol{\mathrm{x}}} \\ $$$$\left.\mathrm{e}\right)\mathrm{y}=\sqrt[{\mathrm{3}}]{\mathrm{x}} \\ $$
Question Number 184753 Answers: 1 Comments: 0
Question Number 184744 Answers: 1 Comments: 1
$${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$
Question Number 184739 Answers: 1 Comments: 1
$${Number}\:{of}\:{linear}\:{functions}\: \\ $$$${be}\:{defined}\:{f}:\left[−\mathrm{1},\:\mathrm{1}\right]\rightarrow\left[\mathrm{0},\mathrm{2}\right]\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:{c}\right)\mathrm{3}\:\:\:{d}\right)\mathrm{4} \\ $$
Question Number 184738 Answers: 1 Comments: 0
$$ \\ $$$$\alpha\:\:,\:\beta\:\:{are}\:{roots}\:{of}\:\:,\:{x}^{\:\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\:\:\alpha\:>\:\beta\:\right)\:{and}\:,\:\:{t}_{\:{n}} =\:\frac{\alpha^{\:{n}} −\:\beta^{\:{n}} }{\alpha−\beta} \\ $$$$\:\left(\:{n}\:\in\:\mathbb{N}\:\right),\:{if}\:,\:{b}_{\mathrm{1}} =\mathrm{1}\:,\:{b}_{\:{n}} =\:{t}_{\:{n}−\mathrm{1}} +{t}_{\:{n}−\mathrm{2}} \\ $$$$\:\:\:\left(\:{n}\:\geqslant\mathrm{2}\:\right)\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{b}_{\:{n}} }{\mathrm{10}^{\:{n}} }\:=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 184735 Answers: 0 Comments: 3
$$ \\ $$$${f}\left({x},{y}\right)=\left(\sqrt{\mathrm{3}{xy}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} {y}^{\mathrm{2}} }\right) \\ $$$${f}^{'} \left({x},{y}\right)=?\:\:\:\:\:{f}''\left({x},{y}\right)=? \\ $$$$ \\ $$
Question Number 184731 Answers: 1 Comments: 0
$$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 184728 Answers: 5 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{x}^{\:\mathrm{2}} −\:\mathrm{3}{x}\:+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\alpha\:,\:\beta\:{are}\:{roots}\:: \\ $$$$\:\:\:\left(\:\alpha^{\:\mathrm{3}} \:+\frac{\mathrm{1}}{\beta}\:\right)^{\:\mathrm{3}} \:+\:\left(\:\beta^{\:^{\:\mathrm{3}} } \:+\frac{\mathrm{1}}{\alpha}\:\right)^{\:\mathrm{3}} =\:? \\ $$$$ \\ $$
Question Number 184726 Answers: 1 Comments: 0
Question Number 184724 Answers: 0 Comments: 1
Question Number 184720 Answers: 1 Comments: 0
$$ \\ $$$${y}=\left(\sqrt{\mathrm{3}{xy}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} {y}^{\mathrm{2}} }\right) \\ $$$${y}'=?\:\:\:\:\:\:{y}^{''} =? \\ $$
Question Number 184719 Answers: 1 Comments: 0
Question Number 184718 Answers: 2 Comments: 0
Question Number 184706 Answers: 1 Comments: 0
$$\mathrm{deg}\left[\mathrm{3p}\left(\mathrm{x}\right)+\mathrm{Q}\left(\mathrm{x}\right)\right]=\mathrm{6} \\ $$$$\mathrm{deg}\left[\mathrm{p}\left(\mathrm{x}\right)+\mathrm{x}^{\mathrm{4}} \right]=\mathrm{5} \\ $$$$\mathrm{deg}\left[\frac{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)\mathrm{p}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{3}} \centerdot\mathrm{Q}\left(\mathrm{x}\right)}\right]=? \\ $$$$\mathrm{deg}=\mathrm{degree}\: \\ $$
Question Number 184705 Answers: 0 Comments: 0
Question Number 184683 Answers: 1 Comments: 0
$${x}''\:−\:\frac{\mathrm{5}}{{t}}\:{x}'\:+\:\frac{\mathrm{8}}{{t}^{\mathrm{2}} }\:{x}\:=\:\frac{\mathrm{2}\:{ln}\:{t}}{{t}^{\mathrm{2}} } \\ $$$${solve}\:{the}\:{differential}\:{eqn} \\ $$
Question Number 184669 Answers: 0 Comments: 3
Question Number 184668 Answers: 0 Comments: 0
Question Number 184656 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{whose}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{are}\:\overset{−} {\mathrm{A}}\:\mathrm{and}\:\overset{−} {\mathrm{B}}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{A}×\mathrm{B}\mid. \\ $$$$\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{direction}−\mathrm{cosine} \\ $$$$\mathrm{of}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{this}\:\mathrm{area}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 184655 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{inscribe}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{semi}−\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 184645 Answers: 1 Comments: 0
Question Number 184633 Answers: 1 Comments: 0
Question Number 184638 Answers: 0 Comments: 6
Question Number 184618 Answers: 1 Comments: 0
$$\mathrm{If}\:{xy}\leqslant{ax}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\mathrm{1}\leqslant{x}\leqslant\mathrm{2},\:\mathrm{2}\leqslant{y}\leqslant\mathrm{3} \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$
Pg 354 Pg 355 Pg 356 Pg 357 Pg 358 Pg 359 Pg 360 Pg 361 Pg 362 Pg 363
Terms of Service
Privacy Policy
Contact: info@tinkutara.com