Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 358
Question Number 183031 Answers: 1 Comments: 0
Question Number 183019 Answers: 3 Comments: 2
$${Q}\:\:\:{f}\left({x}\right)={a}^{{x}} +{b}^{{x}} \:\:\:\:\:{g}\left({x}\right)=\frac{{f}\left({x}\right)}{{f}\left({x}−\mathrm{2}\right)} \\ $$$${g}\left(\mathrm{3}\right)=? \\ $$$$ \\ $$
Question Number 182999 Answers: 1 Comments: 0
$$\sqrt{\mathrm{m}^{\mathrm{2}} −\mathrm{4m}+\mathrm{4}}\:+\:\sqrt[{\mathrm{4}}]{\mathrm{m}−\mathrm{2n}+\mathrm{8}}\:=\:\mathrm{0} \\ $$$$\mathrm{n}\:=\:? \\ $$
Question Number 182998 Answers: 0 Comments: 0
Question Number 182997 Answers: 0 Comments: 0
Question Number 182996 Answers: 0 Comments: 0
Question Number 182995 Answers: 1 Comments: 0
Question Number 182984 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{A}\left(\mathrm{6},\:\mathrm{2},\:−\mathrm{4}\right), \\ $$$$\mathrm{B}\left(−\mathrm{2},\:\mathrm{4},\:\mathrm{8}\right),\:\mathrm{C}\left(\mathrm{4},\:−\mathrm{2},\:\mathrm{2}\right).\:−\mathrm{Vector}\:\mathrm{Analysis} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 182978 Answers: 2 Comments: 0
Question Number 183008 Answers: 0 Comments: 1
Question Number 183010 Answers: 0 Comments: 10
$${what}\:{is}\:{the}\:{formula}\:{between}\:{actual}\:{depth} \\ $$$${apparent}\:{depth}\:{and}\:{refraction}\:{index} \\ $$$${that}\:{an}\:{object}\:{is}\:{in}\:{a}\:{rarer}\:{medium}? \\ $$
Question Number 182973 Answers: 3 Comments: 0
Question Number 182968 Answers: 0 Comments: 0
Question Number 182965 Answers: 0 Comments: 0
Question Number 182962 Answers: 2 Comments: 0
Question Number 182954 Answers: 0 Comments: 1
$$\:\boldsymbol{{I}}=\int\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}\:\sqrt{\boldsymbol{{x}}}\:−\boldsymbol{{x}}^{\mathrm{2}} }}\:\boldsymbol{{dx}}\: \\ $$$$\:\:\boldsymbol{{I}}=\int\:\frac{\mathrm{1}}{\:\:\centerdot\:\:\sqrt{\boldsymbol{{x}}\left(\sqrt{\boldsymbol{{x}}}\:−\boldsymbol{{x}}\right)}}\:\boldsymbol{{dx}} \\ $$$$\:\:\boldsymbol{{I}}=\int\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}\:\centerdot\:\sqrt{\sqrt{\boldsymbol{{x}}}\:−\boldsymbol{{x}}}\:}\:×\frac{\mathrm{2}}{\mathrm{2}}\:\boldsymbol{{dx}} \\ $$$$\:\boldsymbol{{I}}=\:\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}\sqrt{\boldsymbol{{x}}}\:−\mathrm{4}\boldsymbol{{x}}}}\:\centerdot\:\frac{\mathrm{2}}{\:\sqrt{\boldsymbol{{x}}}}\:\boldsymbol{{dx}} \\ $$$$\:\:\boldsymbol{{I}}=\mathrm{2}\int\:\frac{\:}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\:\sqrt{\boldsymbol{{x}}}\right)^{\mathrm{2}} }}\:\centerdot\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}}\:\boldsymbol{{dx}}\: \\ $$$$\:\:\boldsymbol{{I}}=\:−\mathrm{2}\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\sqrt{\boldsymbol{{x}}}\right)^{\mathrm{2}} }}\:\:\centerdot\:\boldsymbol{{d}}\left(\mathrm{1}−\mathrm{2}\sqrt{\boldsymbol{{x}}}\right) \\ $$$$\:\:\boldsymbol{{I}}=\:−\mathrm{2}\boldsymbol{{sin}}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2}\sqrt{\boldsymbol{{x}}}\right)\:+\boldsymbol{{C}} \\ $$$$\: \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{Gamil}}\:\boldsymbol{\mathrm{AL}}\:\boldsymbol{\mathrm{mansob}} \\ $$
Question Number 182953 Answers: 0 Comments: 0
$${H}_{\mathrm{4}} \left({x}\right)={L}_{\mathrm{0}} \left({x}\right)\:\:\:\:\:\:\:{x}=? \\ $$
Question Number 182952 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{probability}\:{that}\:{at}\:{least} \\ $$$${two}\:{from}\:\mathrm{23}\:{people}\:{have}\:{birthday}\:{at} \\ $$$${the}\:{same}\:{day}? \\ $$$$ \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\right) \\ $$
Question Number 182949 Answers: 0 Comments: 0
$$\mathrm{if}\:\mathrm{z}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{3x}\right)+\mathrm{xy}=\mathrm{0}\:\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{z}}{\mathrm{dx}^{\mathrm{2}} }+\frac{\mathrm{d}^{\mathrm{2}} \mathrm{z}}{\mathrm{dy}^{\mathrm{2}} }\:=\:\frac{\mathrm{2x}\left(\mathrm{x}−\mathrm{1}\right)}{\left(\mathrm{z}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{3}} } \\ $$
Question Number 182947 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\mathrm{a}<\:\mathrm{b}<\mathrm{0},\:\:\mathrm{then}\:\:\mid\mathrm{a}−\mathrm{b}\mid\:+\:\mid\mathrm{a}+\mathrm{b}\mid\:+\:\mid\mathrm{ab}\mid= \\ $$
Question Number 182946 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\mathrm{0}\:<\:\mathrm{x}\:<\mathrm{1}\:,\:\:\mathrm{then}\:\:\mid\:\mathrm{x}\:−\mathrm{1}\:\mid\:+\:\mid\mathrm{2x}−\mathrm{4}\mid\:+\:\mid\mathrm{2x}+\mathrm{1}\mid= \\ $$
Question Number 182941 Answers: 0 Comments: 0
$$\mathrm{Solve}: \\ $$$$\left[\mathrm{x}^{\mathrm{2}} +\left(\mathrm{xy}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right]\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 182940 Answers: 2 Comments: 0
$${Are}\:\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\: \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\:\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:\:{convergent}? \\ $$
Question Number 182936 Answers: 0 Comments: 0
$$ \\ $$
Question Number 182934 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:{Is}\:{that}\:{right}\:! \\ $$$$\:\:\:\:{IF}\:\::\: \\ $$$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\:\left(\lfloor\frac{{n}}{{k}}\rfloor−\lfloor\frac{{n}−\mathrm{1}}{{k}}\rfloor\right)\:=\:\mathrm{2} \\ $$$$\:\:\:{so}\:{n}\:{is}\:{a}\:{prime}\:{number}\:. \\ $$
Question Number 182928 Answers: 6 Comments: 0
Pg 353 Pg 354 Pg 355 Pg 356 Pg 357 Pg 358 Pg 359 Pg 360 Pg 361 Pg 362
Terms of Service
Privacy Policy
Contact: info@tinkutara.com