Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 357

Question Number 184903    Answers: 1   Comments: 0

lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=?? let x=2t { ((x→0)),((t→0)) :} lim_(x→0) ((e^x +e^(−x) −2)/x^2 )=lim_(t→0) ((e^(2t) +e^(−2t) −2)/(4t^2 ))=(1/4)lim_(t→0) (((e^t −e^(−t) )/t))^2 =(1/4)lim_(t→0) (((e^t −1)/t)+((e^(−t) −1)/(−t)))^2 =(1/4)(1+1)^2 =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=?? \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{2t}\:\begin{cases}{\mathrm{x}\rightarrow\mathrm{0}}\\{\mathrm{t}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{2t}} +\mathrm{e}^{−\mathrm{2t}} −\mathrm{2}}{\mathrm{4t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} }{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}{\mathrm{t}}+\frac{\mathrm{e}^{−\mathrm{t}} −\mathrm{1}}{−\mathrm{t}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 184901    Answers: 2   Comments: 1

lim_((2/x)→2) ((100+x)/(101x))

$$\underset{\frac{\mathrm{2}}{{x}}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{100}+{x}}{\mathrm{101}{x}} \\ $$

Question Number 184893    Answers: 1   Comments: 0

find the set of critical points for: 1: f (x) = (x/(⌊ x ⌋+⌊ −x⌋)) −x 2 : g(x) = (x/(⌊ x ⌋ +⌊ −x ⌋)) +x

$$ \\ $$$$\:\:\:\:{find}\:{the}\:{set}\:{of}\: \\ $$$$\:\:\:\:{critical}\:{points}\:{for}: \\ $$$$\:\:\:\mathrm{1}:\:\:\:{f}\:\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor+\lfloor\:−{x}\rfloor}\:−{x}\:\:\:\: \\ $$$$\:\:\:\:\mathrm{2}\::\:\:{g}\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor\:+\lfloor\:−{x}\:\rfloor}\:+{x} \\ $$

Question Number 184891    Answers: 3   Comments: 0

lim_(x→π) ((x−π)/(sinx))=?

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{{x}−\pi}{{sinx}}=? \\ $$

Question Number 184883    Answers: 1   Comments: 0

lim_(x→2) ((√(x−2))/(x−2))=?

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{2}}=? \\ $$

Question Number 184882    Answers: 1   Comments: 0

lim_(x→0) ((ln(7x+1))/x)=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{7}{x}+\mathrm{1}\right)}{{x}}=? \\ $$

Question Number 184881    Answers: 1   Comments: 0

lim_(x→0) ((((√2)sinx)/x))^((sin(x/2)cos(x/2))/x) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}{sinx}}{{x}}\right)^{\frac{{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}{{x}}} =? \\ $$

Question Number 184880    Answers: 1   Comments: 0

lim_(x→(1/π)) ((π^(−1) −x)/((1−(xπ)^2 )/π^2 ))=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\pi}} {\mathrm{lim}}\:\:\frac{\pi^{−\mathrm{1}} −{x}}{\frac{\mathrm{1}−\left({x}\pi\right)^{\mathrm{2}} }{\pi^{\mathrm{2}} }}=? \\ $$

Question Number 184879    Answers: 1   Comments: 0

lim_(x→(1/4)) 3x=(3/4) x=?

$$\underset{{x}\rightarrow\frac{\mathrm{1}}{\mathrm{4}}} {\mathrm{lim}}\:\mathrm{3}{x}=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 184878    Answers: 1   Comments: 0

lim_(x→0) ((ln(1+sinx))/(sinx))=? with out H′L Roule

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+{sinx}\right)}{{sinx}}=? \\ $$$${with}\:{out}\:{H}'{L}\:{Roule} \\ $$

Question Number 184877    Answers: 1   Comments: 0

Find the sum of the last ten digits: 5^(23) ∙ 2^(2022) − 2023

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{ten}\:\mathrm{digits}: \\ $$$$\mathrm{5}^{\mathrm{23}} \:\centerdot\:\mathrm{2}^{\mathrm{2022}} \:−\:\mathrm{2023} \\ $$

Question Number 184875    Answers: 1   Comments: 0

Question Number 184873    Answers: 1   Comments: 0

Find the real number satisfying x=(√(1+(√(1+(√(1+x))))))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfying} \\ $$$$\:\mathrm{x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}}}} \\ $$

Question Number 184872    Answers: 0   Comments: 0

An odd function f(x) whose domain is R satisfies f(x)=f(x+2). When x ∈ (0, 1), f(x)=−2x^2 +ax−2. If f has 2023 zeros in [0, 1011]. Then the range of a can be ? A. [−6, −2(√2)] B. [−4, −2(√2)] C. [−8, −6] D. [−6, −4]

$$\mathrm{An}\:\mathrm{odd}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{whose}\:\mathrm{domain}\:\mathrm{is}\:\mathbb{R} \\ $$$$\mathrm{satisfies}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right).\:\mathrm{When}\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right), \\ $$$${f}\left({x}\right)=−\mathrm{2}{x}^{\mathrm{2}} +{ax}−\mathrm{2}. \\ $$$$\mathrm{If}\:{f}\:\mathrm{has}\:\mathrm{2023}\:\mathrm{zeros}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{1011}\right].\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{range}\:\mathrm{of}\:{a}\:\mathrm{can}\:\mathrm{be}\:? \\ $$$$\mathrm{A}.\:\left[−\mathrm{6},\:−\mathrm{2}\sqrt{\mathrm{2}}\right]\:\:\:\:\:\:\:\:\mathrm{B}.\:\left[−\mathrm{4},\:−\mathrm{2}\sqrt{\mathrm{2}}\right] \\ $$$$\mathrm{C}.\:\left[−\mathrm{8},\:−\mathrm{6}\right]\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}.\:\left[−\mathrm{6},\:−\mathrm{4}\right] \\ $$

Question Number 184869    Answers: 1   Comments: 0

Question Number 184866    Answers: 1   Comments: 1

Question Number 184861    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 3(cos^2 πx + sinπy) + 2 = 9 + 3 ∣sinπx ∙ sinπy∣−sinπy

$$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:\:;\:\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{3}\left(\mathrm{cos}^{\mathrm{2}} \pi\mathrm{x}\:+\:\mathrm{sin}\pi\mathrm{y}\right)\:+\:\mathrm{2}\:=\:\mathrm{9}\:+\:\mathrm{3}\:\mid\mathrm{sin}\pi\mathrm{x}\:\centerdot\:\mathrm{sin}\pi\mathrm{y}\mid−\mathrm{sin}\pi\mathrm{y} \\ $$

Question Number 184859    Answers: 2   Comments: 0

Lim_( x→∞) x^( 4) ( 1− cos (1− cos((2/x))))=?

$$ \\ $$$$\:\mathrm{Lim}_{\:{x}\rightarrow\infty} \:{x}^{\:\mathrm{4}} \:\left(\:\mathrm{1}−\:{cos}\:\left(\mathrm{1}−\:{cos}\left(\frac{\mathrm{2}}{{x}}\right)\right)\right)=? \\ $$$$ \\ $$

Question Number 184858    Answers: 1   Comments: 0

Σ_(n=o) ^(+oo) (((−1)^n x^(2n+1) )/(4n^2 −1))

$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 184856    Answers: 0   Comments: 0

f(x)= (√( ∣ x_ ^ ∣ −∣ x−_ ^ ⌊ax⌋ ∣)) ; a ∈ [ 3 , 4 ) find : { (( D_( f) =? (domain ))),(( R_( f) =? (range ))) :}

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\sqrt{\:\mid\:\underset{} {\overset{} {{x}}}\:\:\mid\:−\mid\:\:{x}\underset{} {\overset{} {−}}\lfloor{ax}\rfloor\:\mid} \\ $$$$\:\:\:\:\:\:;\:\:\:{a}\:\in\:\left[\:\mathrm{3}\:,\:\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:{find}\::\:\:\:\begin{cases}{\:\:{D}_{\:{f}} \:=?\:\left({domain}\:\right)}\\{\:\:\mathcal{R}_{\:{f}} \:=?\:\left({range}\:\right)}\end{cases} \\ $$$$ \\ $$

Question Number 184845    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 1. 4sin^2 πx−4sinπx + 2 = 2sin^2 πy−1 2. 4sinπx = 4sinπy − 7 − (1/(sin^2 πx))

$$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:;\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{1}.\:\mathrm{4sin}^{\mathrm{2}} \pi\mathrm{x}−\mathrm{4sin}\pi\mathrm{x}\:+\:\mathrm{2}\:=\:\mathrm{2sin}^{\mathrm{2}} \pi\mathrm{y}−\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{4sin}\pi\mathrm{x}\:=\:\mathrm{4sin}\pi\mathrm{y}\:−\:\mathrm{7}\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \pi\mathrm{x}} \\ $$

Question Number 184843    Answers: 0   Comments: 0

Question Number 184841    Answers: 1   Comments: 0

Question Number 184839    Answers: 3   Comments: 0

xy − 3x = 27 −5y find all (x , y) in Z^2

$${xy}\:−\:\mathrm{3}{x}\:=\:\mathrm{27}\:−\mathrm{5}{y} \\ $$$${find}\:{all}\:\left({x}\:,\:{y}\right)\:{in}\:\mathbb{Z}^{\mathrm{2}} \\ $$

Question Number 184832    Answers: 4   Comments: 1

Given the acceleration a=−4sin2t, initial velocity v(0)=2, and the initial position of the body as s(0)=−3, find the body′s position at time t. Hi

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{acceleration}\: \\ $$$$\mathrm{a}=−\mathrm{4sin2t},\:\mathrm{initial}\:\mathrm{velocity}\: \\ $$$$\mathrm{v}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{position}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{as}\:\mathrm{s}\left(\mathrm{0}\right)=−\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{body}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t}. \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184828    Answers: 0   Comments: 1

Find x in terms of c ∀ 0<c<(2/(3(√3))) (3x^2 −1)(3x^2 +36x−1)^2 ={4(x^3 −x−c)+9(7x^2 +1)}^2

$${Find}\:{x}\:{in}\:{terms}\:{of}\:\:\:{c}\:\:\forall\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left\{\mathrm{4}\left({x}^{\mathrm{3}} −{x}−{c}\right)+\mathrm{9}\left(\mathrm{7}{x}^{\mathrm{2}} +\mathrm{1}\right)\right\}^{\mathrm{2}} \\ $$

  Pg 352      Pg 353      Pg 354      Pg 355      Pg 356      Pg 357      Pg 358      Pg 359      Pg 360      Pg 361   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com