Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 352

Question Number 184841    Answers: 1   Comments: 0

Question Number 184839    Answers: 3   Comments: 0

xy − 3x = 27 −5y find all (x , y) in Z^2

$${xy}\:−\:\mathrm{3}{x}\:=\:\mathrm{27}\:−\mathrm{5}{y} \\ $$$${find}\:{all}\:\left({x}\:,\:{y}\right)\:{in}\:\mathbb{Z}^{\mathrm{2}} \\ $$

Question Number 184832    Answers: 4   Comments: 1

Given the acceleration a=−4sin2t, initial velocity v(0)=2, and the initial position of the body as s(0)=−3, find the body′s position at time t. Hi

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{acceleration}\: \\ $$$$\mathrm{a}=−\mathrm{4sin2t},\:\mathrm{initial}\:\mathrm{velocity}\: \\ $$$$\mathrm{v}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{position}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{as}\:\mathrm{s}\left(\mathrm{0}\right)=−\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{body}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t}. \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184828    Answers: 0   Comments: 1

Find x in terms of c ∀ 0<c<(2/(3(√3))) (3x^2 −1)(3x^2 +36x−1)^2 ={4(x^3 −x−c)+9(7x^2 +1)}^2

$${Find}\:{x}\:{in}\:{terms}\:{of}\:\:\:{c}\:\:\forall\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left\{\mathrm{4}\left({x}^{\mathrm{3}} −{x}−{c}\right)+\mathrm{9}\left(\mathrm{7}{x}^{\mathrm{2}} +\mathrm{1}\right)\right\}^{\mathrm{2}} \\ $$

Question Number 184823    Answers: 1   Comments: 0

Lim_( x→ 0^( +) ) (( 1− cos ( 1− cos((√x) )))/x^( 4) )

$$ \\ $$$$\:\:\:\mathrm{Lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \:\:\frac{\:\:\mathrm{1}−\:\:\mathrm{cos}\:\left(\:\mathrm{1}−\:\mathrm{cos}\left(\sqrt{{x}}\:\right)\right)}{{x}^{\:\mathrm{4}} } \\ $$

Question Number 184822    Answers: 1   Comments: 0

Question Number 184819    Answers: 2   Comments: 0

For 0≤x≤1 , maximum value of f(x)=x(√(1−x+(√(1−x)))) is __

$$\:\:{For}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:{maximum}\:{value} \\ $$$$\:\:{of}\:{f}\left({x}\right)={x}\sqrt{\mathrm{1}−{x}+\sqrt{\mathrm{1}−{x}}}\:{is}\:\_\_ \\ $$

Question Number 184798    Answers: 0   Comments: 1

Show that lim_(x→0) (x/(∣x∣)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mid{x}\mid}\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184797    Answers: 0   Comments: 1

Show that lim_(x→0) ((e^(1/x) −1)/(e^(1/x) +1)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184796    Answers: 1   Comments: 2

Evaluate lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{6}}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3}}\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{{x}−\frac{\pi}{\mathrm{6}}} \\ $$

Question Number 184795    Answers: 1   Comments: 1

Evaluate lim_(x→0) ((1−cos x(√(cos 2x)) )/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:}{{x}^{\mathrm{2}} } \\ $$

Question Number 184794    Answers: 4   Comments: 2

Evaluate lim_(x→2) ((x^5 −32)/(x^3 −8))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{5}} −\mathrm{32}}{{x}^{\mathrm{3}} −\mathrm{8}} \\ $$

Question Number 184793    Answers: 1   Comments: 0

Evaluate lim_(x→2) ((x^2 −4)/( (√(3x−2))−(√(x+2))))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{\mathrm{3}{x}−\mathrm{2}}−\sqrt{{x}+\mathrm{2}}} \\ $$$$ \\ $$

Question Number 184792    Answers: 1   Comments: 2

Evaluate lim_(x→0) ((tan x−sin x)/(sin^3 x))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}} \\ $$$$ \\ $$

Question Number 184791    Answers: 0   Comments: 2

Evaluate lim_(x→0) ((e^x +e^(−x) −2)/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{e}^{{x}} +{e}^{−{x}} −\mathrm{2}}{{x}^{\mathrm{2}} } \\ $$

Question Number 184790    Answers: 2   Comments: 2

Evaluate lim_(x→0) (((1+x)^6 −1)/((1+x)^5 −1))

$${Evaluate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{6}} −\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{5}} −\mathrm{1}} \\ $$

Question Number 184787    Answers: 0   Comments: 2

x^4 +16x^3 +9x^2 +256x+256=0 Find the values of x?

$$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 184775    Answers: 1   Comments: 2

(1/(6 + (9/(6 + ((25)/(6 + ((49)/(6 + ((81)/(6+ ......)) )) )) )) )) =?

$$\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{6}\:+\:\frac{\mathrm{9}}{\mathrm{6}\:+\:\:\frac{\mathrm{25}}{\mathrm{6}\:\:+\:\:\frac{\mathrm{49}}{\mathrm{6}\:+\:\frac{\mathrm{81}}{\mathrm{6}+\:......}\:\:\:\:\:}\:\:\:\:\:}\:\:}\:\:\:\:\:\:\:\:}\:\:=? \\ $$$$ \\ $$$$ \\ $$

Question Number 184774    Answers: 1   Comments: 2

Calcul the sum 1.Σx(1+x^2 )^(1/2) 2.Σxarctan(x) 3.Σe^x sinx 4.Σ(2x+1)^(20) 5.Σ(√(a^2 −x^2 )) a>0 6.Σxsinx

$${Calcul}\:{the}\:{sum} \\ $$$$\mathrm{1}.\Sigma{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2}.\Sigma{xarctan}\left({x}\right) \\ $$$$\mathrm{3}.\Sigma{e}^{{x}} {sinx} \\ $$$$\mathrm{4}.\Sigma\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{20}} \\ $$$$\mathrm{5}.\Sigma\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:}\:{a}>\mathrm{0} \\ $$$$\mathrm{6}.\Sigma{xsinx} \\ $$

Question Number 184773    Answers: 2   Comments: 1

lim_(x→1) ((ax+b)/( (√(1+3x))−2))=c 2a−2b+3c=? (a,b,c)≠0 pease solution????

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{ax}+\mathrm{b}}{\:\sqrt{\mathrm{1}+\mathrm{3x}}−\mathrm{2}}=\mathrm{c} \\ $$$$\mathrm{2a}−\mathrm{2b}+\mathrm{3c}=? \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\neq\mathrm{0} \\ $$$$\mathrm{pease}\:\mathrm{solution}???? \\ $$

Question Number 184769    Answers: 0   Comments: 2

Question Number 184768    Answers: 1   Comments: 1

Σ_(n=o) ^(+oo) (x^n /(4n^2 −1))

$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 184757    Answers: 2   Comments: 2

Which function has a crisis point? a)y=x^3 +2x+6 b)y=(x)^(1/4) c)y=((15)/x) d)y=e^x e)y=(x)^(1/3)

$$\mathrm{Which}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{crisis}\:\mathrm{point}? \\ $$$$\left.\mathrm{a}\right)\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}+\mathrm{6} \\ $$$$\left.\mathrm{b}\right)\mathrm{y}=\sqrt[{\mathrm{4}}]{\mathrm{x}} \\ $$$$\left.\mathrm{c}\right)\mathrm{y}=\frac{\mathrm{15}}{\mathrm{x}} \\ $$$$\left.\mathrm{d}\right)\mathrm{y}=\mathrm{e}^{\boldsymbol{\mathrm{x}}} \\ $$$$\left.\mathrm{e}\right)\mathrm{y}=\sqrt[{\mathrm{3}}]{\mathrm{x}} \\ $$

Question Number 184753    Answers: 1   Comments: 0

Question Number 184744    Answers: 1   Comments: 1

given that the 5th term of an AP is more than its firs term by 12. and the 6th term is more than the first term by 10. find the fist term? common difference and 100th term

$${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$

Question Number 184739    Answers: 1   Comments: 1

Number of linear functions be defined f:[−1, 1]→[0,2] is a)1 b)2 c)3 d)4

$${Number}\:{of}\:{linear}\:{functions}\: \\ $$$${be}\:{defined}\:{f}:\left[−\mathrm{1},\:\mathrm{1}\right]\rightarrow\left[\mathrm{0},\mathrm{2}\right]\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:{c}\right)\mathrm{3}\:\:\:{d}\right)\mathrm{4} \\ $$

  Pg 347      Pg 348      Pg 349      Pg 350      Pg 351      Pg 352      Pg 353      Pg 354      Pg 355      Pg 356   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com