Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 347

Question Number 183806    Answers: 1   Comments: 0

∫ ((√(x+(√(x^2 +25))))/x) dx =?

$$\:\:\int\:\frac{\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}}}{{x}}\:{dx}\:=? \\ $$

Question Number 183803    Answers: 1   Comments: 0

Question Number 183783    Answers: 0   Comments: 0

Question Number 183777    Answers: 2   Comments: 1

Question Number 183776    Answers: 0   Comments: 0

Question Number 183773    Answers: 2   Comments: 0

In a square (ABCD) there is a quarter of a circle ADC (AD = DC), put a point N in the arc AC such that AN = 1 and NC = 2(√2) find BN.

$$\:{In}\:{a}\:{square}\:\left({ABCD}\right)\:{there}\:{is}\:{a}\:{quarter}\:{of} \\ $$$$\:{a}\:{circle}\:{ADC}\:\left({AD}\:=\:{DC}\right),\:{put}\:{a}\:{point}\:{N} \\ $$$$\:{in}\:{the}\:{arc}\:{AC}\:{such}\:{that}\:{AN}\:=\:\mathrm{1}\:{and}\:{NC}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:{find}\:{BN}.\: \\ $$$$\: \\ $$

Question Number 183767    Answers: 1   Comments: 0

Question Number 183766    Answers: 1   Comments: 0

Question Number 183769    Answers: 0   Comments: 4

solve for x: x^x^x =2^(2048) by using lambert function

$${solve}\:{for}\:{x}: \\ $$$${x}^{{x}^{{x}} } =\mathrm{2}^{\mathrm{2048}} \\ $$$${by}\:{using}\:{lambert}\:{function} \\ $$

Question Number 183761    Answers: 1   Comments: 0

Solve the differential equation for the function given by U(x,t). { (((∂U/∂t) = 2(∂^2 U/∂x^2 ) , 0 < x < π)),((U(0,t) = 0, U(π,t) = 0, t > 0)) :} U(x,0) = 25x

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{given}\:\mathrm{by}\:{U}\left({x},{t}\right). \\ $$$$\begin{cases}{\frac{\partial{U}}{\partial{t}}\:=\:\mathrm{2}\frac{\partial^{\mathrm{2}} {U}}{\partial{x}^{\mathrm{2}} }\:,\:\mathrm{0}\:<\:{x}\:<\:\pi}\\{{U}\left(\mathrm{0},{t}\right)\:=\:\mathrm{0},\:{U}\left(\pi,{t}\right)\:=\:\mathrm{0},\:{t}\:>\:\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{U}\left({x},\mathrm{0}\right)\:=\:\mathrm{25}{x} \\ $$

Question Number 183795    Answers: 2   Comments: 0

Question Number 183794    Answers: 0   Comments: 1

If ∫_0 ^π ((cos x)/((x+2)^2 )) dx= T then ∫_0 ^π ((sin 2x)/(x+1)) dx = ?

$$\:{If}\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{cos}\:{x}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }\:{dx}=\:{T} \\ $$$$\:{then}\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{{x}+\mathrm{1}}\:{dx}\:=\:?\: \\ $$

Question Number 183756    Answers: 2   Comments: 0

solve for x by using lambert function x^2 =16^x

$${solve}\:{for}\:{x}\:{by}\:{using}\:{lambert}\:{function} \\ $$$${x}^{\mathrm{2}} =\mathrm{16}^{{x}} \\ $$

Question Number 183750    Answers: 1   Comments: 0

Question Number 183747    Answers: 1   Comments: 0

Find the perimeter of a regular heptagon ABCDEFG if (1/(AE)) + (1/(AC)) = (1/5)

$$\:{Find}\:{the}\:{perimeter}\:{of}\:{a}\:{regular}\:{heptagon}\: \\ $$$$\:{ABCDEFG}\:{if}\:\frac{\mathrm{1}}{{AE}}\:+\:\frac{\mathrm{1}}{{AC}}\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\: \\ $$

Question Number 183746    Answers: 1   Comments: 5

find x x^4 −x^3 −19x^2 +93x−128=0

$${find}\:{x} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{19}{x}^{\mathrm{2}} +\mathrm{93}{x}−\mathrm{128}=\mathrm{0} \\ $$

Question Number 183737    Answers: 2   Comments: 0

Question Number 183734    Answers: 1   Comments: 0

Question Number 183728    Answers: 1   Comments: 1

Question Number 183726    Answers: 2   Comments: 1

Prove that Σ_(k=0) ^(n−1) 2^(n−1) =n×2^(n−1)

$${Prove}\:{that}\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{2}^{{n}−\mathrm{1}} ={n}×\mathrm{2}^{{n}−\mathrm{1}} \: \\ $$

Question Number 183725    Answers: 0   Comments: 0

Question Number 183712    Answers: 1   Comments: 0

solve: W(In(4x))=(√((x−1)))

$${solve}: \\ $$$${W}\left({In}\left(\mathrm{4}{x}\right)\right)=\sqrt{\left({x}−\mathrm{1}\right)} \\ $$

Question Number 183711    Answers: 1   Comments: 1

Question Number 183710    Answers: 0   Comments: 0

Question Number 183709    Answers: 0   Comments: 1

Question Number 183706    Answers: 1   Comments: 0

A=∫ ((1+cos^2 x)/(1+sin^4 x)) dx

$$\:\:\:\:{A}=\int\:\frac{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{4}} {x}}\:{dx} \\ $$

  Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349      Pg 350      Pg 351   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com