Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 347

Question Number 186840    Answers: 1   Comments: 0

∫_9 ^( 16) ((√(4−(√x)))/x) dx =?

$$\:\:\underset{\mathrm{9}} {\overset{\:\mathrm{16}} {\int}}\:\frac{\sqrt{\mathrm{4}−\sqrt{{x}}}}{{x}}\:{dx}\:=? \\ $$

Question Number 186838    Answers: 3   Comments: 0

Question Number 186837    Answers: 0   Comments: 0

Question Number 186835    Answers: 0   Comments: 1

Question Number 186833    Answers: 1   Comments: 1

Question Number 186830    Answers: 1   Comments: 1

Question Number 186821    Answers: 1   Comments: 0

Question Number 188822    Answers: 1   Comments: 3

is it a polynomial? p(x)=2x^2 +4x^x −10

$${is}\:{it}\:{a}\:{polynomial}? \\ $$$${p}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}^{{x}} −\mathrm{10} \\ $$

Question Number 186809    Answers: 1   Comments: 0

Question Number 186808    Answers: 0   Comments: 0

Question Number 186805    Answers: 1   Comments: 0

Question Number 186803    Answers: 1   Comments: 0

Question Number 186800    Answers: 0   Comments: 0

show that ∫_0 ^( ∞ ) ((tan^(−1) 𝛂x tan^(−1) 𝛃x)/x^2 )dx = (𝛑/2)log{(((𝛂+𝛃)^(𝛂+𝛃) )/(𝛂^𝛂 𝛃^𝛃 ))}

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\int_{\mathrm{0}} ^{\:\infty\:} \frac{\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \boldsymbol{\alpha{x}}\:\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \boldsymbol{\beta{x}}}{\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\mathrm{log}\left\{\frac{\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\right)^{\boldsymbol{\alpha}+\boldsymbol{\beta}} }{\boldsymbol{\alpha}^{\boldsymbol{\alpha}} \boldsymbol{\beta}^{\boldsymbol{\beta}} }\right\}\: \\ $$

Question Number 186790    Answers: 0   Comments: 0

Solve using Fourier′s series: x^2 (1−x)y′′−x(1+x)y′+y=0

$${Solve}\:{using}\:{Fourier}'{s}\:{series}: \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){y}''−{x}\left(\mathrm{1}+{x}\right){y}'+{y}=\mathrm{0} \\ $$

Question Number 186788    Answers: 1   Comments: 0

Question Number 186787    Answers: 0   Comments: 0

Question Number 186786    Answers: 0   Comments: 0

Question Number 186785    Answers: 0   Comments: 0

Question Number 186784    Answers: 1   Comments: 0

Question Number 186783    Answers: 0   Comments: 0

Question Number 186782    Answers: 3   Comments: 0

Question Number 186772    Answers: 0   Comments: 0

$$ \\ $$

Question Number 186771    Answers: 2   Comments: 0

Q : Find the value of the following integral. I = ∫_0 ^( (( π)/( 2))) (( 1)/( 1 + sin^( 4) ( x ) + cos^( 4) ( x ) )) dx = ?

$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integral}.\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\frac{\:\pi}{\:\mathrm{2}}} \:\frac{\:\:\mathrm{1}}{\:\mathrm{1}\:+\:\mathrm{sin}^{\:\mathrm{4}} \:\left(\:{x}\:\right)\:+\:\mathrm{cos}^{\:\mathrm{4}} \:\left(\:{x}\:\right)\:}\:\mathrm{d}{x}\:=\:\:?\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 186780    Answers: 1   Comments: 0

∫ ((1 + sin x + cos x)/(1 + sin x)) dx

$$ \\ $$$$\:\:\:\:\:\:\:\int\:\:\:\frac{\mathrm{1}\:+\:\boldsymbol{{sin}}\:\boldsymbol{{x}}\:+\:\boldsymbol{{cos}}\:\boldsymbol{{x}}}{\mathrm{1}\:+\:\boldsymbol{{sin}}\:\boldsymbol{{x}}}\:\:\boldsymbol{{dx}}\:\: \\ $$$$ \\ $$

Question Number 186769    Answers: 0   Comments: 0

Given function f : R → R satisfy that (f ○ f)(x) + x = (x+1) f(x) . Find the value of f(1) .

$$\mathrm{Given}\:\:\mathrm{function}\:\:\:{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R}\:\:\:\mathrm{satisfy}\:\:\mathrm{that} \\ $$$$\:\:\:\:\left({f}\:\circ\:{f}\right)\left({x}\right)\:+\:{x}\:=\:\left({x}+\mathrm{1}\right)\:{f}\left({x}\right)\:. \\ $$$$\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\:{f}\left(\mathrm{1}\right)\:. \\ $$

Question Number 186764    Answers: 0   Comments: 3

  Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349      Pg 350      Pg 351   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com