Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 347
Question Number 186503 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:{function}\:{of}\:,\:{f}\:\left({x}\right)\:=\:{ax}\:\:+\:\mid\:{x}\:\mid\:{is}\:\:{one}\:{to}\:{one} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:.{find}\:\:\:\:''\:\:\:\:{a}\:\:\:\:''\:\:. \\ $$$$\:\: \\ $$
Question Number 186500 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}}}}−\sqrt{\mathrm{x}}=? \\ $$$$\mathrm{please}\:\mathrm{solution} \\ $$
Question Number 186492 Answers: 1 Comments: 1
Question Number 186489 Answers: 1 Comments: 0
Question Number 186486 Answers: 0 Comments: 6
$${Question}\:{propose}\:{par} \\ $$$${Migma} \\ $$$$−−−−−−−−−−− \\ $$$${calcul}\:{de}\:{X} \\ $$$$ \\ $$$$\bigtriangleup{ABC}\:\:\:\:\:\:\measuredangle{ACB}=\mathrm{40}^{°} \\ $$$$\mathrm{AB}^{\mathrm{2}} =\mathrm{AC}^{\mathrm{2}} +\mathrm{BC}^{\mathrm{2}} −\mathrm{2AC}×\mathrm{BCcos}\:\mathrm{40}\:\:\:\: \\ $$$$\mathrm{AC}=\mathrm{15}\:\:;\:\:\:\:\mathrm{AB}=\mathrm{X}+\mathrm{4}\:;\:\:\:\mathrm{BC}=\mathrm{10} \\ $$$$\left(\mathrm{X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{300}×\mathrm{cos}\:\mathrm{40} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{325}−\mathrm{229},\mathrm{81334} \\ $$$$\left({X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{95},\mathrm{18666706} \\ $$$${posons}\:\:\:{Z}={X}+\mathrm{4} \\ $$$$\:\:\:{Z}^{\mathrm{2}} =\mathrm{9},\mathrm{756}^{\mathrm{2}} \:\:\:\:\Rightarrow\mathrm{X}+\mathrm{4}=\mathrm{9},\mathrm{756} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{X}=\mathrm{5},\mathrm{756} \\ $$$$ \\ $$
Question Number 186482 Answers: 2 Comments: 0
Question Number 186481 Answers: 0 Comments: 0
Question Number 186476 Answers: 0 Comments: 0
Question Number 186473 Answers: 0 Comments: 0
$$\mathrm{A}\:\mathrm{metallic}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{subjected}\:\mathrm{to} \\ $$$$\mathrm{heating}\:\mathrm{such}\:\mathrm{that}\:\mathrm{as}\:\mathrm{the}\:\mathrm{metal} \\ $$$$\mathrm{expands},\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{area} \\ $$$$\mathrm{increases}\:\mathrm{at}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{6}.\mathrm{25}\:\mathrm{cm}^{\mathrm{2}} \mathrm{s}^{−\mathrm{1}} . \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{at}\:\mathrm{which}\:\mathrm{each} \\ $$$$\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{when} \\ $$$$\mathrm{the}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{51}.\mathrm{2}\:\mathrm{cm}^{\mathrm{3}} . \\ $$
Question Number 186468 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Simplify} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{to} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{2} \\ $$
Question Number 186464 Answers: 1 Comments: 15
Question Number 186453 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{10}}=? \\ $$
Question Number 186447 Answers: 0 Comments: 1
Question Number 186446 Answers: 0 Comments: 0
Question Number 186445 Answers: 1 Comments: 0
$$\mathrm{Show}\:\:\mathrm{that}\:\:\mathrm{the}\:\:\mathrm{function}\:\:\mathrm{y}\:=\:\:\mid\:\mathrm{x}\:−\mathrm{5}\:\mid\:\:\mathrm{has}\:\:\mathrm{no}\:\:\mathrm{derivative}\:\:\mathrm{at}\:\:\mathrm{x}\:\:=\:\mathrm{5}. \\ $$
Question Number 186442 Answers: 2 Comments: 0
Question Number 186441 Answers: 1 Comments: 1
Question Number 186439 Answers: 1 Comments: 1
Question Number 186437 Answers: 1 Comments: 2
$$ \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}}}\:}\:{dx} \\ $$$$\: \\ $$
Question Number 186419 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\mathrm{I}{f}\:,\:\sqrt[{\mathrm{3}}]{\:\mathrm{1}\:−\:{l}\overset{} {{o}g}_{\:\mathrm{2}} \left({x}\right)}\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{1}\overset{} {+}{log}_{\:\mathrm{2}} \left({x}\right)}\:−\mathrm{1}=\mathrm{0}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\:{x}\:=\:?\:\:\:\: \\ $$
Question Number 186416 Answers: 1 Comments: 1
Question Number 186410 Answers: 1 Comments: 1
Question Number 186403 Answers: 0 Comments: 0
Question Number 186402 Answers: 1 Comments: 0
Question Number 186401 Answers: 1 Comments: 0
Question Number 186399 Answers: 1 Comments: 0
Pg 342 Pg 343 Pg 344 Pg 345 Pg 346 Pg 347 Pg 348 Pg 349 Pg 350 Pg 351
Terms of Service
Privacy Policy
Contact: info@tinkutara.com