Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 345

Question Number 186079    Answers: 1   Comments: 0

Question Number 186077    Answers: 1   Comments: 0

Prove that ▽•(∅A^− )=(▽∅)•A+∅(▽•A^− ). Help!

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\bigtriangledown\bullet\left(\varnothing\overset{−} {\mathrm{A}}\right)=\left(\bigtriangledown\varnothing\right)\bullet\mathrm{A}+\varnothing\left(\bigtriangledown\bullet\overset{−} {\mathrm{A}}\right). \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 186074    Answers: 1   Comments: 0

Prove that div(curlA^− )=0 Help!

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{div}\left(\mathrm{curl}\overset{−} {\mathrm{A}}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 186069    Answers: 1   Comments: 0

Question Number 186066    Answers: 3   Comments: 0

lim_(x→∞) x((√(4x^2 −12x+7))−(√(x^2 −4x−2))−x+1) lim_(x→∞) ((√(x^2 +3x))−((x^3 +2x^2 ))^(1/3) )

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{7}}−\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{2}}−{x}+\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} }\right) \\ $$$$ \\ $$

Question Number 186065    Answers: 1   Comments: 2

lim_(x→1) ((((x^3 +7x^2 +10x+9))^(1/3) −(√(6x+3)))/((x−1)^2 ))

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{7}{x}^{\mathrm{2}} +\mathrm{10}{x}+\mathrm{9}}−\sqrt{\mathrm{6}{x}+\mathrm{3}}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Question Number 186064    Answers: 1   Comments: 1

lim_(x→∞) (cos2x −cos(√(4x^2 +10)))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left({cos}\mathrm{2}{x}\:−{cos}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{10}}\right) \\ $$$$ \\ $$

Question Number 186061    Answers: 1   Comments: 0

Question Number 186058    Answers: 0   Comments: 1

Q185257

$${Q}\mathrm{185257} \\ $$

Question Number 186053    Answers: 2   Comments: 0

Question Number 186052    Answers: 1   Comments: 0

Question Number 186046    Answers: 2   Comments: 1

Question Number 186051    Answers: 1   Comments: 0

∫_(−1) ^0 ∣5^x −5^(−x) ∣dx

$$\underset{−\mathrm{1}} {\overset{\mathrm{0}} {\int}}\mid\mathrm{5}^{{x}} −\mathrm{5}^{−{x}} \mid{dx} \\ $$

Question Number 186030    Answers: 2   Comments: 0

Question Number 186029    Answers: 0   Comments: 0

Question Number 186028    Answers: 0   Comments: 2

A wolf weighs 40 kg, how many kilo calories does it need to maintain its body temperature?

$$ \\ $$A wolf weighs 40 kg, how many kilo calories does it need to maintain its body temperature?

Question Number 186027    Answers: 1   Comments: 0

Question Number 186026    Answers: 1   Comments: 0

Question Number 186025    Answers: 0   Comments: 1

P(x) = −3x^2 +5x^3 +5x^2 −5x−2 division euclidienne par x^2 −1

$$\boldsymbol{\mathrm{P}}\left(\boldsymbol{{x}}\right)\:=\:−\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{\mathrm{x}}−\mathrm{2} \\ $$$${division}\:{euclidienne}\:{par}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$

Question Number 186022    Answers: 0   Comments: 5

prove that(using Epsilon−Delta definition) (a) lim_(x→3) ( 2x^2 +1)=19 (b) lim_(x→2) x^3 =8

$${prove}\:\:{that}\left({using}\:{Epsilon}−{Delta}\:{definition}\right) \\ $$$$\left({a}\right)\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left(\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{19} \\ $$$$\left({b}\right)\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:{x}^{\mathrm{3}} =\mathrm{8} \\ $$

Question Number 186021    Answers: 1   Comments: 0

prove that(using Epsilon−Delta definition) (a) lim_(x→1) (6x−2)=4 (b)lim_(x→6) (√(3x−2))=4

$${prove}\:{that}\left({using}\:{Epsilon}−{Delta}\:{definition}\right) \\ $$$$\left({a}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\mathrm{6}{x}−\mathrm{2}\right)=\mathrm{4} \\ $$$$\left({b}\right)\underset{{x}\rightarrow\mathrm{6}} {\mathrm{lim}}\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{4} \\ $$

Question Number 186048    Answers: 0   Comments: 2

∫_a ^b (dx/( (√(b−x))+(√(x−a))))

$$\int_{{a}} ^{{b}} \frac{{dx}}{\:\sqrt{{b}−{x}}+\sqrt{{x}−{a}}} \\ $$

Question Number 186009    Answers: 0   Comments: 0

Question Number 186002    Answers: 1   Comments: 1

Question Number 185996    Answers: 2   Comments: 0

Question Number 185985    Answers: 2   Comments: 0

∫ (dx/( (√(sin x(1+cos x))))) =?

$$\:\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}}\:=? \\ $$

  Pg 340      Pg 341      Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com