Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 34

Question Number 215276    Answers: 1   Comments: 0

I produced the drawing shown below (Q. 215275) using this great app, but unfortunately it refused to get saved after clicking “Save” button several times. Also, the “Export As Image” button is not working. Does anyone know the cause of this?

$$\mathrm{I}\:\mathrm{produced}\:\mathrm{the}\:\mathrm{drawing}\: \\ $$$$\mathrm{shown}\:\mathrm{below}\:\left(\mathrm{Q}.\:\mathrm{215275}\right)\: \\ $$$$\mathrm{using}\:\mathrm{this}\:\mathrm{great}\:\mathrm{app},\:\mathrm{but}\: \\ $$$$\mathrm{unfortunately}\:\mathrm{it}\:\mathrm{refused}\:\mathrm{to}\: \\ $$$$\mathrm{get}\:\mathrm{saved}\:\mathrm{after}\:\mathrm{clicking}\: \\ $$$$``\mathrm{Save}''\:\mathrm{button}\:\mathrm{several}\:\mathrm{times}.\: \\ $$$$\mathrm{Also},\:\mathrm{the}\:``\mathrm{Export}\:\mathrm{As}\:\mathrm{Image}''\: \\ $$$$\mathrm{button}\:\mathrm{is}\:\mathrm{not}\:\mathrm{working}.\:\mathrm{Does}\: \\ $$$$\mathrm{anyone}\:\mathrm{know}\:\mathrm{the}\:\mathrm{cause}\:\mathrm{of}\: \\ $$$$\mathrm{this}? \\ $$

Question Number 215272    Answers: 1   Comments: 0

{ ((abac^(−) =(dc^(−) )^2 )),((d=((ab^(−) )/c))),((c^2 =ac^(−) )) :} abac^(−) =?

$$\begin{cases}{\overline {{abac}}=\left(\overline {{dc}}\right)^{\mathrm{2}} }\\{{d}=\frac{\overline {{ab}}}{{c}}}\\{{c}^{\mathrm{2}} =\overline {{ac}}}\end{cases} \\ $$$$\overline {{abac}}=? \\ $$

Question Number 215275    Answers: 0   Comments: 0

Question Number 215256    Answers: 1   Comments: 2

Question Number 215255    Answers: 0   Comments: 0

a,b,c are pythagorean triples For the following values: determinant ((a,b,( c)),(5,(12),(13))) a^2 =b+c _(⇒5^2 =12+13=25) determinant ((a,b,( c)),((45),(1012),(1013)))a^2 =b+c_( ⇒45^2 =1012+1013=2025) ⇒45^2 =1012+1013=2025 determinant ((( _ determinant (((HAPPY NEW YEAR!)))^ )))

$${a},{b},{c}\:{are}\:{pythagorean}\:{triples} \\ $$$${For}\:{the}\:{following}\:{values}: \\ $$$$\begin{array}{|c|c|}{{a}}&\hline{{b}}&\hline{\:{c}}\\{\mathrm{5}}&\hline{\mathrm{12}}&\hline{\mathrm{13}}\\\hline\end{array}\:\:\underset{\Rightarrow\mathrm{5}^{\mathrm{2}} =\mathrm{12}+\mathrm{13}=\mathrm{25}} {{a}^{\mathrm{2}} ={b}+{c}\:\:} \\ $$$$\begin{array}{|c|c|}{{a}}&\hline{{b}}&\hline{\:{c}}\\{\mathrm{45}}&\hline{\mathrm{1012}}&\hline{\mathrm{1013}}\\\hline\end{array}\underset{\:\:\:\:\:\:\:\Rightarrow\mathrm{45}^{\mathrm{2}} =\mathrm{1012}+\mathrm{1013}=\mathrm{2025}} {{a}^{\mathrm{2}} ={b}+{c}} \\ $$$$\Rightarrow\mathrm{45}^{\mathrm{2}} =\mathrm{1012}+\mathrm{1013}=\mathrm{2025} \\ $$$$\: \\ $$$$\begin{array}{|c|}{\:_{\:} \begin{array}{|c|}{\mathcal{HAPPY}\:\:\mathcal{NEW}\:\:\mathcal{YEAR}!}\\\hline\end{array}^{\:} \:}\\\hline\end{array} \\ $$

Question Number 215248    Answers: 2   Comments: 1

((10)/7)÷(9/4)×((21)/8)

$$\frac{\mathrm{10}}{\mathrm{7}}\boldsymbol{\div}\frac{\mathrm{9}}{\mathrm{4}}×\frac{\mathrm{21}}{\mathrm{8}} \\ $$

Question Number 215234    Answers: 0   Comments: 0

Question Number 215224    Answers: 0   Comments: 1

I have just discovered that it is only alphabetic letters that can be made bold while typing with the keyboard of this app. Numbers 0 - 9 can′t be made bold, after being selected. Am I right, or is it only my phone that is having the issue? If it is general, admin team should kindly see to it in year 2025. Kudos to them for their hard work!

$$\mathrm{I}\:\mathrm{have}\:\mathrm{just}\:\mathrm{discovered}\:\mathrm{that}\:\mathrm{it}\: \\ $$$$\mathrm{is}\:\mathrm{only}\:\mathrm{alphabetic}\:\mathrm{letters}\:\mathrm{that} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{bold}\:\mathrm{while}\: \\ $$$$\mathrm{typing}\:\mathrm{with}\:\mathrm{the}\:\mathrm{keyboard}\:\mathrm{of}\: \\ $$$$\mathrm{this}\:\mathrm{app}.\:\mathrm{Numbers}\:\mathrm{0}\:-\:\mathrm{9}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{made}\:\mathrm{bold},\:\mathrm{after}\:\mathrm{being}\: \\ $$$$\mathrm{selected}.\: \\ $$$$ \\ $$$$\mathrm{Am}\:\mathrm{I}\:\mathrm{right},\:\mathrm{or}\:\mathrm{is}\:\mathrm{it}\:\mathrm{only}\:\mathrm{my}\: \\ $$$$\mathrm{phone}\:\mathrm{that}\:\mathrm{is}\:\mathrm{having}\:\mathrm{the}\: \\ $$$$\mathrm{issue}? \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{it}\:\mathrm{is}\:\mathrm{general},\:\mathrm{admin}\:\mathrm{team}\: \\ $$$$\mathrm{should}\:\mathrm{kindly}\:\mathrm{see}\:\mathrm{to}\:\mathrm{it}\:\mathrm{in}\:\mathrm{year}\: \\ $$$$\mathrm{2025}.\:\mathrm{Kudos}\:\mathrm{to}\:\mathrm{them}\:\mathrm{for}\:\mathrm{their} \\ $$$$\mathrm{hard}\:\mathrm{work}! \\ $$

Question Number 215227    Answers: 2   Comments: 0

(20+25)^2 =2025 only 3 other 4 digit numbers: (00+01)^2 =0001 (30+25)^2 =3025 (98+01)^2 =9801

$$\left(\mathrm{20}+\mathrm{25}\right)^{\mathrm{2}} =\mathrm{2025} \\ $$$$\mathrm{only}\:\mathrm{3}\:\mathrm{other}\:\mathrm{4}\:\mathrm{digit}\:\mathrm{numbers}: \\ $$$$\left(\mathrm{00}+\mathrm{01}\right)^{\mathrm{2}} =\mathrm{0001} \\ $$$$\left(\mathrm{30}+\mathrm{25}\right)^{\mathrm{2}} =\mathrm{3025} \\ $$$$\left(\mathrm{98}+\mathrm{01}\right)^{\mathrm{2}} =\mathrm{9801} \\ $$

Question Number 215200    Answers: 4   Comments: 1

HAPPY NEW YEAR𝚺_(n=1) ^9 n^3 !

$$\boldsymbol{\mathcal{HAPPY}}\:\:\boldsymbol{\mathcal{NEW}}\:\:\boldsymbol{\mathcal{YEAR}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\mathrm{9}} {\boldsymbol{\sum}}{n}}^{\mathrm{3}} \:! \\ $$

Question Number 215199    Answers: 0   Comments: 0

$$\:\:\:\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 215195    Answers: 1   Comments: 1

Question Number 215193    Answers: 2   Comments: 1

Question Number 215190    Answers: 1   Comments: 0

∫(x^(p−1) /(1+x^n ))lnln(1/x)dx,p,n>0

$$\int\frac{{x}^{{p}−\mathrm{1}} }{\mathrm{1}+{x}^{{n}} }\mathrm{lnln}\frac{\mathrm{1}}{{x}}{dx},{p},{n}>\mathrm{0} \\ $$

Question Number 215189    Answers: 1   Comments: 0

∫_0 ^∞ ((ln(1+x^(12) ))/(1+x^2 ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{12}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 215188    Answers: 2   Comments: 0

∫_0 ^∞ ((x cos 2πx)/(e^(2π(√x)) −1))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}\:\mathrm{cos}\:\mathrm{2}\pi{x}}{{e}^{\mathrm{2}\pi\sqrt{{x}}} −\mathrm{1}}{dx} \\ $$

Question Number 215185    Answers: 1   Comments: 0

∫_(−∞) ^∞ ((exp(((ax)/(1+x^2 )))exp((a/(1+x^2 ))))/(1+x^2 ))dx,a>0

$$\int_{−\infty} ^{\infty} \frac{\mathrm{exp}\left(\frac{{ax}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\mathrm{exp}\left(\frac{{a}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx},{a}>\mathrm{0} \\ $$

Question Number 215177    Answers: 2   Comments: 0

x^3 + x^2 + x = − (1/3) Find the value of x ! Help me, please

$$ \\ $$$$\:\:\:{x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:{x}\:=\:−\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\mathcal{F}{ind}\:{the}\:{value}\:{of}\:\:{x}\:\:!\: \\ $$$$ \\ $$$$\:\:\:\mathcal{H}{elp}\:{me},\:\:{please} \\ $$$$ \\ $$

Question Number 215168    Answers: 1   Comments: 0

Let two roots of the equation x^2 +2mx+m^2 −2m+3=0 is α, β(For α<β), (2) Find (α−β)^2 Using m. (3) If β−α=2, Solve for m. If you don′t solve it, I will force you to solve.

$$\mathrm{Let}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} +\mathrm{2}{mx}+{m}^{\mathrm{2}} −\mathrm{2}{m}+\mathrm{3}=\mathrm{0}\:\mathrm{is}\:\alpha,\:\beta\left(\mathrm{For}\:\alpha<\beta\right), \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Find}\:\left(\alpha−\beta\right)^{\mathrm{2}} \:\mathrm{Using}\:{m}. \\ $$$$\left(\mathrm{3}\right)\:\mathrm{If}\:\beta−\alpha=\mathrm{2},\:\mathrm{Solve}\:\mathrm{for}\:{m}. \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{don}'\mathrm{t}\:\mathrm{solve}\:\mathrm{it},\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{solve}. \\ $$

Question Number 215167    Answers: 1   Comments: 0

If the quadratic equation x^2 −2x−m+1=0 has two different positive real roots α, β, Determine the range of m (For example, 0<m<3) or I will force you to determine

$$\mathrm{If}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\:{x}^{\mathrm{2}} −\mathrm{2}{x}−{m}+\mathrm{1}=\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{different}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{roots}\:\alpha,\:\beta, \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{m}\:\left(\mathrm{For}\:\mathrm{example},\:\mathrm{0}<{m}<\mathrm{3}\right)\:\mathrm{or}\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{determine} \\ $$

Question Number 215166    Answers: 1   Comments: 0

If the quadratic equation 3x^2 +8x+2k=0 has two different negative real roots, Determine the range of k (For example, 0<k<3) or I will force you to determine

$$\mathrm{If}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{2}{k}=\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{different}\:\mathrm{negative}\:\mathrm{real}\:\mathrm{roots}, \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{k}\:\left(\mathrm{For}\:\mathrm{example},\:\mathrm{0}<{k}<\mathrm{3}\right)\:\mathrm{or}\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{determine} \\ $$

Question Number 215164    Answers: 1   Comments: 0

Let the two roots of the quadratic equation x^2 −12x+k=0 is α, α^2 , Then solve for α and k or I will force you to solve

$$\mathrm{Let}\:\mathrm{the}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\:{x}^{\mathrm{2}} −\mathrm{12}{x}+{k}=\mathrm{0}\:\mathrm{is}\:\alpha,\:\alpha^{\mathrm{2}} , \\ $$$$\mathrm{Then}\:\mathrm{solve}\:\mathrm{for}\:\alpha\:\mathrm{and}\:{k}\:\mathrm{or}\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{solve} \\ $$

Question Number 215161    Answers: 1   Comments: 4

∫(((x^8 +16x^7 −2x^4 −3)e^x )/((1+x^4 )^(2/3) ))dx

$$ \\ $$$$\:\:\:\:\:\:\int\frac{\left({x}^{\mathrm{8}} +\mathrm{16}{x}^{\mathrm{7}} −\mathrm{2}{x}^{\mathrm{4}} −\mathrm{3}\right){e}^{{x}} }{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{2}/\mathrm{3}} }{dx} \\ $$$$ \\ $$

Question Number 215147    Answers: 2   Comments: 0

Question Number 215141    Answers: 2   Comments: 0

Question Number 215137    Answers: 1   Comments: 0

If ab^(−) + ba^(−) = n^2 Find max(a∙b) − min(a∙b) = ?

$$\mathrm{If}\:\:\:\overline {\mathrm{ab}}\:+\:\overline {\mathrm{ba}}\:=\:\mathrm{n}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\:\mathrm{max}\left(\mathrm{a}\centerdot\mathrm{b}\right)\:−\:\mathrm{min}\left(\mathrm{a}\centerdot\mathrm{b}\right)\:=\:? \\ $$

  Pg 29      Pg 30      Pg 31      Pg 32      Pg 33      Pg 34      Pg 35      Pg 36      Pg 37      Pg 38   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com