Une fonction P est dite quasi polynomiale s′il existe (pour k∈N ) k+1 fonction periodique(c_i )_(i∈[∣0;k∣]) de Z dans R
telles que P(n)=Σ_(k=1) ^n c_i (n)n^i
(1) Montrez que l′ensemble des fonction quasi polynomiale forme un R−ev(real space vector).
(2)Montrez que si P,Q:Z→R sont desfonction quasi polynomiale tel que P(n)=Q(n) ∀n∈N alors P=Q
E^ lectric field strenth at any point in the space
is defined as the force per unit charge at that point.
It is a vector quantity whose magnitude is
given by Coulomb^(s ) law and diection is in
straight line loining the at that point.
mathemstically