Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 336

Question Number 175579    Answers: 0   Comments: 0

lim_(x→∞) ((x^(1−sin ((1/x))) .(x^(sin ((1/x))) −1))/(ln x))

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{1}−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)} .\left(\mathrm{x}^{\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)} −\mathrm{1}\right)}{\mathrm{ln}\:\mathrm{x}} \\ $$

Question Number 175573    Answers: 0   Comments: 0

Question Number 175572    Answers: 0   Comments: 0

Question Number 175571    Answers: 2   Comments: 0

Question Number 175567    Answers: 0   Comments: 0

in how many ways can you put 40 identical balls into 20 identical boxes such that each box obtains at least one ball and at most 5 balls?

$${in}\:{how}\:{many}\:{ways}\:{can}\:{you}\:{put}\:\mathrm{40} \\ $$$${identical}\:{balls}\:{into}\:\mathrm{20}\:{identical}\:{boxes} \\ $$$${such}\:{that}\:{each}\:{box}\:{obtains}\:{at}\:{least}\:{one} \\ $$$${ball}\:{and}\:{at}\:{most}\:\mathrm{5}\:{balls}? \\ $$

Question Number 175568    Answers: 1   Comments: 1

Question Number 175554    Answers: 2   Comments: 0

x^(√x) =(√x^x ) find x

$${x}^{\sqrt{{x}}} =\sqrt{{x}^{{x}} } \\ $$$${find}\:{x} \\ $$

Question Number 175553    Answers: 1   Comments: 0

Question Number 175548    Answers: 1   Comments: 4

determinant ((( determinant (((2+424+44244+4442444+∙∙∙n terms=?_ ^ _() ^() )))_ ^ ^(∣•∣_(−) ^(−) ) )))

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\overset{\underset{−} {\overline {\mid\bullet\mid}}} {\:\begin{array}{|c|}{\underset{} {\overset{} {\mathrm{2}+\mathrm{424}+\mathrm{44244}+\mathrm{4442444}+\centerdot\centerdot\centerdot{n}\:{terms}=?_{} ^{} }}}\\\hline\end{array}_{} ^{} }}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 175547    Answers: 2   Comments: 0

Question Number 175544    Answers: 1   Comments: 1

tan^6 (10°)+tan^6 (50°)+tan^6 (70°)=?

$$\:\mathrm{tan}\:^{\mathrm{6}} \left(\mathrm{10}°\right)+\mathrm{tan}\:^{\mathrm{6}} \left(\mathrm{50}°\right)+\mathrm{tan}\:^{\mathrm{6}} \left(\mathrm{70}°\right)=? \\ $$

Question Number 175531    Answers: 2   Comments: 0

∫ (dt/(5cos t+6sin t)) =?

$$\:\int\:\frac{{dt}}{\mathrm{5cos}\:{t}+\mathrm{6sin}\:{t}}\:=? \\ $$

Question Number 175511    Answers: 0   Comments: 1

Question Number 175516    Answers: 1   Comments: 0

Question Number 175505    Answers: 1   Comments: 2

N=64990691606209 is a semi-prime number. That is, N=pq where p and q are prime numbers. Find p and q:

$${N}=\mathrm{64990691606209}\:\mathrm{is}\:\mathrm{a}\:\mathrm{semi}-\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{That}\:\mathrm{is},\:{N}={pq}\:\mathrm{where}\:{p}\:\mathrm{and}\:{q}\:\mathrm{are}\:\mathrm{prime}\:\mathrm{numbers}. \\ $$$$\mathrm{Find}\:{p}\:\mathrm{and}\:{q}: \\ $$

Question Number 175493    Answers: 1   Comments: 1

tan^(−1) (asin θ)=sin^(−1) b−θ find θ.

$$\mathrm{tan}^{−\mathrm{1}} \left({a}\mathrm{sin}\:\theta\right)=\mathrm{sin}^{−\mathrm{1}} {b}−\theta \\ $$$${find}\:\theta. \\ $$

Question Number 175490    Answers: 1   Comments: 0

solve f(x)f(y)= f(x+y)+xy f:R⇒R

$${solve} \\ $$$${f}\left({x}\right){f}\left({y}\right)=\:{f}\left({x}+{y}\right)+{xy} \\ $$$${f}:\mathbb{R}\Rightarrow\mathbb{R} \\ $$

Question Number 175487    Answers: 0   Comments: 0

Question Number 175483    Answers: 2   Comments: 0

Solve it by horner′s method and get the quotient. 2x^3 y+3xy−5x^2 y^2 +12÷(2x−4)=?

$${Solve}\:{it}\:{by}\:{horner}'{s}\:{method}\:{and}\:{get} \\ $$$${the}\:{quotient}. \\ $$$$\mathrm{2}{x}^{\mathrm{3}} {y}+\mathrm{3}{xy}−\mathrm{5}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}\boldsymbol{\div}\left(\mathrm{2}{x}−\mathrm{4}\right)=? \\ $$

Question Number 175476    Answers: 1   Comments: 1

Question Number 175471    Answers: 1   Comments: 0

Question Number 175470    Answers: 1   Comments: 0

Question Number 175467    Answers: 0   Comments: 1

Question Number 175466    Answers: 0   Comments: 0

Question Number 175464    Answers: 2   Comments: 0

Find general solutions the following differential equations (a) (d^2 y/dx^2 ) + (dy/dx) = 6y (b) (3x^2 +y^2 )dx + (x^2 +y^2 )dy = 0

$$\:\mathrm{Find}\:\mathrm{general}\:\mathrm{solutions}\:\mathrm{the}\:\mathrm{following}\: \\ $$$$\mathrm{differential}\:\mathrm{equations} \\ $$$$\left({a}\right)\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\frac{{dy}}{{dx}}\:=\:\mathrm{6}{y} \\ $$$$\left(\mathrm{b}\right)\:\:\:\left(\mathrm{3}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dx}\:+\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dy}\:=\:\mathrm{0} \\ $$$$ \\ $$

Question Number 175462    Answers: 1   Comments: 3

p^3 +q^3 +p^2 +q^2 +c^2 =0 find p+q in terms of c. if c^2 <(4/9).

$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} +{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:{p}+{q}\:{in}\:{terms}\:{of}\:{c}.\:\:{if}\:\:{c}^{\mathrm{2}} <\frac{\mathrm{4}}{\mathrm{9}}. \\ $$

  Pg 331      Pg 332      Pg 333      Pg 334      Pg 335      Pg 336      Pg 337      Pg 338      Pg 339      Pg 340   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com