Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 332
Question Number 187651 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\mathrm{13x}\:+\:\mathrm{36}\:=\:\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 187645 Answers: 1 Comments: 0
Question Number 187640 Answers: 2 Comments: 1
Question Number 187639 Answers: 2 Comments: 1
Question Number 187629 Answers: 0 Comments: 1
$${Classer}\:{par}\:{ordre}\:{croissant} \\ $$$$\left({from}\:{min}\:\:{to}\:{max}\right) \\ $$$$\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}};\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{3}−\sqrt{\mathrm{3}}}{\mathrm{2}}; \\ $$$$\frac{\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\:\mathrm{1}+\sqrt{\mathrm{2}}};\frac{\mathrm{2}\sqrt{\mathrm{3}}\:−\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{1}}\: \\ $$
Question Number 187619 Answers: 1 Comments: 0
$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:\equiv\:{r}\:\left({mod}\:\:\:\mathrm{7}\right) \\ $$$${r}\:=\:? \\ $$
Question Number 187613 Answers: 3 Comments: 1
$${how}\:{is}\:{solution} \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{13}} =\mathrm{x}\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{221}} =? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{x}^{−\mathrm{16}} \left.\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{x}^{−\mathrm{17}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{x}^{\mathrm{221}} \:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right)\mathrm{x}^{\mathrm{21}} \\ $$
Question Number 187612 Answers: 0 Comments: 0
$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}\right)\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\mathrm{2}\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{f}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\boldsymbol{\mathrm{f}}\::\boldsymbol{\mathrm{R}}\rightarrow\boldsymbol{\mathrm{R}} \\ $$
Question Number 187611 Answers: 2 Comments: 0
$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find} \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Question Number 187609 Answers: 0 Comments: 0
$$\:{where}\:{is} \\ $$$${f}\left({x},{y}\right)=\frac{\mathrm{2}{x}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:{continious} \\ $$
Question Number 187608 Answers: 3 Comments: 0
Question Number 187607 Answers: 0 Comments: 1
$$\: \\ $$$$\:\boldsymbol{\mathrm{Help}}!\:\::\left(\right. \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Should}}\:\:\boldsymbol{\mathrm{i}}\:\:\boldsymbol{\mathrm{partially}}\:\:\boldsymbol{\mathrm{differentiate}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{numerator}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{denominator}}? \\ $$$$\: \\ $$$$\:\underset{\left(\boldsymbol{{x}},\:\boldsymbol{\mathrm{y}}\right)\rightarrow\left(\mathrm{0},\mathrm{1}\right)} {\boldsymbol{\mathrm{lim}}}\left[\frac{\boldsymbol{{x}}^{\boldsymbol{{e}}} \:\:+\:\boldsymbol{{ln}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}{\boldsymbol{{x}}^{\boldsymbol{{e}}} \:−\:\boldsymbol{{ln}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}\right] \\ $$
Question Number 187605 Answers: 0 Comments: 0
$$\:{what}\:{is}\:{the}\:{name}\:{of}\:{the}\:{shape}\:{whose} \\ $$$${graph}\:{is}: \\ $$$$\left({a}\right)\:{f}\left({x},{y}\right)=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\: \\ $$$$\:\left({b}\right)\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\: \\ $$$$\:\:\left({c}\right)\:{f}\left({x},{y}\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$ \\ $$$$\:\:\:\:\left({d}\right)\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x} \\ $$$$ \\ $$$$\:\:\:\:\left({e}\right)\:{f}\left({x},{y}\right)={xy} \\ $$
Question Number 187606 Answers: 2 Comments: 0
$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find}\: \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Question Number 187602 Answers: 1 Comments: 0
$$\:\:\:\underset{\mathrm{1}/\mathrm{4}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{{x}}\right)−\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{{x}}\right)}{\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{{x}}\right)+\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{{x}}\right)}\:{dx}=? \\ $$
Question Number 187598 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{6}}{{x}}−\sqrt{\frac{\mathrm{36}}{{x}^{\mathrm{2}} }+\frac{\mathrm{4}}{{x}}+\mathrm{9}}\:=? \\ $$
Question Number 187595 Answers: 1 Comments: 1
Question Number 187589 Answers: 3 Comments: 1
Question Number 187587 Answers: 2 Comments: 1
Question Number 187585 Answers: 1 Comments: 1
Question Number 187581 Answers: 0 Comments: 0
Question Number 187560 Answers: 1 Comments: 0
Question Number 187559 Answers: 1 Comments: 0
Question Number 187557 Answers: 3 Comments: 0
Question Number 187556 Answers: 0 Comments: 1
Question Number 187549 Answers: 1 Comments: 0
Pg 327 Pg 328 Pg 329 Pg 330 Pg 331 Pg 332 Pg 333 Pg 334 Pg 335 Pg 336
Terms of Service
Privacy Policy
Contact: info@tinkutara.com