Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 332

Question Number 187651    Answers: 2   Comments: 0

Find the range of this function x^2 −13x + 36 = 0 Help!

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\mathrm{13x}\:+\:\mathrm{36}\:=\:\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 187645    Answers: 1   Comments: 0

Question Number 187640    Answers: 2   Comments: 1

Question Number 187639    Answers: 2   Comments: 1

Question Number 187629    Answers: 0   Comments: 1

Classer par ordre croissant (from min to max) (((√3)−1)/2);((2+(√2))/3);((3−(√3))/2); (((√3)+2(√2))/3);((2(√3))/( 1+(√2)));((2(√3) −1)/( 2(√2) +1))

$${Classer}\:{par}\:{ordre}\:{croissant} \\ $$$$\left({from}\:{min}\:\:{to}\:{max}\right) \\ $$$$\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}};\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{3}−\sqrt{\mathrm{3}}}{\mathrm{2}}; \\ $$$$\frac{\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\:\mathrm{1}+\sqrt{\mathrm{2}}};\frac{\mathrm{2}\sqrt{\mathrm{3}}\:−\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{1}}\: \\ $$

Question Number 187619    Answers: 1   Comments: 0

32^(32^(32) ) ≡ r (mod 7) r = ?

$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:\equiv\:{r}\:\left({mod}\:\:\:\mathrm{7}\right) \\ $$$${r}\:=\:? \\ $$

Question Number 187613    Answers: 3   Comments: 1

how is solution ((√2)−1)^(13) =x ((√2)+1)^(221) =? 1)x^(−16) 2)x^(−17) 3)x^(221) 4)x^(21)

$${how}\:{is}\:{solution} \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{13}} =\mathrm{x}\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{221}} =? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{x}^{−\mathrm{16}} \left.\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{x}^{−\mathrm{17}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{x}^{\mathrm{221}} \:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right)\mathrm{x}^{\mathrm{21}} \\ $$

Question Number 187612    Answers: 0   Comments: 0

f(f(x^2 +y))+f(y)=2y+f^2 (x) f :R→R

$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}\right)\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\mathrm{2}\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{f}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\boldsymbol{\mathrm{f}}\::\boldsymbol{\mathrm{R}}\rightarrow\boldsymbol{\mathrm{R}} \\ $$

Question Number 187611    Answers: 2   Comments: 0

Use polar coordinate to find lim(x,y)→(0,0) (y^2 /(x^2 +y^2 ))

$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find} \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Question Number 187609    Answers: 0   Comments: 0

where is f(x,y)=((2x−y)/(x^2 +y^2 )) continious

$$\:{where}\:{is} \\ $$$${f}\left({x},{y}\right)=\frac{\mathrm{2}{x}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:{continious} \\ $$

Question Number 187608    Answers: 3   Comments: 0

Question Number 187607    Answers: 0   Comments: 1

Help! :( Should i partially differentiate the numerator and denominator? lim_((x, y)→(0,1)) [((x^e + ln((1/y)))/(x^e − ln((1/y))))]

$$\: \\ $$$$\:\boldsymbol{\mathrm{Help}}!\:\::\left(\right. \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Should}}\:\:\boldsymbol{\mathrm{i}}\:\:\boldsymbol{\mathrm{partially}}\:\:\boldsymbol{\mathrm{differentiate}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{numerator}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{denominator}}? \\ $$$$\: \\ $$$$\:\underset{\left(\boldsymbol{{x}},\:\boldsymbol{\mathrm{y}}\right)\rightarrow\left(\mathrm{0},\mathrm{1}\right)} {\boldsymbol{\mathrm{lim}}}\left[\frac{\boldsymbol{{x}}^{\boldsymbol{{e}}} \:\:+\:\boldsymbol{{ln}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}{\boldsymbol{{x}}^{\boldsymbol{{e}}} \:−\:\boldsymbol{{ln}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}\right] \\ $$

Question Number 187605    Answers: 0   Comments: 0

what is the name of the shape whose graph is: (a) f(x,y)=(√(x^2 +y^2 )) (b) f(x,y)=x^2 +y^2 (c) f(x,y)=(√(1−x^2 −y^2 )) (d) f(x,y)=x^2 +y^2 −2x (e) f(x,y)=xy

$$\:{what}\:{is}\:{the}\:{name}\:{of}\:{the}\:{shape}\:{whose} \\ $$$${graph}\:{is}: \\ $$$$\left({a}\right)\:{f}\left({x},{y}\right)=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\: \\ $$$$\:\left({b}\right)\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\: \\ $$$$\:\:\left({c}\right)\:{f}\left({x},{y}\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$ \\ $$$$\:\:\:\:\left({d}\right)\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x} \\ $$$$ \\ $$$$\:\:\:\:\left({e}\right)\:{f}\left({x},{y}\right)={xy} \\ $$

Question Number 187606    Answers: 2   Comments: 0

Use polar coordinate to find lim(x,y)→(0,0) ((x^2 −xy^2 )/(x^2 +y^2 ))

$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find}\: \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Question Number 187602    Answers: 1   Comments: 0

∫_(1/4) ^(1/2) ((sin^(−1) ((√x))−cos^(−1) ((√x)))/(sin^(−1) ((√x))+cos^(−1) ((√x)))) dx=?

$$\:\:\:\underset{\mathrm{1}/\mathrm{4}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{{x}}\right)−\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{{x}}\right)}{\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{{x}}\right)+\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{{x}}\right)}\:{dx}=? \\ $$

Question Number 187598    Answers: 2   Comments: 0

lim_(x→0^+ ) (6/x)−(√(((36)/x^2 )+(4/x)+9)) =?

$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{6}}{{x}}−\sqrt{\frac{\mathrm{36}}{{x}^{\mathrm{2}} }+\frac{\mathrm{4}}{{x}}+\mathrm{9}}\:=? \\ $$

Question Number 187595    Answers: 1   Comments: 1

Question Number 187589    Answers: 3   Comments: 1

Question Number 187587    Answers: 2   Comments: 1

Question Number 187585    Answers: 1   Comments: 1

Question Number 187581    Answers: 0   Comments: 0

Question Number 187560    Answers: 1   Comments: 0

Question Number 187559    Answers: 1   Comments: 0

Question Number 187557    Answers: 3   Comments: 0

Question Number 187556    Answers: 0   Comments: 1

Question Number 187549    Answers: 1   Comments: 0

  Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335      Pg 336   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com