Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 331

Question Number 187714    Answers: 1   Comments: 2

Question Number 187713    Answers: 1   Comments: 1

Question Number 187706    Answers: 1   Comments: 0

Question Number 187711    Answers: 0   Comments: 0

Evaluate lim(x,y)→(1,0) ((xy−y)/(x^2 +y^2 −2x+1))

$$\:{Evaluate}\:\: \\ $$$$\:\:\:{lim}\left({x},{y}\right)\rightarrow\left(\mathrm{1},\mathrm{0}\right)\:\:\frac{{xy}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}} \\ $$

Question Number 187703    Answers: 2   Comments: 0

∫ (1/(5x^2 − 2x − 4)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{5x}^{\mathrm{2}} \:\:−\:\:\mathrm{2x}\:\:−\:\:\mathrm{4}}\:\mathrm{dx} \\ $$

Question Number 187701    Answers: 1   Comments: 0

Question Number 187700    Answers: 0   Comments: 1

Find minimum area of the part y=x^2 and y=kx(x^2 −k), k>0

$$\:{Find}\:{minimum}\:{area}\:{of}\:{the}\:{part} \\ $$$$\:{y}={x}^{\mathrm{2}} \:{and}\:{y}={kx}\left({x}^{\mathrm{2}} −{k}\right),\:{k}>\mathrm{0}\: \\ $$

Question Number 187695    Answers: 2   Comments: 0

If , f( x )= (( sin_ (cos (x) ))/( ^ (√( (π/x))))) ⇒ f ′ ((( π)/2) ) = ?

$$ \\ $$$$\:\:\:{If}\:,\:\:{f}\left(\:{x}\:\right)=\:\frac{\:\:{si}\underset{} {{n}}\:\left({cos}\:\left({x}\right)\:\right)}{\overset{} {\:}\sqrt{\:\frac{\pi}{{x}}}} \\ $$$$\:\:\:\:\Rightarrow\:\:\:{f}\:'\:\left(\frac{\:\pi}{\mathrm{2}}\:\right)\:=\:? \\ $$

Question Number 187689    Answers: 2   Comments: 0

Question Number 187691    Answers: 0   Comments: 0

Misalkan P sebarang titik didalam 𝚫ABC sehingga PD, PE , dan PF masing masing tegak lurus dengan sisi BC,CA dan AB Jika panjang sisi BC,CA dan AB masing masing dinotasikan dengan a,b dan c. bila x,y dan z adalah sebarang bilangan real yang memenuhi xy + yz +xz ≥ 0 Tunjukkan bahwa; (y + z) ((PA)/a) + (z+x)((PB)/b) + (x + y) ((PC)/c) ≥ 2(√(xy + yz +zx))

$$\: \\ $$$$\:\:\:\boldsymbol{{Misalkan}}\:\boldsymbol{{P}}\:\boldsymbol{{sebarang}}\:\boldsymbol{{titik}}\:\boldsymbol{{didalam}}\:\boldsymbol{\Delta{ABC}}\:\:\boldsymbol{{sehingga}}\:\boldsymbol{{PD}},\:\boldsymbol{{PE}}\:,\:\boldsymbol{{dan}}\:\boldsymbol{{PF}}\:\: \\ $$$$\:\:\:\boldsymbol{{masing}}\:\boldsymbol{{masing}}\:\boldsymbol{{tegak}}\:\boldsymbol{{lurus}}\:\:\boldsymbol{{dengan}}\:\boldsymbol{{sisi}}\:\boldsymbol{{BC}},\boldsymbol{{CA}}\:\boldsymbol{{dan}}\:\boldsymbol{{AB}} \\ $$$$\:\:\:\boldsymbol{{Jika}}\:\boldsymbol{{panjang}}\:\boldsymbol{{sisi}}\:\boldsymbol{{BC}},\boldsymbol{{CA}}\:\boldsymbol{{dan}}\:\boldsymbol{{AB}}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{masing}}\:\boldsymbol{{masing}}\:\boldsymbol{{dinotasikan}}\:\boldsymbol{{dengan}}\:\boldsymbol{{a}},\boldsymbol{{b}}\:\boldsymbol{{dan}}\:\boldsymbol{{c}}. \\ $$$$\:\:\:\boldsymbol{{bila}}\:\boldsymbol{{x}},\boldsymbol{{y}}\:\boldsymbol{{dan}}\:\boldsymbol{{z}}\:\boldsymbol{{adalah}}\:\boldsymbol{{sebarang}}\:\boldsymbol{{bilangan}}\:\boldsymbol{{real}}\:\boldsymbol{{yang}}\:\boldsymbol{{memenuhi}}\:\boldsymbol{{xy}}\:+\:\boldsymbol{{yz}}\:+\boldsymbol{{xz}}\:\geqslant\:\mathrm{0}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Tunjukkan}}\:\boldsymbol{{bahwa}}; \\ $$$$\:\:\:\:\left(\boldsymbol{{y}}\:+\:\boldsymbol{{z}}\right)\:\frac{\boldsymbol{{PA}}}{\boldsymbol{{a}}}\:+\:\left(\boldsymbol{{z}}+\boldsymbol{{x}}\right)\frac{\boldsymbol{{PB}}}{\boldsymbol{{b}}}\:\:+\:\left(\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\right)\:\frac{\boldsymbol{{PC}}}{\boldsymbol{{c}}}\:\:\geqslant\:\mathrm{2}\sqrt{\boldsymbol{{xy}}\:+\:\boldsymbol{{yz}}\:+\boldsymbol{{zx}}}\:\:\: \\ $$$$ \\ $$

Question Number 187690    Answers: 0   Comments: 0

Question Number 187683    Answers: 1   Comments: 0

Question Number 187675    Answers: 1   Comments: 1

Question Number 187672    Answers: 2   Comments: 0

4^(−(1/x)) +6^(−(1/x)) = 9^(−(1/x)) x∈R

$$\mathrm{4}^{−\frac{\mathrm{1}}{{x}}} +\mathrm{6}^{−\frac{\mathrm{1}}{{x}}} \:=\:\mathrm{9}^{−\frac{\mathrm{1}}{{x}}} \\ $$$${x}\in\mathbb{R} \\ $$

Question Number 187662    Answers: 1   Comments: 0

Question Number 187651    Answers: 2   Comments: 0

Find the range of this function x^2 −13x + 36 = 0 Help!

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\mathrm{13x}\:+\:\mathrm{36}\:=\:\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 187645    Answers: 1   Comments: 0

Question Number 187640    Answers: 2   Comments: 1

Question Number 187639    Answers: 2   Comments: 1

Question Number 187629    Answers: 0   Comments: 1

Classer par ordre croissant (from min to max) (((√3)−1)/2);((2+(√2))/3);((3−(√3))/2); (((√3)+2(√2))/3);((2(√3))/( 1+(√2)));((2(√3) −1)/( 2(√2) +1))

$${Classer}\:{par}\:{ordre}\:{croissant} \\ $$$$\left({from}\:{min}\:\:{to}\:{max}\right) \\ $$$$\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}};\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{3}−\sqrt{\mathrm{3}}}{\mathrm{2}}; \\ $$$$\frac{\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}};\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\:\mathrm{1}+\sqrt{\mathrm{2}}};\frac{\mathrm{2}\sqrt{\mathrm{3}}\:−\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{1}}\: \\ $$

Question Number 187619    Answers: 1   Comments: 0

32^(32^(32) ) ≡ r (mod 7) r = ?

$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:\equiv\:{r}\:\left({mod}\:\:\:\mathrm{7}\right) \\ $$$${r}\:=\:? \\ $$

Question Number 187613    Answers: 3   Comments: 1

how is solution ((√2)−1)^(13) =x ((√2)+1)^(221) =? 1)x^(−16) 2)x^(−17) 3)x^(221) 4)x^(21)

$${how}\:{is}\:{solution} \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{13}} =\mathrm{x}\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{221}} =? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{x}^{−\mathrm{16}} \left.\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{x}^{−\mathrm{17}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{x}^{\mathrm{221}} \:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right)\mathrm{x}^{\mathrm{21}} \\ $$

Question Number 187612    Answers: 0   Comments: 0

f(f(x^2 +y))+f(y)=2y+f^2 (x) f :R→R

$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}\right)\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\mathrm{2}\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{f}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\boldsymbol{\mathrm{f}}\::\boldsymbol{\mathrm{R}}\rightarrow\boldsymbol{\mathrm{R}} \\ $$

Question Number 187611    Answers: 2   Comments: 0

Use polar coordinate to find lim(x,y)→(0,0) (y^2 /(x^2 +y^2 ))

$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find} \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Question Number 187609    Answers: 0   Comments: 0

where is f(x,y)=((2x−y)/(x^2 +y^2 )) continious

$$\:{where}\:{is} \\ $$$${f}\left({x},{y}\right)=\frac{\mathrm{2}{x}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:{continious} \\ $$

Question Number 187608    Answers: 3   Comments: 0

  Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com