Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 331
Question Number 186835 Answers: 0 Comments: 1
Question Number 186833 Answers: 1 Comments: 1
Question Number 186830 Answers: 1 Comments: 1
Question Number 186821 Answers: 1 Comments: 0
Question Number 188822 Answers: 1 Comments: 3
$${is}\:{it}\:{a}\:{polynomial}? \\ $$$${p}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}^{{x}} −\mathrm{10} \\ $$
Question Number 186809 Answers: 1 Comments: 0
Question Number 186808 Answers: 0 Comments: 0
Question Number 186805 Answers: 1 Comments: 0
Question Number 186803 Answers: 1 Comments: 0
Question Number 186800 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\int_{\mathrm{0}} ^{\:\infty\:} \frac{\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \boldsymbol{\alpha{x}}\:\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \boldsymbol{\beta{x}}}{\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\mathrm{log}\left\{\frac{\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\right)^{\boldsymbol{\alpha}+\boldsymbol{\beta}} }{\boldsymbol{\alpha}^{\boldsymbol{\alpha}} \boldsymbol{\beta}^{\boldsymbol{\beta}} }\right\}\: \\ $$
Question Number 186790 Answers: 0 Comments: 0
$${Solve}\:{using}\:{Fourier}'{s}\:{series}: \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){y}''−{x}\left(\mathrm{1}+{x}\right){y}'+{y}=\mathrm{0} \\ $$
Question Number 186788 Answers: 1 Comments: 0
Question Number 186787 Answers: 0 Comments: 0
Question Number 186786 Answers: 0 Comments: 0
Question Number 186785 Answers: 0 Comments: 0
Question Number 186784 Answers: 1 Comments: 0
Question Number 186783 Answers: 0 Comments: 0
Question Number 186782 Answers: 3 Comments: 0
Question Number 186772 Answers: 0 Comments: 0
$$ \\ $$
Question Number 186771 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integral}.\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\frac{\:\pi}{\:\mathrm{2}}} \:\frac{\:\:\mathrm{1}}{\:\mathrm{1}\:+\:\mathrm{sin}^{\:\mathrm{4}} \:\left(\:{x}\:\right)\:+\:\mathrm{cos}^{\:\mathrm{4}} \:\left(\:{x}\:\right)\:}\:\mathrm{d}{x}\:=\:\:?\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 186780 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\int\:\:\:\frac{\mathrm{1}\:+\:\boldsymbol{{sin}}\:\boldsymbol{{x}}\:+\:\boldsymbol{{cos}}\:\boldsymbol{{x}}}{\mathrm{1}\:+\:\boldsymbol{{sin}}\:\boldsymbol{{x}}}\:\:\boldsymbol{{dx}}\:\: \\ $$$$ \\ $$
Question Number 186769 Answers: 0 Comments: 0
$$\mathrm{Given}\:\:\mathrm{function}\:\:\:{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R}\:\:\:\mathrm{satisfy}\:\:\mathrm{that} \\ $$$$\:\:\:\:\left({f}\:\circ\:{f}\right)\left({x}\right)\:+\:{x}\:=\:\left({x}+\mathrm{1}\right)\:{f}\left({x}\right)\:. \\ $$$$\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\:{f}\left(\mathrm{1}\right)\:. \\ $$
Question Number 186764 Answers: 0 Comments: 3
Question Number 186762 Answers: 3 Comments: 4
Question Number 186758 Answers: 2 Comments: 0
$$\mathrm{If}\:\left[{t}\right]\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{part}\:\mathrm{of}\:{t},\:\mathrm{then}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left[{x}\:\mathrm{sin}\:\pi{x}\right] \\ $$$$\left(\mathrm{A}\right)\:\:\mathrm{equals}\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\:\mathrm{equals}\:−\mathrm{1} \\ $$$$\left(\mathrm{C}\right)\:\:\mathrm{equals}\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$
Question Number 186752 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\sqrt{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{7}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{4}} +\mathrm{3}}}{\:\sqrt[{\mathrm{4}}]{{x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{5}} +\mathrm{1}}−\sqrt[{\mathrm{5}}]{{x}^{\mathrm{7}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}}} \\ $$$${Please}\:{show}\:{work}. \\ $$
Pg 326 Pg 327 Pg 328 Pg 329 Pg 330 Pg 331 Pg 332 Pg 333 Pg 334 Pg 335
Terms of Service
Privacy Policy
Contact: info@tinkutara.com