Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 331

Question Number 188309    Answers: 1   Comments: 1

Question Number 188301    Answers: 1   Comments: 4

Find the number of triangles with integer side lengths and perimeter p.

$${Find}\:{the}\:{number}\:{of}\:{triangles}\:{with} \\ $$$${integer}\:{side}\:{lengths}\:{and}\:{perimeter}\:{p}. \\ $$

Question Number 188296    Answers: 1   Comments: 0

Question Number 188295    Answers: 0   Comments: 0

let S be the sets be the sequences of lenght 2018 whose terms are in the sets {1,2,3,4,5,6,10} and sum to 3860. prove that the cardinality of S is at most 2^(3860) ∙( ((2018)/(2048)))^(2018)

$$ \\ $$$$\:\:\:\:\boldsymbol{{let}}\:\:\boldsymbol{{S}}\:\boldsymbol{{be}}\:\boldsymbol{{the}}\:\boldsymbol{{sets}}\:\boldsymbol{{be}}\:\boldsymbol{{the}}\:\boldsymbol{{sequences}}\:\boldsymbol{{of}}\:\boldsymbol{{lenght}}\:\mathrm{2018}\:\:\: \\ $$$$\:\:\:\boldsymbol{{whose}}\:\boldsymbol{{terms}}\:\boldsymbol{{are}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{sets}}\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{10}\right\}\:\boldsymbol{{and}}\:\boldsymbol{{sum}}\:\boldsymbol{{to}}\:\mathrm{3860}.\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{prove}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{cardinality}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{is}}\:\boldsymbol{{at}}\:\boldsymbol{{most}}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{3860}} \centerdot\left(\:\frac{\mathrm{2018}}{\mathrm{2048}}\right)^{\mathrm{2018}} \\ $$$$ \\ $$$$\:\:\:\: \\ $$

Question Number 188294    Answers: 0   Comments: 0

Question Number 188463    Answers: 2   Comments: 0

Question Number 188286    Answers: 1   Comments: 0

when sin(x)+cos(x)=a find sec(x)+csc(x)=?

$${when}\:\:\:\:\:\:{sin}\left({x}\right)+{cos}\left({x}\right)={a} \\ $$$${find}\:\:\:\:\:\:\:\:\:{sec}\left({x}\right)+{csc}\left({x}\right)=? \\ $$

Question Number 188284    Answers: 1   Comments: 1

a friend shared this challenging problem to me. 2^y ×y^2 +(2y)^(2y) =272 no inspection approach! thank you all.

$${a}\:{friend}\:{shared}\:{this}\:{challenging}\: \\ $$$${problem}\:{to}\:{me}. \\ $$$$\mathrm{2}^{\boldsymbol{{y}}} ×\boldsymbol{{y}}^{\mathrm{2}} +\left(\mathrm{2}\boldsymbol{{y}}\right)^{\mathrm{2}\boldsymbol{{y}}} \:=\mathrm{272} \\ $$$$\boldsymbol{{no}}\:\boldsymbol{{inspection}}\:\boldsymbol{{approach}}! \\ $$$$\boldsymbol{{thank}}\:\boldsymbol{{you}}\:\boldsymbol{{all}}. \\ $$

Question Number 188281    Answers: 1   Comments: 0

1) ((18log10000+(√(43x)))/(12)) 2) ((√(43x))/(18log1000)) 3) 18log10000+(√(43x)) 4) ((18log10000)/( (√(43x)))) 5) log(sinx)+sin(log100) 6) log(sinx)+12 7) (√(x^2 −x+90)) 8) log(sin(π/4))+(1/( (√5))) Which two of the following questions can be polynomials?

$$\left.\mathrm{1}\right)\:\:\frac{\mathrm{18}{log}\mathrm{10000}+\sqrt{\mathrm{43}{x}}}{\mathrm{12}} \\ $$$$\left.\mathrm{2}\right)\:\frac{\sqrt{\mathrm{43}{x}}}{\mathrm{18}{log}\mathrm{1000}} \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{18}{log}\mathrm{10000}+\sqrt{\mathrm{43}{x}}\:\:\: \\ $$$$\left.\mathrm{4}\right)\:\:\:\frac{\mathrm{18}{log}\mathrm{10000}}{\:\sqrt{\mathrm{43}{x}}} \\ $$$$\left.\mathrm{5}\right)\:\:\:{log}\left({sinx}\right)+{sin}\left({log}\mathrm{100}\right) \\ $$$$\left.\mathrm{6}\right)\:\:\:{log}\left({sinx}\right)+\mathrm{12} \\ $$$$\left.\mathrm{7}\right)\:\:\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{90}} \\ $$$$\left.\mathrm{8}\right)\:\:{log}\left({sin}\frac{\pi}{\mathrm{4}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$Which two of the following questions can be polynomials?

Question Number 188280    Answers: 0   Comments: 2

Prove that 1+2+3+4+..... = −(1/(12))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+.....\:=\:−\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Question Number 188278    Answers: 1   Comments: 0

Question Number 188277    Answers: 0   Comments: 0

Question Number 188270    Answers: 1   Comments: 1

Question Number 188267    Answers: 2   Comments: 0

Question Number 188268    Answers: 1   Comments: 2

Question Number 188263    Answers: 0   Comments: 0

Question Number 188262    Answers: 1   Comments: 0

solve the equation; {: ((x + y +z = 30(√2))),((x − y − z = 7,5)),((x + y − z = (√(22)))) } x ; y ; z = ?? they form funny positions

$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}};\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\left.\begin{matrix}{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:+\boldsymbol{{z}}\:=\:\:\mathrm{30}\sqrt{\mathrm{2}}}\\{\boldsymbol{{x}}\:−\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\mathrm{7},\mathrm{5}}\\{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\sqrt{\mathrm{22}}}\end{matrix}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}\:;\:\boldsymbol{{y}}\:;\:\boldsymbol{{z}}\:=\:?? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{they}\:{form}\:{funny}\:{positions}\: \\ $$$$ \\ $$

Question Number 188327    Answers: 3   Comments: 0

if the roots of 2x^2 −xn = 2x + m is 5, then find : 4n + m − 5

$${if}\:{the}\:{roots}\:{of}\:\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m}\:\:{is}\:\mathrm{5}, \\ $$$$\:{then}\:{find}\::\:\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}\: \\ $$$$\: \\ $$

Question Number 188260    Answers: 0   Comments: 0

ABCD is a rectangle such that ∣AB∣>∣BC∣ and O is the mid−point of DC, if ∣OB∣=0.1m and ∠BOC =𝛉, find an expression for the perimeter of the rectangle in terms of 𝛉. Find also, the values of R and 𝛃 for which the perimeter is Rcos(𝛉−𝛃). Deduce, the greatest possible value oc the perimeter.

$$\boldsymbol{{ABCD}}\:{is}\:{a}\:{rectangle}\:{such}\:{that} \\ $$$$\:\mid\boldsymbol{{AB}}\mid>\mid\boldsymbol{{BC}}\mid\:{and}\:{O}\:{is}\:{the}\:{mid}−{point} \\ $$$$\:{of}\:\boldsymbol{{DC}},\:{if}\:\mid\boldsymbol{{OB}}\mid=\mathrm{0}.\mathrm{1}{m}\:{and}\:\angle\boldsymbol{{BOC}}\:=\boldsymbol{\theta}, \\ $$$$\:{find}\:{an}\:{expression}\:{for}\:{the}\:{perimeter}\:{of} \\ $$$$\:{the}\:{rectangle}\:{in}\:{terms}\:{of}\:\boldsymbol{\theta}.\:{Find}\:{also},\: \\ $$$${the}\:{values}\:{of}\:\boldsymbol{{R}}\:{and}\:\boldsymbol{\beta}\:{for}\:{which}\:{the}\: \\ $$$${perimeter}\:{is}\:\boldsymbol{{Rcos}}\left(\boldsymbol{\theta}−\boldsymbol{\beta}\right).\:{Deduce},\:{the}\: \\ $$$${greatest}\:{possible}\:{value}\:{oc}\:{the}\:{perimeter}. \\ $$

Question Number 188259    Answers: 1   Comments: 0

Question Number 188258    Answers: 0   Comments: 0

Solve y=x(y′)^2 −(1/(y′))

$${Solve}\: \\ $$$${y}={x}\left({y}'\right)^{\mathrm{2}} −\frac{\mathrm{1}}{{y}'} \\ $$$$ \\ $$

Question Number 188251    Answers: 0   Comments: 0

Question Number 188250    Answers: 1   Comments: 0

Question Number 188248    Answers: 0   Comments: 0

(x^3 −y−3x)[(x^3 −3x)^2 −y^2 ]=200 (x^3 +y−3x)[(x^3 −3x)^2 +y^2 ]=600 solved in R

$$\left({x}^{\mathrm{3}} −{y}−\mathrm{3}{x}\right)\left[\left({x}^{\mathrm{3}} −\mathrm{3}{x}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} \right]=\mathrm{200} \\ $$$$\left({x}^{\mathrm{3}} +{y}−\mathrm{3}{x}\right)\left[\left({x}^{\mathrm{3}} −\mathrm{3}{x}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right]=\mathrm{600} \\ $$$${solved}\:{in}\:{R} \\ $$

Question Number 188247    Answers: 1   Comments: 0

Prove that (1) 5555^(2222) +2222^(5555) divisible by 7 (2) 3^(105) +4^(105) divisible by 7

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5555}^{\mathrm{2222}} +\mathrm{2222}^{\mathrm{5555}} \:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{3}^{\mathrm{105}} +\mathrm{4}^{\mathrm{105}} \:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\: \\ $$

Question Number 188239    Answers: 3   Comments: 0

The perimeter of a triangle is 16 units. How many triangles with integer sides can be made?

$$ \\ $$The perimeter of a triangle is 16 units. How many triangles with integer sides can be made?

  Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com