Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 331

Question Number 182582    Answers: 2   Comments: 0

Question Number 182581    Answers: 1   Comments: 0

f(x)=((x^2 +4x−3)/(x^2 −3)) f^(−1) (x)=?

$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{3}}\:\:\: \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 182576    Answers: 0   Comments: 0

Question Number 182575    Answers: 1   Comments: 0

((x+1))^(1/x) >(e)^(1/e) 1) Solve for x(x∈N^+ ). 2) Solve for x(x>0).

$$\sqrt[{{x}}]{{x}+\mathrm{1}}>\sqrt[{{e}}]{{e}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Solve}\:\mathrm{for}\:{x}\left({x}\in\mathbb{N}^{+} \right). \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Solve}\:\mathrm{for}\:{x}\left({x}>\mathrm{0}\right). \\ $$

Question Number 182571    Answers: 1   Comments: 0

Question Number 182566    Answers: 0   Comments: 0

Solve (x^2 +( xy^2 )^(1/3) )(dy/dx) = y^2

$$\mathrm{Solve} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} \:+\left(\:\mathrm{xy}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right)\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{y}^{\mathrm{2}} \\ $$

Question Number 182560    Answers: 1   Comments: 0

lim_(x→0) (1/x^2 ) − cot^2 x = ?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\mathrm{cot}^{\mathrm{2}} {x}\:=\:\:? \\ $$

Question Number 182552    Answers: 0   Comments: 0

Find the period of the following: a• sin 4x sin 3x b• sin πx+ cos x c• ((2 sin^2 3x− 3 tan 4x+ 4 cot 6x)/(∣cosec 8x∣− sec^3 10x+ (√(cot 12x))))

$${Find}\:{the}\:{period}\:{of}\:{the}\:{following}: \\ $$$$\:{a}\bullet\:\mathrm{sin}\:\mathrm{4}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\:{b}\bullet\:\mathrm{sin}\:\pi{x}+\:\mathrm{cos}\:{x} \\ $$$$\:{c}\bullet\:\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}{x}−\:\mathrm{3}\:\mathrm{tan}\:\mathrm{4}{x}+\:\mathrm{4}\:\mathrm{cot}\:\mathrm{6}{x}}{\mid\mathrm{cosec}\:\mathrm{8}{x}\mid−\:\mathrm{sec}^{\mathrm{3}} \:\mathrm{10}{x}+\:\sqrt{\mathrm{cot}\:\mathrm{12}{x}}} \\ $$

Question Number 182546    Answers: 2   Comments: 1

Question Number 182542    Answers: 1   Comments: 1

Question Number 182534    Answers: 1   Comments: 3

xy + (xy^2 )^(1/3) = y^2 Solve

$$\mathrm{xy}\:+\:\left(\mathrm{xy}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:=\:\mathrm{y}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Solve} \\ $$

Question Number 182533    Answers: 1   Comments: 0

If you walk around a triangle with sides 3, 6, 8 respectively such a way that you keep a distance of 3m from it, then how much distance will you travel?

$${If}\:{you}\:{walk}\:{around}\:{a}\:{triangle}\:{with}\:{sides}\:\mathrm{3},\:\mathrm{6},\:\mathrm{8} \\ $$$${respectively}\:{such}\:{a}\:{way}\:{that}\:{you}\:{keep}\:{a}\:{distance} \\ $$$$\:{of}\:\mathrm{3}{m}\:{from}\:{it},\:{then}\: \\ $$$$\:{how}\:{much}\:{distance}\:{will}\:{you}\:{travel}? \\ $$

Question Number 182532    Answers: 0   Comments: 0

Q.181494 Let′s try it

$${Q}.\mathrm{181494} \\ $$$$\:{Let}'{s}\:{try}\:{it} \\ $$

Question Number 182530    Answers: 3   Comments: 0

If: (a/x^9 ) + (x^9 /a) = 7 find: ((a/x^9 ))^(1/4) + ((x^9 /a))^(1/4)

$${If}:\:\:\:\frac{{a}}{{x}^{\mathrm{9}} }\:+\:\frac{{x}^{\mathrm{9}} }{{a}}\:=\:\mathrm{7} \\ $$$$\:{find}:\:\sqrt[{\mathrm{4}}]{\frac{{a}}{{x}^{\mathrm{9}} }}\:+\:\sqrt[{\mathrm{4}}]{\frac{{x}^{\mathrm{9}} }{{a}}} \\ $$

Question Number 182529    Answers: 1   Comments: 0

∫_0 ^1 ((x−1)/((x+1)lnx))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right){lnx}}{dx}=? \\ $$

Question Number 182528    Answers: 0   Comments: 1

lim_(x→0) (x!!)^(1/x) =?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left({x}!!\right)^{\frac{\mathrm{1}}{{x}}} =? \\ $$

Question Number 182514    Answers: 1   Comments: 1

1. prove that the equaion of parabola whose axis of symmetry is parallel to y axisis given as (x−h)^2 =+_− 4p(y−k) 2. if Dis a perpendicular distance of the point p(r,t)from the line (L):(x/r)+(y/t)=1 then find the value of D why not helped me??

$$\mathrm{1}.\:{prove}\:{that}\:{the}\:{equaion}\:{of}\:{parabola} \\ $$$$\:\:{whose}\:{axis}\:{of}\:{symmetry}\:{is}\:{parallel}\: \\ $$$${to}\:{y}\:{axisis}\:{given}\:{as}\:\left({x}−{h}\right)^{\mathrm{2}} =\underset{−} {+}\:\mathrm{4}{p}\left({y}−{k}\right) \\ $$$$\mathrm{2}.\:\:\:{if}\:{Dis}\:{a}\:{perpendicular}\:{distance}\: \\ $$$$\:\:\:{of}\:{the}\:{point}\:{p}\left({r},{t}\right){from}\:{the}\:{line} \\ $$$$\:\:\:\:\left({L}\right):\frac{{x}}{{r}}+\frac{{y}}{{t}}=\mathrm{1}\:\:{then}\:{find}\:{the} \\ $$$$\:\:\:\:\:\:\:{value}\:{of}\:{D} \\ $$$$\:{why}\:{not}\:{helped}\:{me}?? \\ $$

Question Number 182512    Answers: 2   Comments: 0

Question Number 182508    Answers: 1   Comments: 0

Question Number 182507    Answers: 0   Comments: 0

Can a mathematician solve or know everything?

$$\:{Can}\:{a}\:{mathematician}\:{solve}\:{or}\:{know}\:{everything}? \\ $$

Question Number 182506    Answers: 1   Comments: 0

Calculate S = 1×1! + 2×2! + 3×3! + ...+ n×n!

$$\:\:{Calculate}\:{S}\:=\:\mathrm{1}×\mathrm{1}!\:+\:\mathrm{2}×\mathrm{2}!\:+\:\mathrm{3}×\mathrm{3}!\:+\:...+\:{n}×{n}! \\ $$$$\:\:\: \\ $$

Question Number 182500    Answers: 1   Comments: 1

Question Number 182494    Answers: 0   Comments: 4

Question Number 182486    Answers: 0   Comments: 0

Question Number 182474    Answers: 3   Comments: 0

Find the number of sides of two regular polygons that their sides has a ratio 5:4 and of 9° as a difference between their angles.

$${Find}\:{the}\:{number}\:{of}\:{sides}\:{of}\:{two}\:{regular}\:{polygons} \\ $$$$\:{that}\:{their}\:{sides}\:{has}\:{a}\:{ratio}\:\mathrm{5}:\mathrm{4}\:{and}\:{of}\:\mathrm{9}°\:{as}\:{a} \\ $$$$\:{difference}\:{between}\:{their}\:{angles}. \\ $$

Question Number 182472    Answers: 1   Comments: 0

If you walk around a triangle 4m each side such a way that you keep a distance of 2m from it, then how much distance will you travel?

$${If}\:{you}\:{walk}\:{around}\:{a}\:{triangle}\:\mathrm{4}{m}\:{each}\:{side}\:{such} \\ $$$$\:{a}\:{way}\:{that}\:{you}\:{keep}\:{a}\:{distance}\:{of}\:\mathrm{2}{m}\:{from}\:{it},\:{then} \\ $$$${how}\:{much}\:{distance}\:{will}\:{you}\:{travel}? \\ $$

  Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com