Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 331

Question Number 185843    Answers: 0   Comments: 1

Question Number 185842    Answers: 0   Comments: 1

Question Number 185837    Answers: 0   Comments: 1

∫((cx+b^2 )/(2x))−((cx+2b^2 )/(4x))+(((cx)^2 +4b^2 )/(8x))dx=?

$$\int\frac{{cx}+{b}^{\mathrm{2}} }{\mathrm{2}{x}}−\frac{{cx}+\mathrm{2}{b}^{\mathrm{2}} }{\mathrm{4}{x}}+\frac{\left({cx}\right)^{\mathrm{2}} +\mathrm{4}{b}^{\mathrm{2}} }{\mathrm{8}{x}}{dx}=? \\ $$

Question Number 185836    Answers: 4   Comments: 0

(1) ∫_0 ^1 (dx/(2x^4 −2x^2 +1))=? (2) ∫_0 ^∞ (x^(1/4) /(1+x^2 )) dx=?

$$\:\left(\mathrm{1}\right)\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}=? \\ $$$$\left(\mathrm{2}\right)\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}^{\mathrm{1}/\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}=? \\ $$

Question Number 185833    Answers: 0   Comments: 0

Question Number 185828    Answers: 0   Comments: 3

Question Number 185821    Answers: 1   Comments: 0

Question Number 185816    Answers: 3   Comments: 1

Question Number 185815    Answers: 1   Comments: 1

Let function g(x) = (a/(g(ax))) , a, r ∈ R^+ and g(2) = 3 . Find value of g(2016) .

$$\mathrm{Let}\:\:\mathrm{function}\:\:{g}\left({x}\right)\:\:=\:\frac{{a}}{{g}\left({ax}\right)}\:\:,\:\:\:{a},\:{r}\:\in\:\:\mathbb{R}^{+} \:\:{and} \\ $$$${g}\left(\mathrm{2}\right)\:\:=\:\mathrm{3}\:.\:\:\mathrm{Find}\:\mathrm{value}\:\:\mathrm{of}\:\:{g}\left(\mathrm{2016}\right)\:. \\ $$

Question Number 185805    Answers: 2   Comments: 0

Question Number 185800    Answers: 2   Comments: 0

Question Number 185799    Answers: 1   Comments: 1

Question Number 185794    Answers: 2   Comments: 1

Question Number 185793    Answers: 2   Comments: 0

Question Number 185786    Answers: 0   Comments: 0

Question Number 185782    Answers: 0   Comments: 0

Question Number 185781    Answers: 1   Comments: 0

Question Number 185780    Answers: 0   Comments: 0

find all solutions for k!m!=n! (k,m,n∈N) (m≥k>1)

$${find}\:{all}\:{solutions}\:{for} \\ $$$${k}!{m}!={n}! \\ $$$$\left({k},{m},{n}\in\mathbb{N}\right) \\ $$$$\left({m}\geqslant{k}>\mathrm{1}\right) \\ $$

Question Number 185776    Answers: 3   Comments: 0

Question Number 185774    Answers: 2   Comments: 0

Question Number 185770    Answers: 1   Comments: 0

Question Number 185768    Answers: 1   Comments: 0

Question Number 185764    Answers: 2   Comments: 0

If f(x)=−(x^2 /8)+x−(a/8)−1 has 2 diffrent real roots in ((√(7a)),+∞), find the range of a>0.

$$\mathrm{If}\:{f}\left({x}\right)=−\frac{{x}^{\mathrm{2}} }{\mathrm{8}}+{x}−\frac{{a}}{\mathrm{8}}−\mathrm{1}\:\mathrm{has}\:\mathrm{2}\:\mathrm{diffrent}\:\mathrm{real} \\ $$$$\mathrm{roots}\:\mathrm{in}\:\left(\sqrt{\mathrm{7}{a}},+\infty\right),\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}>\mathrm{0}. \\ $$

Question Number 185760    Answers: 1   Comments: 0

A=2×10^0 +10^(−1) +6×10^(−2) +6×10^(−3) +6×10^(−4) +.... (A/(13))=?

$${A}=\mathrm{2}×\mathrm{10}^{\mathrm{0}} +\mathrm{10}^{−\mathrm{1}} +\mathrm{6}×\mathrm{10}^{−\mathrm{2}} +\mathrm{6}×\mathrm{10}^{−\mathrm{3}} +\mathrm{6}×\mathrm{10}^{−\mathrm{4}} +.... \\ $$$$\frac{{A}}{\mathrm{13}}=? \\ $$

Question Number 185754    Answers: 0   Comments: 0

Question Number 185752    Answers: 0   Comments: 1

  Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331      Pg 332      Pg 333      Pg 334      Pg 335   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com