Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 33
Question Number 220958 Answers: 1 Comments: 1
$${for}\:{x},\:{y},\:{z}\:>\mathrm{0}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${x}^{{m}} {y}^{{n}} {z}^{{k}} \:{subject}\:{to}\:{ax}+{by}+{cz}={d}. \\ $$
Question Number 220950 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\pi} \int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{0}} ^{\:\:\pi} \:\mathrm{sin}^{\:\mathrm{2}} \:{x}\:+\:{y}\:\mathrm{sin}\:{z}\:{dxdydz}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\pi\:\left(\mathrm{2}\:+\:\pi\right)\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220948 Answers: 1 Comments: 0
$$\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }{dx} \\ $$
Question Number 220947 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)} \\ $$
Question Number 220913 Answers: 0 Comments: 4
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{an}\:\mathrm{Manager}??? \\ $$$$\mathrm{pls}\:\mathrm{ban}\:\mathrm{Question}\:\mathrm{Spamming}\:\mathrm{and}... \\ $$$$\mathrm{pls}\:\mathrm{fix}\:\mathrm{invisible}\:\mathrm{line}\:\mathrm{matrix}\:\mathrm{bug} \\ $$
Question Number 220904 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{x}^{\mathrm{4}} {y}^{\mathrm{3}} {z}^{\mathrm{2}} }{\left({x}+{y}+{z}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$\: \\ $$
Question Number 220899 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{1}+{xyz}\right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220898 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} \:\:} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}\:−{x}\right)\left(\mathrm{1}\:−\:{y}\right)\left(\mathrm{1}\:−{z}\right)\left(\mathrm{1}\:−\:{xyz}\right)}}\:{dxdydz}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220897 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} {y}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} {z}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} {x}^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220896 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220895 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{ln}\:\left(\mathrm{1}\:+\:{xyz}\right)}{\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{y}\right)\left(\mathrm{1}\:+\:{z}\right)}\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220892 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\int\int\int_{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{z}}^{\mathrm{2}} \:\:\leqslant\:\mathrm{1}} \:\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220891 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int\int\int_{\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \:\frac{{e}^{−\left({x}\:+\:{y}\:+\:{z}\:\right)} }{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$
Question Number 220889 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\left[^{\:\mathrm{3}} \right.\right.} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$
Question Number 220878 Answers: 1 Comments: 0
Question Number 220877 Answers: 4 Comments: 0
Question Number 220876 Answers: 3 Comments: 0
Question Number 220874 Answers: 1 Comments: 2
Question Number 220873 Answers: 1 Comments: 0
Question Number 220872 Answers: 1 Comments: 0
Question Number 220869 Answers: 1 Comments: 1
$${Find}\:{the}\:{maximum}\:{value}\:{of}\:{x}^{\mathrm{2}} {y}^{\mathrm{3}} {z}^{\mathrm{4}} \:{subject}\:{to}\:{the}\:{condition}\:{x}+{y}+{z}=\mathrm{18} \\ $$
Question Number 220863 Answers: 1 Comments: 0
$$\left(\mathrm{211}\right) \\ $$$$\:\: \\ $$$${Find}\:{the}\:{derivative}\:{of}\:\Delta{x},\:{where} \\ $$$$\Delta{x}=\begin{vmatrix}{{f}_{\mathrm{1}} \left({x}\right)}&{\phi_{\mathrm{1}} \left({x}\right)}&{\Psi_{\mathrm{1}} \left({x}\right)}\\{{f}_{\mathrm{2}} \left({x}\right)}&{\phi_{\mathrm{2}} \left({x}\right)}&{\Psi_{\mathrm{2}} \left({x}\right)}\\{{f}_{\mathrm{3}} \left({x}\right)}&{\phi_{\mathrm{3}} \left({x}\right)}&{\Psi_{\mathrm{3}} \left({x}\right)}\end{vmatrix} \\ $$$${and}\:{f}_{\mathrm{1}} \left({x}\right)\:,{f}_{\mathrm{2}} \left({x}\right),\:{f}_{\mathrm{3}} \left({x}\right),\phi_{\mathrm{1}} \left({x}\right),\:{etc}.\:{are}\:{different}\:{functions}\:{of}\:{x}. \\ $$
Question Number 220858 Answers: 1 Comments: 2
Question Number 220857 Answers: 1 Comments: 0
$${Prove}\:{that}\:\mathrm{tan}\:\mathrm{20}^{\mathrm{0}} \mathrm{tan40}^{\mathrm{0}} \:\mathrm{tan}\:\mathrm{80}^{\mathrm{0}} =\mathrm{tan}\:\mathrm{60}^{\mathrm{0}} \\ $$
Question Number 220855 Answers: 1 Comments: 0
$${If}\:\:{b}\:\mathrm{cos}\left(\theta+\mathrm{120}^{\mathrm{0}} \right)={c}\:\mathrm{cos}\:\left(\theta+\mathrm{240}^{\mathrm{0}} \right)\:{then}\:{prove}\:{that} \\ $$$${b}−{c}=−\left({b}+{c}\right)\sqrt{\mathrm{3}}\:\mathrm{tan}\:\theta \\ $$
Question Number 220854 Answers: 2 Comments: 0
$${Solve}\:{for}\:{x}\:\:\:{and}\:\:\:\:{y} \\ $$$$\mathrm{3}^{{x}} +\mathrm{3}^{{y}} =\mathrm{4},\:\:\mathrm{3}^{−{x}} +\mathrm{3}^{−{y}\:} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33 Pg 34 Pg 35 Pg 36 Pg 37
Terms of Service
Privacy Policy
Contact: info@tinkutara.com