Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 33
Question Number 213744 Answers: 1 Comments: 0
Question Number 213741 Answers: 0 Comments: 1
$$\sqrt{\mathrm{1}−\mathrm{sin}} \\ $$
Question Number 213738 Answers: 1 Comments: 0
Question Number 213735 Answers: 2 Comments: 0
Question Number 213726 Answers: 1 Comments: 0
$$\mathrm{ax}\:=\:\mathrm{by}\:=\:\mathrm{cz}\:=\:\mathrm{36} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{y}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{z}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:=\:? \\ $$
Question Number 213725 Answers: 3 Comments: 0
$${please}\:{prove}\:\frac{\mathrm{1}}{{x}}\:=\:{x}^{−\mathrm{1}} \\ $$
Question Number 213724 Answers: 0 Comments: 1
Question Number 213721 Answers: 3 Comments: 0
$$\boldsymbol{\mathrm{Resoudre}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{systeme}}\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{equations}}: \\ $$$$\begin{cases}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{xy}}=\mathrm{84}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:\:\:\:\:=\mathrm{25}}\end{cases} \\ $$
Question Number 213713 Answers: 0 Comments: 0
$$\mathrm{Does}\:\mathrm{Volume}\:\mathrm{integral}\: \\ $$$${V}=\pi\centerdot\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} ^{\:\mathrm{2}} \left({z}\right)\mathrm{d}{z}\:\mathrm{is}\:\mathrm{divergence}...?? \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{is}\:\nu\left(\mathrm{nu}\right)'\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function} \\ $$
Question Number 213705 Answers: 1 Comments: 0
Question Number 213693 Answers: 2 Comments: 3
$$\mathrm{Find}: \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{7}°\:\mathrm{44}'\:\mathrm{22},\mathrm{54}''\right)\centerdot\mathrm{800} \\ $$
Question Number 213688 Answers: 2 Comments: 0
Question Number 213680 Answers: 0 Comments: 3
Question Number 213679 Answers: 0 Comments: 0
$${Q}\mathrm{213662} \\ $$$$...... \\ $$$$\mathrm{Not}\:\mathrm{easy}....... \\ $$$$\:\:_{{p}} \boldsymbol{\mathrm{F}}_{{q}} \left({z};\cancel{\underbrace{ }}\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\right)\:\mathrm{is}\:\mathrm{hypergeometric}\:\mathrm{function} \\ $$$$\mathrm{Li}_{\nu} \left({z}\right)\:\mathrm{is}\:\mathrm{Dilogarithm}\:\mathrm{function}. \\ $$
Question Number 213668 Answers: 4 Comments: 1
Question Number 213667 Answers: 0 Comments: 0
Question Number 213664 Answers: 2 Comments: 0
Question Number 213663 Answers: 1 Comments: 0
$$\:\:\mathrm{Given}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{is}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)=\mathrm{a}+\mathrm{b}+\mathrm{c}. \\ $$$$\:\:\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}+\mathrm{b}+\mathrm{c}\: \\ $$
Question Number 213662 Answers: 1 Comments: 0
Question Number 213661 Answers: 1 Comments: 1
Question Number 213660 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that}\:... \\ $$$$\mathrm{lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{\:\mathrm{3}} \frac{\:{x}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\:\right){x}^{{n}} \:}{\mathrm{1}+\:{x}^{\mathrm{2}{n}} }\:{dx}\overset{?} {=}\mathrm{0} \\ $$$$\:\:\:\:\:−−−−−−−−−−− \\ $$$$ \\ $$
Question Number 213659 Answers: 1 Comments: 0
$$\:\:\:\:\underset{−\infty} {\overset{\infty} {\int}}\:\frac{\mid\mathrm{24x}−\mathrm{24}\mid−\mathrm{20}}{\mathrm{22}^{\mathrm{x}} +\mathrm{22}}\:\mathrm{dx}\:=? \\ $$
Question Number 213658 Answers: 1 Comments: 0
$${r}=\frac{\mathrm{112452}−\frac{\left(\mathrm{2108}\right)\left(\mathrm{3820}\right)}{\mathrm{80}}}{\:\sqrt{\mathrm{67778}−\frac{\left(\mathrm{2108}\right)^{\mathrm{2}} }{\mathrm{80}}\sqrt{\mathrm{232470}−\frac{\left(\mathrm{3820}\right)^{\mathrm{2}} }{\mathrm{80}}}}} \\ $$$$ \\ $$$$ \\ $$
Question Number 213656 Answers: 1 Comments: 0
Question Number 213652 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\int{xdx}=\frac{{x}^{\mathrm{2}} }{{x}}+{C}. \\ $$
Question Number 213650 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{pythagorean}\:\mathrm{theorem}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\mathrm{exist}. \\ $$
Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33 Pg 34 Pg 35 Pg 36 Pg 37
Terms of Service
Privacy Policy
Contact: info@tinkutara.com