Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 325

Question Number 188786    Answers: 1   Comments: 1

Question Number 188776    Answers: 3   Comments: 1

Prove that n^2 +3n+2 is divisible by 2 for any n∈Z

$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{any}\:{n}\in\mathbb{Z} \\ $$

Question Number 188774    Answers: 1   Comments: 0

Question Number 188775    Answers: 1   Comments: 0

how is solution 72.5gr of the [C_3 H_6 O] how many Molecule of [H] exist?

$${how}\:{is}\:{solution} \\ $$$$\mathrm{72}.\mathrm{5}{gr}\:\:\:{of}\:{the}\:\left[{C}_{\mathrm{3}} {H}_{\mathrm{6}} {O}\right]\:{how}\:{many}\:\mathrm{Molecule}\:{of}\:\left[{H}\right]\:{exist}? \\ $$

Question Number 188771    Answers: 0   Comments: 1

Question Number 188761    Answers: 0   Comments: 1

How we can use the polynomial in daily life? please tell me an example!

$${How}\:{we}\:{can}\:{use}\:{the}\:{polynomial}\:{in}\: \\ $$$${daily}\:{life}?\:{please}\:{tell}\:{me}\:{an}\:{example}! \\ $$

Question Number 188759    Answers: 3   Comments: 0

Question Number 188758    Answers: 3   Comments: 0

the sum of the first three terms of an AP is 21 and the sum of the first five terms is 55. find. (1) the first term (2) common difference (3) the sum of the first ten term of the sequence

$${the}\:{sum}\:{of}\:{the}\:\:{first}\:{three}\:{terms} \\ $$$${of}\:{an}\:{AP}\:{is}\:\mathrm{21}\:{and}\:\:{the}\:{sum}\:{of}\:{the} \\ $$$${first}\:\:{five}\:{terms}\:{is}\:\mathrm{55}.\:{find}. \\ $$$$\left(\mathrm{1}\right)\:{the}\:{first}\:{term} \\ $$$$\left(\mathrm{2}\right)\:{common}\:{difference} \\ $$$$\left(\mathrm{3}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{ten}\:{term} \\ $$$${of}\:{the}\:\:{sequence} \\ $$$$ \\ $$

Question Number 188755    Answers: 0   Comments: 2

Question Number 188753    Answers: 1   Comments: 0

x^2 − y^2 = 2023 x, y ∈ N How many pair of (x, y)

$$\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}\:\:\:\:\:\:\:\:\:{x},\:{y}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{H}{ow}\:{many}\:{pair}\:{of}\:\left({x},\:{y}\right) \\ $$

Question Number 188752    Answers: 1   Comments: 1

Question Number 188730    Answers: 2   Comments: 2

let p(x) = (5/3)−6x−9x^2 and Q(y) = −4y^2 −4y+((13)/2) if there exist unique pair of real number (x,y) such that p(x)×Q(y) = 20 then find the value 6x+10y = ?

$$\:\:\mathrm{let}\:{p}\left({x}\right)\:=\:\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{6}{x}−\mathrm{9}{x}^{\mathrm{2}} \:\mathrm{and}\:{Q}\left({y}\right)\:=\:−\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}+\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{unique}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{real}\:\mathrm{number} \\ $$$$\:\left({x},{y}\right)\:\mathrm{such}\:\mathrm{that}\:{p}\left({x}\right)×{Q}\left({y}\right)\:=\:\mathrm{20}\:\mathrm{then} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{6}{x}+\mathrm{10}{y}\:=\:? \\ $$

Question Number 188726    Answers: 0   Comments: 2

Question Number 188725    Answers: 1   Comments: 0

tan193=k cos167=?

$$\mathrm{tan193}=\mathrm{k} \\ $$$$\mathrm{cos167}=? \\ $$

Question Number 188722    Answers: 1   Comments: 1

Question Number 188721    Answers: 1   Comments: 0

Question Number 188720    Answers: 1   Comments: 2

Question Number 188717    Answers: 0   Comments: 0

Question Number 188704    Answers: 1   Comments: 0

Question Number 188701    Answers: 2   Comments: 2

Question Number 188700    Answers: 0   Comments: 2

is it a polynomial f(x)=2sinx+10?

$${is}\:{it}\:{a}\:{polynomial}\:{f}\left({x}\right)=\mathrm{2}{sinx}+\mathrm{10}? \\ $$

Question Number 188699    Answers: 1   Comments: 0

lim_(x→∞) (sec^2 x−sec x tan x )=?

$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\:\right)=? \\ $$

Question Number 188669    Answers: 4   Comments: 0

Question Number 188660    Answers: 2   Comments: 0

solve x^4 +4x=1

$${solve}\:{x}^{\mathrm{4}} +\mathrm{4}{x}=\mathrm{1} \\ $$

Question Number 188657    Answers: 3   Comments: 0

Question Number 188653    Answers: 0   Comments: 1

In how many different ways can the letters of the word ABRAKADABRA be arranged?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{ABRAKADABRA} \\ $$$$\mathrm{be}\:\mathrm{arranged}? \\ $$

  Pg 320      Pg 321      Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328      Pg 329   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com