Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 325

Question Number 183295    Answers: 2   Comments: 1

Question Number 183185    Answers: 1   Comments: 0

Question Number 183181    Answers: 2   Comments: 1

prove that (0/0)=1

$${prove}\:{that}\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{1} \\ $$

Question Number 183174    Answers: 0   Comments: 2

In the given figure E is the mid point of AB. IF the area of ΔEBF is 8cm^2 .find the area of the parallelogram ABCD.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{given}\:\mathrm{figure}\:\mathrm{E}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{of}\:\mathrm{AB}. \\ $$$$\:\mathrm{IF}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{EBF}\:\mathrm{is}\:\mathrm{8cm}^{\mathrm{2}} .\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parallelogram}\:\mathrm{ABCD}. \\ $$

Question Number 183165    Answers: 1   Comments: 0

Question Number 183167    Answers: 0   Comments: 2

In △ABC the following relationship holds: (m_b /b) + (m_c /c) ≤ (a/(2r)) ≤ (n_b /h_b ) + (n_c /h_c )

$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship} \\ $$$$\mathrm{holds}: \\ $$$$\frac{\mathrm{m}_{\boldsymbol{\mathrm{b}}} }{\mathrm{b}}\:+\:\frac{\mathrm{m}_{\boldsymbol{\mathrm{c}}} }{\mathrm{c}}\:\leqslant\:\frac{\mathrm{a}}{\mathrm{2r}}\:\leqslant\:\frac{\mathrm{n}_{\boldsymbol{\mathrm{b}}} }{\mathrm{h}_{\boldsymbol{\mathrm{b}}} }\:+\:\frac{\mathrm{n}_{\boldsymbol{\mathrm{c}}} }{\mathrm{h}_{\boldsymbol{\mathrm{c}}} } \\ $$

Question Number 183162    Answers: 1   Comments: 0

Question Number 183158    Answers: 1   Comments: 0

Given f(x)= (([(1/3)x]∣2x∣+Ax)/(∣4−x^2 ∣)) if f ′(−1)= 5 then A=? [ ] = floor function

$$\:{Given}\:{f}\left({x}\right)=\:\frac{\left[\frac{\mathrm{1}}{\mathrm{3}}{x}\right]\mid\mathrm{2}{x}\mid+{Ax}}{\mid\mathrm{4}−{x}^{\mathrm{2}} \mid} \\ $$$$\:{if}\:{f}\:'\left(−\mathrm{1}\right)=\:\mathrm{5}\:{then}\:{A}=? \\ $$$$\left[\:\:\:\:\right]\:=\:{floor}\:{function}\: \\ $$

Question Number 183157    Answers: 1   Comments: 0

∫ (dx/( ((x^3 +2019))^(1/3) )) =?

$$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2019}}}\:=? \\ $$

Question Number 183156    Answers: 1   Comments: 0

∫ ((sin 2x dx)/(sin x−sin^2 2x)) =?

$$\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}\:{dx}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:=? \\ $$

Question Number 183136    Answers: 3   Comments: 0

lim_(x→0) ((sinx−x)/x^3 )=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sinx}−{x}}{{x}^{\mathrm{3}} }=? \\ $$

Question Number 183124    Answers: 1   Comments: 0

Question Number 183123    Answers: 1   Comments: 0

∫ln(tanx)dx

$$\int{ln}\left({tanx}\right){dx} \\ $$

Question Number 183184    Answers: 1   Comments: 1

Question Number 183120    Answers: 2   Comments: 0

I−Incenter in △ABC A(2,2) , B(6,4) , C(4,8) , M(8,6) Find: MI = ?

$$\mathrm{I}−\mathrm{Incenter}\:\mathrm{in}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{A}\left(\mathrm{2},\mathrm{2}\right)\:,\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:,\:\mathrm{C}\left(\mathrm{4},\mathrm{8}\right)\:,\:\mathrm{M}\left(\mathrm{8},\mathrm{6}\right) \\ $$$$\mathrm{Find}:\:\:\:\mathrm{MI}\:=\:? \\ $$

Question Number 183119    Answers: 0   Comments: 0

Question Number 183118    Answers: 0   Comments: 0

Question Number 183117    Answers: 2   Comments: 0

Question Number 183116    Answers: 0   Comments: 1

Question Number 183254    Answers: 2   Comments: 0

Question Number 183109    Answers: 2   Comments: 0

∫_0 ^(π/2) ((√(sin x+1))/( (√(cos x+1)))) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt{\mathrm{sin}\:{x}+\mathrm{1}}}{\:\sqrt{\mathrm{cos}\:{x}+\mathrm{1}}}\:{dx}\:=?\: \\ $$

Question Number 183107    Answers: 1   Comments: 1

Question Number 186086    Answers: 0   Comments: 0

Question Number 183101    Answers: 1   Comments: 3

∫((x+4y)/(2x^2 +9xy))dx M.m

$$\int\frac{\mathrm{x}+\mathrm{4y}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{9xy}}\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 186130    Answers: 0   Comments: 1

Question Number 183260    Answers: 2   Comments: 0

  Pg 320      Pg 321      Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328      Pg 329   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com