Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 325

Question Number 188060    Answers: 4   Comments: 0

Question Number 188059    Answers: 1   Comments: 0

Question Number 188037    Answers: 1   Comments: 0

find (dy/dx) y=2x^(√x)

$${find}\:\frac{{dy}}{{dx}} \\ $$$${y}=\mathrm{2}{x}^{\sqrt{{x}}} \\ $$

Question Number 188036    Answers: 1   Comments: 0

∫2^x e^x dx

$$\int\mathrm{2}^{{x}} {e}^{{x}} {dx} \\ $$

Question Number 188035    Answers: 1   Comments: 0

solve ∫(x^2 /((a+bx)^2 ))dx

$${solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({a}+{bx}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 188034    Answers: 1   Comments: 0

solve ∫((x^2 +3)/(x^6 (x^2 +1)))dx

$${solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$

Question Number 188033    Answers: 2   Comments: 0

from first principle y=xInx find (dy/dx)

$${from}\:{first}\:{principle} \\ $$$${y}={xInx}\:\:{find}\:\frac{{dy}}{{dx}} \\ $$

Question Number 188048    Answers: 1   Comments: 0

Question Number 188017    Answers: 1   Comments: 0

Question Number 188016    Answers: 1   Comments: 0

Question Number 188012    Answers: 0   Comments: 1

Question Number 188010    Answers: 0   Comments: 0

Question Number 188000    Answers: 0   Comments: 1

Question Number 187998    Answers: 1   Comments: 0

Question Number 187993    Answers: 0   Comments: 0

prove that ∫_0 ^(π/2) ∫_0 ^(π/2) (((sin3x)/(sin2y)))^(1/3) dxdy=(π/(2(√3)))

$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{\mathrm{3}}]{\frac{{sin}\mathrm{3}{x}}{{sin}\mathrm{2}{y}}}{dxdy}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$

Question Number 187989    Answers: 2   Comments: 0

Question Number 187988    Answers: 3   Comments: 0

find function f(x) and g(x) such that { ((f(2x−1)+g(1−x)=x+1)),((f((x/(x+1)))+2g((1/(2x+2)))=3)) :}

$$\:\mathrm{find}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\begin{cases}{\mathrm{f}\left(\mathrm{2x}−\mathrm{1}\right)+\mathrm{g}\left(\mathrm{1}−\mathrm{x}\right)=\mathrm{x}+\mathrm{1}}\\{\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\right)+\mathrm{2g}\left(\frac{\mathrm{1}}{\mathrm{2x}+\mathrm{2}}\right)=\mathrm{3}}\end{cases} \\ $$

Question Number 187984    Answers: 0   Comments: 0

Question Number 187983    Answers: 1   Comments: 0

lim_(x→∞) ((1/(x+1))+(1/(x+2))+...+(1/(2x)))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}+\mathrm{1}}+\frac{\mathrm{1}}{{x}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}{x}}\right) \\ $$

Question Number 187980    Answers: 1   Comments: 0

Question Number 187979    Answers: 1   Comments: 0

Question Number 187978    Answers: 0   Comments: 0

Question Number 187971    Answers: 2   Comments: 0

If , x^( 5) = 1 ∧ x≠1 ( (( 1)/(x^( 2) −x +1)) + (1/(x^( 2) + x +1)) )^( 10) = ?

$$ \\ $$$$\:\:\mathrm{If}\:\:\:,\:\:{x}^{\:\mathrm{5}} \:=\:\mathrm{1}\:\:\:\wedge\:\:{x}\neq\mathrm{1} \\ $$$$ \\ $$$$\:\:\:\:\left(\:\frac{\:\mathrm{1}}{{x}^{\:\mathrm{2}} \:−{x}\:+\mathrm{1}}\:+\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} \:+\:{x}\:+\mathrm{1}}\:\right)^{\:\mathrm{10}} =\:? \\ $$$$ \\ $$

Question Number 187968    Answers: 1   Comments: 5

Question Number 187963    Answers: 1   Comments: 0

solve for y if 2y+2^y^2 +y^3 +4y=9

$${solve}\:{for}\:{y}\:\:{if} \\ $$$$\mathrm{2}{y}+\mathrm{2}^{{y}^{\mathrm{2}} } +{y}^{\mathrm{3}} +\mathrm{4}{y}=\mathrm{9} \\ $$

Question Number 187961    Answers: 1   Comments: 0

  Pg 320      Pg 321      Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328      Pg 329   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com