Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 322
Question Number 189054 Answers: 1 Comments: 0
Question Number 189053 Answers: 3 Comments: 0
$${find}\:{f}\left({x}\right) \\ $$$$\mathrm{1}:{f}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)={x}+\mathrm{3};\:{x}\neq\mathrm{1} \\ $$$$\mathrm{2}:{f}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)={x}^{\mathrm{2}} +\mathrm{2}{x}\:;{x}\neq\mathrm{1} \\ $$$$\mathrm{3}:{f}\left({x}+\mathrm{1}\right)+{f}\left({x}−{y}\right)=\mathrm{2}{f}\left({x}\right){cosy}\:\forall{x},{y} \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\frac{\pi}{\mathrm{2}}\right)=\mathrm{1} \\ $$
Question Number 189049 Answers: 1 Comments: 2
Question Number 189026 Answers: 3 Comments: 0
Question Number 189025 Answers: 0 Comments: 0
Question Number 189024 Answers: 0 Comments: 0
Question Number 189023 Answers: 0 Comments: 3
Question Number 189022 Answers: 3 Comments: 0
$${if}\:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+{x}\right)\left(\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }+{y}\right)=\mathrm{1}\: \\ $$$${with}\:{x},{y}\:\in{R},\:{find}\:\left({x}+{y}\right)^{\mathrm{2}} =? \\ $$
Question Number 189021 Answers: 2 Comments: 4
$${How}\:{many}\:{non}−{similar}\:{triangles} \\ $$$${have}\:{integer}\:{angles}\:{in}\:°? \\ $$
Question Number 189013 Answers: 2 Comments: 0
$$\mathrm{Suppose}\:\left({G},\:\centerdot\:\right)\:\mathrm{and}\:\left({H},\:\ast\:\right)\:\mathrm{are}\:\mathrm{groups}. \\ $$$$\mathrm{Take}\:\mathrm{homomorphism}\:\phi\::\:{G}\:\rightarrow\:{H}. \\ $$$$\mathrm{Suppose}\:\exists{g}\in{G}\::\:\mid{g}\mid\:=\:{n},\:\mathrm{then}\:\mid\phi\left({g}\right)\mid\:\leqslant\:{n}. \\ $$$$\: \\ $$$$\mathrm{Does}\:\forall{g}\in{G},\:\mid{g}\mid\:=\:\mid\phi\left({g}\right)\mid\:\Rightarrow\:{G}\:\cong\:{H}\:? \\ $$
Question Number 189012 Answers: 0 Comments: 0
$${Triangle}\:{ABC}\:{have}:\: \\ $$$${sin}\mathrm{2}{A}+{sin}\mathrm{2}{B}+{sin}\mathrm{2}{C}=\sqrt{\mathrm{3}}\left({cosA}+{cosB}+{cosC}\right) \\ $$$$=>\:{Prove}\:{that}\:{ABC}\:{is}\:{equilateral}\:{triangle} \\ $$
Question Number 189000 Answers: 1 Comments: 0
Question Number 188998 Answers: 2 Comments: 3
Question Number 188985 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\boldsymbol{\mathrm{Lim}}_{\boldsymbol{{x}}\rightarrow\sim} \:\:\frac{\mathrm{4}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}}+\mathrm{4}}{\mathrm{9}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{9}}\:=\:??\: \\ $$
Question Number 188984 Answers: 1 Comments: 4
$$ \\ $$$$\:\:\boldsymbol{\mathrm{Lim}}_{\boldsymbol{{x}}\rightarrow\sim} \:\sqrt{\mathrm{16}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}−\mathrm{1}}−\mathrm{4}\boldsymbol{{x}}−\mathrm{5}\:=\:??\:\:\:\: \\ $$$$ \\ $$
Question Number 188982 Answers: 0 Comments: 2
Question Number 188981 Answers: 1 Comments: 0
Question Number 188980 Answers: 1 Comments: 0
Question Number 189091 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{1}\::\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\:\mathrm{1}\:\right)^{\:{n}} \mathrm{H}_{\:{n}} }{{n}^{\:\mathrm{2}} }\:=\:? \\ $$$$\:\:\:\:\mathrm{2}\::\:\:\:\:\:\eta\:\left(−\mathrm{1}\:\right)=\:? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 189090 Answers: 2 Comments: 0
Question Number 188972 Answers: 0 Comments: 4
$${what}\:{is}\:{the}\:{answer} \\ $$$${A}\:\:?\:{B}\:\:\:?\:{C}?. \\ $$
Question Number 188970 Answers: 1 Comments: 0
$$\mathrm{LCM}\left({x},\:\mathrm{144},\:\mathrm{150}\right)\:=\:\mathrm{10800}\:{how}\:{many}\:{value}\:{of}\:\:{x}. \\ $$$$ \\ $$
Question Number 188968 Answers: 1 Comments: 0
Question Number 188966 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{hey}\:\mathrm{everyone}\:\mathrm{i}\:\mathrm{changed}\:\mathrm{accounts} \\ $$$$\mathrm{my}\:\mathrm{new}\:\mathrm{one}\:\mathrm{is}\:\mathrm{gatocomcirrose} \\ $$$$\mathrm{i}\:\mathrm{will}\:\mathrm{not}\:\mathrm{use}\:\mathrm{this}\:\mathrm{one}\:\mathrm{anymore} \\ $$
Question Number 188965 Answers: 2 Comments: 0
Question Number 188954 Answers: 0 Comments: 1
$$\mathrm{Solve}\:: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{tan}\left(\mathrm{x}\right)\:=\:\mathrm{3x} \\ $$$$ \\ $$$$\mathrm{Hey}! \\ $$
Pg 317 Pg 318 Pg 319 Pg 320 Pg 321 Pg 322 Pg 323 Pg 324 Pg 325 Pg 326
Terms of Service
Privacy Policy
Contact: info@tinkutara.com