Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 322

Question Number 183527    Answers: 1   Comments: 2

Question Number 183524    Answers: 1   Comments: 0

Question Number 183521    Answers: 0   Comments: 0

When a bipolar transistor is turned on according to a scheme with a common base, the current gain coefficient is α=0.975. What will be the current gain of a bipolar transistor if it is turned on according to a scheme with a common emitter? a. 18.5 b. 81 c. 25 d. 39

$${When}\:{a}\:{bipolar}\:{transistor}\:{is}\:{turned}\:{on}\: \\ $$$${according}\:{to}\:{a}\:{scheme}\:{with}\:{a}\:{common}\:{base},\: \\ $$$${the}\:{current}\:{gain}\:{coefficient}\:{is}\:\alpha=\mathrm{0}.\mathrm{975}. \\ $$$${What}\:{will}\:{be}\:{the}\:{current}\:{gain}\:{of}\:{a}\:{bipolar} \\ $$$${transistor}\:{if}\:{it}\:{is}\:{turned}\:{on}\:{according}\:{to} \\ $$$${a}\:{scheme}\:{with}\:{a}\:{common}\:{emitter}? \\ $$$${a}.\:\mathrm{18}.\mathrm{5} \\ $$$${b}.\:\mathrm{81} \\ $$$${c}.\:\mathrm{25} \\ $$$${d}.\:\mathrm{39} \\ $$

Question Number 183507    Answers: 0   Comments: 1

Question Number 183500    Answers: 1   Comments: 0

Question Number 183485    Answers: 2   Comments: 1

L=lim_(x→0) ((2sin x −2tan x +x^3 )/(6x−2sin 3x −9x^3 )) L= ((lim_(x→0) ((2sin x −2tan x +x^3 )/x^5 ))/(lim_(x→0) ((6x−2sin 3x −9x^3 )/x^5 ))) = (L_1 /L_2 )

$$\:\boldsymbol{\mathrm{L}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} } \\ $$$$\:\:\boldsymbol{\mathrm{L}}=\:\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}\:=\:\frac{\boldsymbol{\mathrm{L}}_{\mathrm{1}} }{\boldsymbol{\mathrm{L}}_{\mathrm{2}} } \\ $$

Question Number 183484    Answers: 0   Comments: 0

determinant ((),())

$$\begin{matrix}{}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183483    Answers: 0   Comments: 0

lim_(x→0^+ ) ((1−cos (√x))/( (√(x−(√(x−(√(x−(√(x−...)))))))))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}}{\:\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−...}}}}}\:=? \\ $$

Question Number 183480    Answers: 1   Comments: 1

Question Number 183479    Answers: 0   Comments: 0

determinant (((x+2=)),())

$$\begin{matrix}{{x}+\mathrm{2}=}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183478    Answers: 1   Comments: 4

To Administrator Tinku Tara Dear sirs! please have a look at Q183382 and other posts of CElcedricjunior sir. He disobeys rules of the forum and intentionally and maciliously posts his answers as “comment” to the questions just to place his answers before the answers of other people. besides he ignores all kind advises of other people who asked him and showed him to post answers as “answer”, not as “comment”.

$$\underline{{To}\:{Administrator}\:{Tinku}\:{Tara}} \\ $$$${Dear}\:{sirs}! \\ $$$${please}\:{have}\:{a}\:{look}\:{at}\:{Q}\mathrm{183382}\:{and} \\ $$$${other}\:{posts}\:{of}\:{CElcedricjunior}\:{sir}. \\ $$$${He}\:{disobeys}\:{rules}\:{of}\:{the}\:{forum}\:{and}\: \\ $$$${intentionally}\:{and}\:{maciliously}\:{posts}\: \\ $$$${his}\:{answers}\:{as}\:``{comment}''\:{to}\:{the}\: \\ $$$${questions}\:{just}\:{to}\:{place}\:{his}\:{answers}\: \\ $$$${before}\:{the}\:{answers}\:{of}\:{other}\:{people}.\: \\ $$$${besides}\:{he}\:{ignores}\:{all}\:{kind}\:{advises}\: \\ $$$${of}\:{other}\:{people}\:{who}\:{asked}\:{him}\:{and}\: \\ $$$${showed}\:{him}\:{to}\:{post}\:{answers}\:{as}\: \\ $$$$``{answer}'',\:{not}\:{as}\:``{comment}''. \\ $$

Question Number 183477    Answers: 0   Comments: 0

determinant (((P(x)=3x(4−x)=12x−3x2)),(),(),(),())

$$\begin{matrix}{{P}\left({x}\right)=\mathrm{3}{x}\left(\mathrm{4}−{x}\right)=\mathrm{12}{x}−\mathrm{3}{x}\mathrm{2}}\\{}\\{}\\{}\\{}\end{matrix} \\ $$$$ \\ $$

Question Number 183465    Answers: 1   Comments: 0

Find the least value of (1−2x)(1−x). M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\left(\mathrm{1}−\mathrm{2x}\right)\left(\mathrm{1}−\mathrm{x}\right). \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 183464    Answers: 2   Comments: 0

Find the Maximum value of 3x(4−x) M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{3x}\left(\mathrm{4}−\mathrm{x}\right) \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 183459    Answers: 2   Comments: 0

It is given f(x)=(1+x)^n , n∈N. Find f(0)+f^′ (0)+((f^(′′) (0))/(2!))+((f′′′(0))/(3!))+...+((f^((n)) (0))/(n!)) .

$$\:\:{It}\:{is}\:{given}\:{f}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{n}} \:,\:{n}\in\mathbb{N}.\:{Find} \\ $$$$\:\:{f}\left(\mathrm{0}\right)+{f}^{'} \left(\mathrm{0}\right)+\frac{{f}^{''} \left(\mathrm{0}\right)}{\mathrm{2}!}+\frac{{f}'''\left(\mathrm{0}\right)}{\mathrm{3}!}+...+\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:\:. \\ $$

Question Number 183457    Answers: 2   Comments: 0

He went to work by his car at speed 120 km/hr and back home the same way 90 km/hr, find the average speed for the entire distance traveled.

$${He}\:{went}\:{to}\:{work}\:{by}\:{his}\:{car}\:{at}\:{speed}\:\mathrm{120}\:{km}/{hr} \\ $$$$\:{and}\:{back}\:{home}\:{the}\:{same}\:{way}\:\mathrm{90}\:{km}/{hr},\:{find}\:{the} \\ $$$$\:{average}\:{speed}\:{for}\:{the}\:{entire}\:{distance}\:{traveled}. \\ $$$$ \\ $$

Question Number 183455    Answers: 0   Comments: 1

Question Number 183450    Answers: 2   Comments: 0

∫_0 ^x^2 f(2t^3 −t^2 −6)dt = ln x then f(106)=?

$$\:\underset{\mathrm{0}} {\overset{{x}^{\mathrm{2}} } {\int}}\:{f}\left(\mathrm{2}{t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{6}\right){dt}\:=\:\mathrm{ln}\:{x}\: \\ $$$$\:{then}\:{f}\left(\mathrm{106}\right)=? \\ $$

Question Number 183447    Answers: 0   Comments: 0

{ ((y=sec^n θ−cos^n θ)),((x=sec θ−cos θ)) :} xy ′+(x^2 +y^2 )y′′ =?

$$\:\begin{cases}{{y}=\mathrm{sec}\:^{{n}} \theta−\mathrm{cos}\:^{{n}} \theta}\\{{x}=\mathrm{sec}\:\theta−\mathrm{cos}\:\theta}\end{cases} \\ $$$$\:{xy}\:'+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){y}''\:=? \\ $$

Question Number 183440    Answers: 2   Comments: 0

x(t)=2sin(((πt)/3)) y(t)=−3cos(((πt)/3))+4 cm What is the velocity at t=1s

$${x}\left({t}\right)=\mathrm{2}{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right) \\ $$$${y}\left({t}\right)=−\mathrm{3}{cos}\left(\frac{\pi{t}}{\mathrm{3}}\right)+\mathrm{4}\:{cm} \\ $$$${What}\:{is}\:{the}\:{velocity}\:{at}\:{t}=\mathrm{1}{s} \\ $$

Question Number 183432    Answers: 0   Comments: 1

Question Number 183425    Answers: 0   Comments: 0

find the rank of the matrix A and B by following row operation: A= [(1,2,3,(−1)),((−2),(−1),(−3),(−1)),(1,0,1,( 1)),(0,1,1,(−1)) ] B= [(( 1),( 2),(−1),( 4)),(( 2),( 4),( 3),( 5)),((−1),(−2),( 6),(−7)) ]

$${find}\:{the}\:{rank}\:{of}\:{the}\:{matrix}\:{A}\:{and}\:{B}\:{by} \\ $$$$\:{following}\:{row}\:{operation}: \\ $$$${A}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{2}}&{−\mathrm{1}}&{−\mathrm{3}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{−\mathrm{1}}\end{bmatrix} \\ $$$${B}=\begin{bmatrix}{\:\:\:\:\mathrm{1}}&{\:\:\:\:\mathrm{2}}&{−\mathrm{1}}&{\:\:\:\:\:\mathrm{4}}\\{\:\:\:\:\mathrm{2}}&{\:\:\:\:\mathrm{4}}&{\:\:\:\:\:\mathrm{3}}&{\:\:\:\:\:\mathrm{5}}\\{−\mathrm{1}}&{−\mathrm{2}}&{\:\:\:\:\:\mathrm{6}}&{−\mathrm{7}}\end{bmatrix} \\ $$

Question Number 183424    Answers: 0   Comments: 0

Among the natural numbers not greater than 22 , the probability that the modulus of the difference of any two of the 3 randomly selected numbers is greater than 5 is equal to which of the following? a)15/22 b)1/7 c)1/22 d)1

$$\mathrm{Among}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{not} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{22}\:,\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{modulus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{any}\: \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{3}\:\mathrm{randomly}\:\mathrm{selected}\:\mathrm{numbers} \\ $$$$\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{5}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{which}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{following}? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\mathrm{5}/\mathrm{22}\:\:\:\mathrm{b}\right)\mathrm{1}/\mathrm{7}\:\:\:\mathrm{c}\right)\mathrm{1}/\mathrm{22}\:\:\:\mathrm{d}\right)\mathrm{1} \\ $$

Question Number 183631    Answers: 1   Comments: 1

determiner r? AB=6 AE=5

$${determiner}\:\:\:\boldsymbol{{r}}? \\ $$$${AB}=\mathrm{6}\:\:\:\:\:{AE}=\mathrm{5} \\ $$

Question Number 183633    Answers: 1   Comments: 1

Montrer que ((a/b))^2 =(c/d)+1

$${Montrer}\:{que} \\ $$$$\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} =\frac{{c}}{{d}}+\mathrm{1} \\ $$

Question Number 183420    Answers: 2   Comments: 0

prove that Σ_(x=0) ^∞ ((4^x . x)/(x!)) = 4 e^4

$${prove}\:{that}\:\underset{{x}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{{x}} \:.\:{x}}{{x}!}\:=\:\mathrm{4}\:{e}^{\mathrm{4}} \\ $$

  Pg 317      Pg 318      Pg 319      Pg 320      Pg 321      Pg 322      Pg 323      Pg 324      Pg 325      Pg 326   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com