Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 319
Question Number 189495 Answers: 0 Comments: 7
Question Number 189489 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}} {cos}\left({x}\right){ln}\left({x}\right){dx}=? \\ $$$$\:\:\:\:\:−−− \\ $$$$\:\:\:\:\:\:{f}\:\left({a}\:\right)=\:\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}} {cos}\left({x}\right){x}^{\:{a}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{Re}\:\int_{\mathrm{0}} ^{\:\infty} {e}^{\:−{x}} .{e}^{\:−{ix}} .{x}^{\:{a}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{Re}\:\int_{\mathrm{0}} ^{\:\infty} \:{e}^{\:−{x}\:\left(\mathrm{1}+{i}\right)} .{x}^{\:{a}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:{Re}\left(\mathscr{L}\:\:\left\{\:{x}^{\:{a}} \:\right\}\mid_{\:{s}=\:{i}+\mathrm{1}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:{Re}\left(\:\frac{\Gamma\:\left(\mathrm{1}+{a}\right)}{{s}^{\:{a}+\mathrm{1}} }\:\mid_{\:\mathrm{1}+{i}} =\:\frac{\Gamma\:\left(\mathrm{1}+{a}\right)}{\left(\mathrm{1}+{i}\right)^{\:{a}+\mathrm{1}} }\:\right) \\ $$$$\:\:\:\:\:\:\:\:{Re}\:\left(\Gamma\left(\mathrm{1}+{a}\right).\mathrm{2}^{\:\frac{\mathrm{1}+{a}}{\mathrm{2}}} .\:{e}^{\:−\frac{{i}\pi}{\mathrm{4}}\:\left(\mathrm{1}+{a}\right)} \right) \\ $$$$\:\:\:\:\Omega=\:{f}\:'\left(\mathrm{0}\right)=....... \\ $$$$\:\: \\ $$
Question Number 189484 Answers: 1 Comments: 1
Question Number 189501 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+\mathrm{4}{x}+.....+{nx}} −\mathrm{1}}{{x}}=? \\ $$
Question Number 189482 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{tan}\:\mathrm{11}°\:=\:{x}\:\mathrm{then}\:\mathrm{tan}\:\mathrm{1}°\:=\:?\: \\ $$
Question Number 189473 Answers: 1 Comments: 0
Question Number 189461 Answers: 0 Comments: 0
Question Number 189455 Answers: 0 Comments: 0
Question Number 189449 Answers: 1 Comments: 0
Question Number 189446 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} =\sqrt[{\mathrm{5}}]{\mathrm{2}}+{y} \\ $$$${y}^{\mathrm{2}} =\sqrt[{\mathrm{5}}]{\mathrm{2}}+{x} \\ $$$${x}\centerdot{y}=?\:\:\:\:\:\:\:\:\:\:\:{x}\neq{y} \\ $$
Question Number 189445 Answers: 2 Comments: 0
Question Number 189429 Answers: 1 Comments: 1
Question Number 189428 Answers: 1 Comments: 0
Question Number 189426 Answers: 0 Comments: 0
Question Number 189421 Answers: 1 Comments: 1
Question Number 189418 Answers: 1 Comments: 0
$${Know}:\:{f}\left({x}\right)=\mathrm{3}{x}+\mathrm{2}+\underset{\mathrm{0}} {\int}^{\mathrm{1}} {xf}\left({x}\right){dx} \\ $$$${Eluavte}:\:\underset{\mathrm{0}} {\int}^{\mathrm{2}} {f}\left({x}\right){dx}=¿ \\ $$
Question Number 189417 Answers: 1 Comments: 0
Question Number 189409 Answers: 2 Comments: 0
Question Number 189407 Answers: 0 Comments: 1
$${determiner}\:{l}\:{heure}\:{de}\: \\ $$$${depart}\:{par}\:\:{un}\:{auto}\:{qui}\: \\ $$$${part}\:{pour}\:{rejiindre}\:{la} \\ $$$${gare}\:\:{B}\:{juste}\:{a}\:{l}'\:{arrivee} \\ $$$${du}\:{train}\:\:{partant}\:{a}\:\mathrm{7}{h},{de}\:{la}\:{ville}\:{A} \\ $$$${vers}\:{la}\:{ville}\:{B}\:{a}\:{vitesse}\:{de}\: \\ $$$$\mathrm{180}{km}/{h}.? \\ $$$$ \\ $$
Question Number 189394 Answers: 0 Comments: 0
$${Prove}\:{that}: \\ $$$${ln}\left({n}+\mathrm{1}\right)<\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{2}}}+...+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} +{n}}}\left(\forall{n}\in{N}^{\ast} \right) \\ $$
Question Number 189390 Answers: 0 Comments: 0
Question Number 189384 Answers: 0 Comments: 0
Question Number 189382 Answers: 1 Comments: 0
Question Number 189383 Answers: 0 Comments: 0
Question Number 189375 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:{show}\:{that}\:: \\ $$$$\:\:\:\:\frac{\mathrm{1}}{{cscx}\:+\:{cot}\:{x}}\:=\:{cscx}\:−\:{cot}\:{x} \\ $$$$ \\ $$$$ \\ $$
Question Number 189374 Answers: 1 Comments: 0
$$\Delta=\left\{\left({x},{y},{z}\right)\:\in\:\mathbb{R}^{\mathrm{3}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}\:,\:\:{x}\geqslant\mathrm{0},\:\mathrm{0}\leqslant{z}\leqslant\mathrm{1}+{y}\right\}. \\ $$$${calculate}: \\ $$$$\int\int\int_{\Delta} {dxdydz}. \\ $$
Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321 Pg 322 Pg 323
Terms of Service
Privacy Policy
Contact: info@tinkutara.com