Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 319

Question Number 189257    Answers: 1   Comments: 0

determine the surface area of the portion of z=13−4x^2 −4y^2 that is above z=1 with x≤0 and y≥0

$$\boldsymbol{\mathrm{determine}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\: \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{portion}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{z}}=\mathrm{13}−\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \: \\ $$$$\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{above}}\:\boldsymbol{\mathrm{z}}=\mathrm{1}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{x}}\leq\mathrm{0}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}\geq\mathrm{0} \\ $$

Question Number 189256    Answers: 1   Comments: 0

Prove that sin10° = (1/2)(√(2−(√(2+(√(2+(√(2−(√(2+(√(2+(√(2−(√(2+(√(2+(√(2−(√(2+(√(2+(√(2−...........∞))))))))))))))))))))))))))

$${Prove}\:{that} \\ $$$$\mathrm{sin10}°\:=\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−...........\infty}}}}}}}}}}}}} \\ $$

Question Number 189254    Answers: 1   Comments: 0

Question Number 189250    Answers: 0   Comments: 1

Question Number 189248    Answers: 2   Comments: 0

Question Number 189242    Answers: 0   Comments: 0

Question Number 189233    Answers: 1   Comments: 2

1•Evaluer :Aire(A′B′C′D′) 2•En deduire:((Aire(A′B′C′D′))/(Aire(ABCD)))

$$\mathrm{1}\bullet{Evaluer}\::\boldsymbol{{Aire}}\left(\boldsymbol{{A}}'\boldsymbol{{B}}'\boldsymbol{{C}}'\boldsymbol{{D}}'\right) \\ $$$$\mathrm{2}\bullet{En}\:{deduire}:\frac{\boldsymbol{{Aire}}\left(\boldsymbol{{A}}'\boldsymbol{{B}}'\boldsymbol{{C}}'\boldsymbol{{D}}'\right)}{\boldsymbol{{Aire}}\left(\boldsymbol{{ABCD}}\right)} \\ $$

Question Number 189223    Answers: 0   Comments: 2

who did discoer the light′s speed and by which method?

$${who}\:{did}\:{discoer}\:{the}\:{light}'{s}\:{speed}\:{and} \\ $$$${by}\:{which}\:{method}? \\ $$

Question Number 189212    Answers: 0   Comments: 0

Question Number 189208    Answers: 2   Comments: 0

Question Number 189468    Answers: 2   Comments: 4

If tan ((x/2))= csc x−sin x , then tan^2 ((x/2))=?

$$\:\:\:\mathrm{If}\:\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\:\mathrm{csc}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\:,\:\mathrm{then} \\ $$$$\:\:\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)=? \\ $$

Question Number 189465    Answers: 1   Comments: 0

Question Number 189464    Answers: 1   Comments: 0

Question Number 189201    Answers: 1   Comments: 0

In △ABC holds: (√2) a cos (B/2) cos (C/2) = s ⇒ sec (2B) + tan (2B) = ((c + b)/(c − b))

$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\sqrt{\mathrm{2}}\:\mathrm{a}\:\mathrm{cos}\:\frac{\mathrm{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{\mathrm{C}}{\mathrm{2}}\:=\:\mathrm{s} \\ $$$$\Rightarrow\:\mathrm{sec}\:\left(\mathrm{2B}\right)\:+\:\mathrm{tan}\:\left(\mathrm{2B}\right)\:=\:\frac{\mathrm{c}\:+\:\mathrm{b}}{\mathrm{c}\:−\:\mathrm{b}} \\ $$

Question Number 189189    Answers: 1   Comments: 0

Question Number 189183    Answers: 1   Comments: 0

Question Number 189174    Answers: 1   Comments: 0

log_3 (x+1)=2 ; x=?

$${log}_{\mathrm{3}} \left({x}+\mathrm{1}\right)=\mathrm{2}\:\:\:\:\:\:\:\:;\:\:\:{x}=? \\ $$

Question Number 189169    Answers: 1   Comments: 4

Question Number 189205    Answers: 0   Comments: 6

Question Number 189463    Answers: 1   Comments: 0

Question Number 189145    Answers: 6   Comments: 0

pleas solve this 1) lim_(x→1) ((e^(x+2x+3x+4x+∙∙∙∙∙+nx) −e^((n(n+1))/2) )/(x−1))=? 2) lim_(x→1) ((e^(2^x ∙3^x ∙4^x ∙∙∙∙n^x ) −e^(n!) )/(x−1))=? 3)lim_(x→1) ((e^(x+x^2 +x^3 +.......+x^n ) −e^n )/(x−1))=?

$${pleas}\:{solve}\:{this} \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+\mathrm{4}{x}+\centerdot\centerdot\centerdot\centerdot\centerdot+{nx}} −{e}^{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}} }{{x}−\mathrm{1}}=? \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{\mathrm{2}^{{x}} \centerdot\mathrm{3}^{{x}} \centerdot\mathrm{4}^{{x}} \centerdot\centerdot\centerdot\centerdot{n}^{{x}} } −{e}^{{n}!} }{{x}−\mathrm{1}}=? \\ $$$$\left.\mathrm{3}\right)\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.......+{x}^{{n}} } −{e}^{{n}} }{{x}−\mathrm{1}}=? \\ $$

Question Number 189144    Answers: 0   Comments: 1

∫_0 ^( 1) ∫_0 ^( 1) ∫_0 ^( 1) ((√(x + y + z))/( (√x) + (√y) + (√z) )) dxdydz

$$\: \\ $$$$\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\sqrt{{x}\:+\:{y}\:+\:{z}}}{\:\sqrt{{x}}\:+\:\sqrt{{y}}\:+\:\sqrt{{z}}\:}\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 189140    Answers: 2   Comments: 0

Question Number 189135    Answers: 2   Comments: 0

Question Number 189137    Answers: 0   Comments: 2

It is known that x is rational x (√(28 + 3(√(28 + 3(√(28 + 3(√?))))))) Find the dufference of possible vaules of x

$$\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\:\mathrm{x}\:\:\mathrm{is}\:\mathrm{rational} \\ $$$$\mathrm{x}\:\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{?}}}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dufference}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{vaules} \\ $$$$\mathrm{of}\:\:\boldsymbol{\mathrm{x}} \\ $$

Question Number 189133    Answers: 1   Comments: 0

Convert hexadecimal number 4 A F_(16) to decimal

$$\mathrm{Convert}\:\mathrm{hexadecimal}\:\mathrm{number} \\ $$$$\mathrm{4}\:\mathrm{A}\:\mathrm{F}_{\mathrm{16}} \:\:\mathrm{to}\:\mathrm{decimal} \\ $$

  Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321      Pg 322      Pg 323   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com