Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 319
Question Number 188901 Answers: 1 Comments: 0
Question Number 188898 Answers: 0 Comments: 0
$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\mathrm{holds}:\:\:\:\Sigma\:\frac{\mathrm{2}\:+\:\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{\mathrm{B}}{\mathrm{2}}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{A}}{\mathrm{2}}}\:\geqslant\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$
Question Number 188897 Answers: 0 Comments: 1
$${find}\:{the}\:{cubic}\:{root}\:{of}\:\mathrm{23456}\:{by} \\ $$$${general}\:{method}! \\ $$
Question Number 188895 Answers: 1 Comments: 0
$${sometimes}\:{when}\:{we}\:{disconnected}\:{the} \\ $$$${current}\:{in}\:{a}\:{circuit}\:{that}\:{the}\:{bulb}\:{is}\:{little} \\ $$$${bright}\:{why}?\:{what}\:{is}\:{the}\:{reason}? \\ $$
Question Number 188889 Answers: 1 Comments: 0
$$ \\ $$$$\:\:{If},\:{y}=\:\frac{\:{Arcsin}\left(\sqrt{{x}}\:\right)}{\:\sqrt{\:{x}\:\left(\mathrm{1}−{x}\:\right)}}\:\:\Rightarrow \\ $$$$\:\:\:{y}'\:.{p}\left({x}\right)\:+\:{y}\:.{q}\left({x}\right)=\:\mathrm{1} \\ $$$$ \\ $$$$\:\:\:{find}\:,\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {p}\left({x}\right).{q}\left({x}\right){dx}=? \\ $$$$\:\:\:\:{p}\:,\:{q}\:\:{are}\:{two}\:{pllynomils}... \\ $$$$ \\ $$
Question Number 188881 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\mathrm{the}\:\mathrm{non}−\mathrm{zero}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:=\:\left({a}_{\mathrm{1}} \:,\:{a}_{\:\mathrm{2}} \:,\:{a}_{\:\mathrm{3}} \:\right)\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{makes}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{angles}\:\:,\:\:\alpha\:\:\:,\:\:\beta\:\:\mathrm{and}\:\:\:\gamma\:.\:\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{that}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{equality}. \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\alpha\:\right)\:+\mathrm{cos}^{\:\mathrm{2}} \:\left(\beta\:\:\right)+\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\:\gamma\:\right)=\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$
Question Number 188879 Answers: 2 Comments: 3
$${Find}\:{the}\:{sum}\:{of}\:{all}\:{three}\:{digit}\:{numbers} \\ $$$${started}\:{with}\:{odd}\:{number}\:{when}\:{each}\:{digit} \\ $$$${are}\:{different}. \\ $$$$ \\ $$$${Please}\:{help}... \\ $$
Question Number 188861 Answers: 2 Comments: 0
Question Number 188860 Answers: 0 Comments: 0
Question Number 188864 Answers: 0 Comments: 0
Question Number 188845 Answers: 3 Comments: 0
Question Number 188834 Answers: 0 Comments: 8
$${does}\:{the}\:{multinomial}\:{name}\:{a}\:{polynomial}? \\ $$
Question Number 188826 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{{n}\left({n}+\mathrm{1}\right)}]{\mathrm{1}!\:\mathrm{2}!\:\mathrm{3}!\centerdot\centerdot\centerdot\centerdot\centerdot{n}!}}{\:\sqrt{{n}}}={e}^{\frac{−\mathrm{3}}{\mathrm{4}}} \\ $$
Question Number 188821 Answers: 0 Comments: 0
Question Number 188819 Answers: 2 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$
Question Number 188806 Answers: 2 Comments: 0
$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x}\: \\ $$$$\:{for}\:{x}\:{and}\:{y}\:{real}\:{numbers} \\ $$
Question Number 188798 Answers: 1 Comments: 0
Question Number 188796 Answers: 1 Comments: 1
Question Number 188808 Answers: 0 Comments: 2
$${how}\:{is}\:{solution} \\ $$$$\mathrm{72}.\mathrm{5}{gr}\:\:\:{of}\:{the}\:\left[{C}_{\mathrm{3}} {H}_{\mathrm{6}} {O}\right]\:{how}\:{many}\:\mathrm{Molecule}\:{of}\:\left[{H}\right]\:{exist}? \\ $$
Question Number 188786 Answers: 1 Comments: 1
Question Number 188776 Answers: 3 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{any}\:{n}\in\mathbb{Z} \\ $$
Question Number 188774 Answers: 1 Comments: 0
Question Number 188775 Answers: 1 Comments: 0
Question Number 188771 Answers: 0 Comments: 1
Question Number 188761 Answers: 0 Comments: 1
$${How}\:{we}\:{can}\:{use}\:{the}\:{polynomial}\:{in}\: \\ $$$${daily}\:{life}?\:{please}\:{tell}\:{me}\:{an}\:{example}! \\ $$
Question Number 188759 Answers: 3 Comments: 0
Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321 Pg 322 Pg 323
Terms of Service
Privacy Policy
Contact: info@tinkutara.com