Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 319

Question Number 188901    Answers: 1   Comments: 0

Question Number 188898    Answers: 0   Comments: 0

In △ABC holds: Σ ((2 + (√3) tan (B/2))/(1 + 3 tan^2 (A/2))) ≥ (9/2)

$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\mathrm{holds}:\:\:\:\Sigma\:\frac{\mathrm{2}\:+\:\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{\mathrm{B}}{\mathrm{2}}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{A}}{\mathrm{2}}}\:\geqslant\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Question Number 188897    Answers: 0   Comments: 1

find the cubic root of 23456 by general method!

$${find}\:{the}\:{cubic}\:{root}\:{of}\:\mathrm{23456}\:{by} \\ $$$${general}\:{method}! \\ $$

Question Number 188895    Answers: 1   Comments: 0

sometimes when we disconnected the current in a circuit that the bulb is little bright why? what is the reason?

$${sometimes}\:{when}\:{we}\:{disconnected}\:{the} \\ $$$${current}\:{in}\:{a}\:{circuit}\:{that}\:{the}\:{bulb}\:{is}\:{little} \\ $$$${bright}\:{why}?\:{what}\:{is}\:{the}\:{reason}? \\ $$

Question Number 188889    Answers: 1   Comments: 0

If, y= (( Arcsin((√x) ))/( (√( x (1−x ))))) ⇒ y′ .p(x) + y .q(x)= 1 find , ∫_0 ^( 1) p(x).q(x)dx=? p , q are two pllynomils...

$$ \\ $$$$\:\:{If},\:{y}=\:\frac{\:{Arcsin}\left(\sqrt{{x}}\:\right)}{\:\sqrt{\:{x}\:\left(\mathrm{1}−{x}\:\right)}}\:\:\Rightarrow \\ $$$$\:\:\:{y}'\:.{p}\left({x}\right)\:+\:{y}\:.{q}\left({x}\right)=\:\mathrm{1} \\ $$$$ \\ $$$$\:\:\:{find}\:,\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {p}\left({x}\right).{q}\left({x}\right){dx}=? \\ $$$$\:\:\:\:{p}\:,\:{q}\:\:{are}\:{two}\:{pllynomils}... \\ $$$$ \\ $$

Question Number 188881    Answers: 1   Comments: 0

Q : the non−zero vector a^→ = (a_1 , a_( 2) , a_( 3) ) with the coordinate axes makes the angles , α , β and γ . prove that the following equality. cos^( 2) (α ) +cos^( 2) (β )+ cos^( 2) ( γ )= 1

$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\mathrm{the}\:\mathrm{non}−\mathrm{zero}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:=\:\left({a}_{\mathrm{1}} \:,\:{a}_{\:\mathrm{2}} \:,\:{a}_{\:\mathrm{3}} \:\right)\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{makes}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{angles}\:\:,\:\:\alpha\:\:\:,\:\:\beta\:\:\mathrm{and}\:\:\:\gamma\:.\:\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{that}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{equality}. \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\alpha\:\right)\:+\mathrm{cos}^{\:\mathrm{2}} \:\left(\beta\:\:\right)+\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\:\gamma\:\right)=\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Question Number 188879    Answers: 2   Comments: 3

Find the sum of all three digit numbers started with odd number when each digit are different. Please help...

$${Find}\:{the}\:{sum}\:{of}\:{all}\:{three}\:{digit}\:{numbers} \\ $$$${started}\:{with}\:{odd}\:{number}\:{when}\:{each}\:{digit} \\ $$$${are}\:{different}. \\ $$$$ \\ $$$${Please}\:{help}... \\ $$

Question Number 188861    Answers: 2   Comments: 0

Question Number 188860    Answers: 0   Comments: 0

Question Number 188864    Answers: 0   Comments: 0

Question Number 188845    Answers: 3   Comments: 0

Question Number 188834    Answers: 0   Comments: 8

does the multinomial name a polynomial?

$${does}\:{the}\:{multinomial}\:{name}\:{a}\:{polynomial}? \\ $$

Question Number 188826    Answers: 0   Comments: 1

prove that lim_(n→∞) (((1! 2! 3!∙∙∙∙∙n!))^(1/(n(n+1))) /( (√n)))=e^((−3)/4)

$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{{n}\left({n}+\mathrm{1}\right)}]{\mathrm{1}!\:\mathrm{2}!\:\mathrm{3}!\centerdot\centerdot\centerdot\centerdot\centerdot{n}!}}{\:\sqrt{{n}}}={e}^{\frac{−\mathrm{3}}{\mathrm{4}}} \\ $$

Question Number 188821    Answers: 0   Comments: 0

Question Number 188819    Answers: 2   Comments: 1

calculate lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x )) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 188806    Answers: 2   Comments: 0

Find minimum value of 2x^2 +2xy+4y+5y^2 −x for x and y real numbers

$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x}\: \\ $$$$\:{for}\:{x}\:{and}\:{y}\:{real}\:{numbers} \\ $$

Question Number 188798    Answers: 1   Comments: 0

Question Number 188796    Answers: 1   Comments: 1

Question Number 188808    Answers: 0   Comments: 2

how is solution 72.5gr of the [C_3 H_6 O] how many Molecule of [H] exist?

$${how}\:{is}\:{solution} \\ $$$$\mathrm{72}.\mathrm{5}{gr}\:\:\:{of}\:{the}\:\left[{C}_{\mathrm{3}} {H}_{\mathrm{6}} {O}\right]\:{how}\:{many}\:\mathrm{Molecule}\:{of}\:\left[{H}\right]\:{exist}? \\ $$

Question Number 188786    Answers: 1   Comments: 1

Question Number 188776    Answers: 3   Comments: 1

Prove that n^2 +3n+2 is divisible by 2 for any n∈Z

$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{any}\:{n}\in\mathbb{Z} \\ $$

Question Number 188774    Answers: 1   Comments: 0

Question Number 188775    Answers: 1   Comments: 0

how is solution 72.5gr of the [C_3 H_6 O] how many Molecule of [H] exist?

$${how}\:{is}\:{solution} \\ $$$$\mathrm{72}.\mathrm{5}{gr}\:\:\:{of}\:{the}\:\left[{C}_{\mathrm{3}} {H}_{\mathrm{6}} {O}\right]\:{how}\:{many}\:\mathrm{Molecule}\:{of}\:\left[{H}\right]\:{exist}? \\ $$

Question Number 188771    Answers: 0   Comments: 1

Question Number 188761    Answers: 0   Comments: 1

How we can use the polynomial in daily life? please tell me an example!

$${How}\:{we}\:{can}\:{use}\:{the}\:{polynomial}\:{in}\: \\ $$$${daily}\:{life}?\:{please}\:{tell}\:{me}\:{an}\:{example}! \\ $$

Question Number 188759    Answers: 3   Comments: 0

  Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321      Pg 322      Pg 323   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com