Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 319

Question Number 188759    Answers: 3   Comments: 0

Question Number 188758    Answers: 3   Comments: 0

the sum of the first three terms of an AP is 21 and the sum of the first five terms is 55. find. (1) the first term (2) common difference (3) the sum of the first ten term of the sequence

$${the}\:{sum}\:{of}\:{the}\:\:{first}\:{three}\:{terms} \\ $$$${of}\:{an}\:{AP}\:{is}\:\mathrm{21}\:{and}\:\:{the}\:{sum}\:{of}\:{the} \\ $$$${first}\:\:{five}\:{terms}\:{is}\:\mathrm{55}.\:{find}. \\ $$$$\left(\mathrm{1}\right)\:{the}\:{first}\:{term} \\ $$$$\left(\mathrm{2}\right)\:{common}\:{difference} \\ $$$$\left(\mathrm{3}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{ten}\:{term} \\ $$$${of}\:{the}\:\:{sequence} \\ $$$$ \\ $$

Question Number 188755    Answers: 0   Comments: 2

Question Number 188753    Answers: 1   Comments: 0

x^2 − y^2 = 2023 x, y ∈ N How many pair of (x, y)

$$\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}\:\:\:\:\:\:\:\:\:{x},\:{y}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{H}{ow}\:{many}\:{pair}\:{of}\:\left({x},\:{y}\right) \\ $$

Question Number 188752    Answers: 1   Comments: 1

Question Number 188730    Answers: 2   Comments: 2

let p(x) = (5/3)−6x−9x^2 and Q(y) = −4y^2 −4y+((13)/2) if there exist unique pair of real number (x,y) such that p(x)×Q(y) = 20 then find the value 6x+10y = ?

$$\:\:\mathrm{let}\:{p}\left({x}\right)\:=\:\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{6}{x}−\mathrm{9}{x}^{\mathrm{2}} \:\mathrm{and}\:{Q}\left({y}\right)\:=\:−\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}+\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{unique}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{real}\:\mathrm{number} \\ $$$$\:\left({x},{y}\right)\:\mathrm{such}\:\mathrm{that}\:{p}\left({x}\right)×{Q}\left({y}\right)\:=\:\mathrm{20}\:\mathrm{then} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{6}{x}+\mathrm{10}{y}\:=\:? \\ $$

Question Number 188726    Answers: 0   Comments: 2

Question Number 188725    Answers: 1   Comments: 0

tan193=k cos167=?

$$\mathrm{tan193}=\mathrm{k} \\ $$$$\mathrm{cos167}=? \\ $$

Question Number 188722    Answers: 1   Comments: 1

Question Number 188721    Answers: 1   Comments: 0

Question Number 188720    Answers: 1   Comments: 2

Question Number 188717    Answers: 0   Comments: 0

Question Number 188704    Answers: 1   Comments: 0

Question Number 188701    Answers: 2   Comments: 2

Question Number 188700    Answers: 0   Comments: 2

is it a polynomial f(x)=2sinx+10?

$${is}\:{it}\:{a}\:{polynomial}\:{f}\left({x}\right)=\mathrm{2}{sinx}+\mathrm{10}? \\ $$

Question Number 188699    Answers: 1   Comments: 0

lim_(x→∞) (sec^2 x−sec x tan x )=?

$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\:\right)=? \\ $$

Question Number 188669    Answers: 4   Comments: 0

Question Number 188660    Answers: 2   Comments: 0

solve x^4 +4x=1

$${solve}\:{x}^{\mathrm{4}} +\mathrm{4}{x}=\mathrm{1} \\ $$

Question Number 188657    Answers: 3   Comments: 0

Question Number 188653    Answers: 0   Comments: 1

In how many different ways can the letters of the word ABRAKADABRA be arranged?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{ABRAKADABRA} \\ $$$$\mathrm{be}\:\mathrm{arranged}? \\ $$

Question Number 188651    Answers: 1   Comments: 0

Given f(x)=x^5 +ax^4 +bx^3 +cx^2 +dx+c and f(1)=f(2)=f(3)=f(4)=f(5). Find a.

$$\:\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{5}} +\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{3}} +\mathrm{cx}^{\mathrm{2}} +\mathrm{dx}+\mathrm{c} \\ $$$$\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{f}\left(\mathrm{2}\right)=\mathrm{f}\left(\mathrm{3}\right)=\mathrm{f}\left(\mathrm{4}\right)=\mathrm{f}\left(\mathrm{5}\right). \\ $$$$\:\mathrm{Find}\:\mathrm{a}. \\ $$

Question Number 188648    Answers: 1   Comments: 0

Question Number 188647    Answers: 0   Comments: 1

Question Number 188646    Answers: 2   Comments: 0

Question Number 188645    Answers: 1   Comments: 0

Question Number 188642    Answers: 0   Comments: 0

  Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321      Pg 322      Pg 323   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com