Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 317
Question Number 189854 Answers: 0 Comments: 1
$$\mathrm{1}−{determiner}\:{l}\:{aire}\:{de}\:{la} \\ $$$${partie}\:{hachuree}\left({SDEB}\right) \\ $$$$\mathrm{2}−{le}\:{raport}\:\frac{{R}_{\mathrm{1}} }{{R}_{\mathrm{2}} } \\ $$$${sachant}\:{que}:\:{AB}=\mathrm{20}\left({diametre}\:{de}\:\left({C}\right)\right. \\ $$$$\:\:\measuredangle{CDE}=\mathrm{60}^{°} \:\:\:\measuredangle{OAD}=\mathrm{30}°.\:\:\left[{AI}\mid\mid{EF}\right. \\ $$$$\:\: \\ $$
Question Number 189859 Answers: 0 Comments: 0
Question Number 189858 Answers: 1 Comments: 0
Question Number 189848 Answers: 0 Comments: 0
Question Number 189844 Answers: 0 Comments: 0
$$\mathrm{li}\underset{\mathrm{x}\rightarrow\infty} {\mathrm{m}}\left[\mathrm{xsin}\left(\frac{\pi}{\mathrm{x}}\right)\right] \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$
Question Number 189843 Answers: 1 Comments: 0
Question Number 189838 Answers: 0 Comments: 0
Question Number 189826 Answers: 0 Comments: 0
Question Number 189825 Answers: 2 Comments: 0
$$\underset{{a}} {\int}^{{b}} \sqrt{\left({x}−{a}\right)\left({b}−{x}\right)}=¿ \\ $$
Question Number 189823 Answers: 0 Comments: 0
$$\mathrm{If}:\:\:\:\mathrm{x}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:=\:\sqrt{\mathrm{x}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} \:+\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} -\:\frac{\mathrm{n}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{x}_{\boldsymbol{\mathrm{k}}} }\right) \\ $$
Question Number 189816 Answers: 0 Comments: 0
Question Number 189815 Answers: 1 Comments: 0
Question Number 189808 Answers: 2 Comments: 0
Question Number 189807 Answers: 3 Comments: 0
Question Number 189803 Answers: 3 Comments: 0
$$ \\ $$$${what}'{s}\:{the}\:{minimum}\:{value}\:{of} \\ $$$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)}\:{where}\:{a}>{b}>\mathrm{0}\:{a},{b}\in\mathbb{R} \\ $$$$ \\ $$
Question Number 189797 Answers: 0 Comments: 2
Question Number 189793 Answers: 2 Comments: 1
Question Number 189792 Answers: 1 Comments: 0
Question Number 189791 Answers: 1 Comments: 0
Question Number 189790 Answers: 1 Comments: 0
Question Number 189786 Answers: 1 Comments: 0
Question Number 189777 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{Question}\:\:\left(\mathrm{Graph}\:\right)... \\ $$$$ \\ $$$$\:\:\:\:\mathrm{How}\:\mathrm{many}\:\mathrm{four}\:\mathrm{member}\:\mathrm{dominating}\:\mathrm{sets} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{are}\:\:\mathrm{there}\:\:\mathrm{in}\:\mathrm{the}\:\:\mathrm{graph}\:\mathrm{of}\:\:\mathrm{C}_{\:\mathrm{7}} \:? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 189769 Answers: 0 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{3}\pi} \sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right)+{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right){sin}^{\mathrm{4}} \left(\frac{\theta}{\mathrm{3}}\right)}\:{d}\theta\:\:=\:? \\ $$
Question Number 189763 Answers: 0 Comments: 0
Question Number 189761 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\frac{\boldsymbol{{x}}}{\mathrm{1}×\mathrm{2}}\:+\:\frac{\boldsymbol{{x}}}{\mathrm{2}×\mathrm{3}}\:+\:\frac{\boldsymbol{{x}}}{\mathrm{3}×\mathrm{4}}\:+\:......+\:\frac{\boldsymbol{{x}}}{\mathrm{1998}×\mathrm{1999}}\:+\:\frac{\boldsymbol{{x}}}{\mathrm{1999}×\mathrm{2000}}\:=\:\mathrm{1}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}\:=\:???? \\ $$$$ \\ $$
Question Number 189757 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}\:\mid\:\mathrm{sin}\:\mathrm{4x}\:\mid}{\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{4x}}}\:\:\:=\:\:\:? \\ $$$$\mathrm{Find}:\:\:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}\:\mid\:\mathrm{sin}\:\mathrm{6x}\:\mid}{\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{6x}}}\:\:\:=\:\:\:? \\ $$
Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321
Terms of Service
Privacy Policy
Contact: info@tinkutara.com