Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 317

Question Number 190192    Answers: 3   Comments: 2

if a>b>0, find the minimum of a^2 +(1/((a−b)b))=?

$${if}\:{a}>{b}>\mathrm{0},\:{find}\:{the}\:{minimum}\:{of} \\ $$$${a}^{\mathrm{2}} +\frac{\mathrm{1}}{\left({a}−{b}\right){b}}=? \\ $$

Question Number 190191    Answers: 1   Comments: 0

Question Number 190186    Answers: 0   Comments: 1

determinant ((( If , Ω= ∫_0 ^( (π/2)) (( 4cos^( 2) (4x))/(3(1+sin^( 2) (2x ))))dx= a(√2) + b ))) ⇒ Find the value of , a− b=?

$$ \\ $$$$\:\:\:\:\begin{array}{|c|}{\:\:\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\mathrm{4cos}^{\:\mathrm{2}} \:\left(\mathrm{4}{x}\right)}{\mathrm{3}\left(\mathrm{1}+\mathrm{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\:\right)\right)}\mathrm{d}{x}=\:{a}\sqrt{\mathrm{2}}\:\:+\:{b}\:\:\:\:\:\:\:\:\:\:}\\\hline\end{array}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\mathrm{of}\:\:\:,\:\:{a}−\:{b}=? \\ $$$$ \\ $$

Question Number 190185    Answers: 0   Comments: 1

In AB^Δ C : If , sin (A^ ) = (1/(2 (√( 2+ (√3))))) ⇒ A^ = ?

$$ \\ $$$$\:\:\:\:\:\:\mathrm{In}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\::\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{If}\:,\:\mathrm{sin}\:\left(\hat {\mathrm{A}}\:\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\:\sqrt{\:\mathrm{2}+\:\sqrt{\mathrm{3}}}}\:\:\:\:\:\Rightarrow\:\:\:\:\:\hat {\mathrm{A}}\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 190182    Answers: 0   Comments: 4

Lim_(x→π/2) ((sinx−sinx^(sinx) )/(1−sinx+logsinx)) a)4 b)2 c)1/2 d)none

$${Li}\underset{{x}\rightarrow\pi/\mathrm{2}} {{m}}\frac{{sinx}−{sinx}^{{sinx}} }{\mathrm{1}−{sinx}+{logsinx}} \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\:\:\:\:\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:{c}\right)\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:{d}\right){none} \\ $$

Question Number 190178    Answers: 0   Comments: 1

calculate lim_( n→∞) (( Γ ( (( n+3)/2) ))/(n^( (3/2)) .Γ ((n/2) ))) = ?

$$ \\ $$$$\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:\mathrm{n}\rightarrow\infty} \frac{\:\Gamma\:\left(\:\frac{\:{n}+\mathrm{3}}{\mathrm{2}}\:\right)}{{n}^{\:\frac{\mathrm{3}}{\mathrm{2}}} .\Gamma\:\left(\frac{{n}}{\mathrm{2}}\:\right)}\:=\:? \\ $$

Question Number 190172    Answers: 1   Comments: 0

Integrate ∫_0 ^1 Sin^2 (2Πx)dx

$${Integrate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{Sin}^{\mathrm{2}} \left(\mathrm{2}\Pi{x}\right){dx} \\ $$

Question Number 190169    Answers: 3   Comments: 3

Question Number 190168    Answers: 0   Comments: 2

1)∫^∞ _0 ((sin x)/(x^p +sin x))dx ,p>0 2)∫^∞ _π ((xcos x)/(x^p +x^q ))dx,p>0and q>0 3)∫^∞ _0 ((sin x^p )/( x^q ))dx, p>0,q>0 4)∫^2 _0 (dx/(∣ln x∣^p )) ,p>0 5)∫^1 _0 ((cos(1/(1−x)))/( ((1−x^2 ))^(1/n) ))dx 6)∫^∞ _0 (dx/(x^p ((sin^2 x))^(1/3) ))

$$\left.\mathrm{1}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}}{{x}^{{p}} +{sin}\:{x}}{dx}\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\underset{\pi} {\int}^{\infty} \frac{{xcos}\:{x}}{{x}^{{p}} +{x}^{{q}} }{dx},{p}>\mathrm{0}{and}\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}^{{p}} }{\:{x}^{{q}} }{dx},\:{p}>\mathrm{0},{q}>\mathrm{0} \\ $$$$\left.\mathrm{4}\right)\underset{\mathrm{0}} {\int}^{\mathrm{2}} \frac{{dx}}{\mid{ln}\:{x}\mid^{{p}} }\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{5}\right)\underset{\mathrm{0}} {\int}^{\mathrm{1}} \frac{{cos}\frac{\mathrm{1}}{\mathrm{1}−{x}}}{\:\sqrt[{{n}}]{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\left.\mathrm{6}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{dx}}{{x}^{{p}} \sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} {x}}} \\ $$

Question Number 190167    Answers: 0   Comments: 0

Question Number 190166    Answers: 0   Comments: 0

Question Number 190165    Answers: 1   Comments: 0

S_n =1+(1/2^2 )+(1/3^2 )+...+(1/n^2 ) => lim_(n→∞) S_n =¿

$${S}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+...+\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$=>\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =¿ \\ $$

Question Number 190162    Answers: 2   Comments: 0

Question Number 190151    Answers: 2   Comments: 4

I saw this in a book (without explanation). Please show how. It is given that tan 2θ=(B/(A−C)) (A,B,C ∈R) . Find cos 2θ.

$${I}\:{saw}\:{this}\:{in}\:{a}\:{book}\:\left({without}\:{explanation}\right).\:{Please}\:{show}\:{how}. \\ $$$${It}\:{is}\:{given}\:{that}\:\mathrm{tan}\:\mathrm{2}\theta=\frac{{B}}{{A}−{C}}\:\:\left({A},{B},{C}\:\in\mathbb{R}\right)\:.\:{Find}\:\mathrm{cos}\:\mathrm{2}\theta. \\ $$

Question Number 190140    Answers: 2   Comments: 1

Question Number 190138    Answers: 1   Comments: 0

Question Number 190137    Answers: 2   Comments: 0

{ ((fog^(−1) (x)=3x+2)),((gof(x)=2x−1)) :} find f(x)=? and fof(3)=?

$$\begin{cases}{\mathrm{fog}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{2}}\\{\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{1}}\end{cases} \\ $$$${find}\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=?\:\:\:\mathrm{and}\:\:\:\:\mathrm{fof}\left(\mathrm{3}\right)=? \\ $$

Question Number 190134    Answers: 0   Comments: 0

Question Number 190131    Answers: 1   Comments: 0

if: x^2 +y^2 +z^2 + 14 = 2(x + 2y + 3z) find: T=((xyz)/(x^3 +y^3 +z^3 ))

$$\:\mathrm{if}:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{14}\:=\:\mathrm{2}\left(\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{3z}\right) \\ $$$$\:\mathrm{find}:\:\:\mathrm{T}=\frac{\mathrm{xyz}}{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} +\mathrm{z}^{\mathrm{3}} }\: \\ $$

Question Number 190129    Answers: 1   Comments: 0

Question Number 190115    Answers: 1   Comments: 0

if: (a+b)(a+1) = b find: P = (√(a^3 +b^3 −3ab))

$$\mathrm{if}:\:\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}+\mathrm{1}\right)\:=\:\mathrm{b} \\ $$$$\:\mathrm{find}:\:\:\mathrm{P}\:=\:\:\sqrt{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} −\mathrm{3ab}} \\ $$

Question Number 190106    Answers: 0   Comments: 0

Question Number 190104    Answers: 1   Comments: 0

In AB^Δ C : II_( a) ^( 2) =^? 4R ( r_( a) − r ) I : incircle center I_( a) : excircle center corresponding A R: circumcircle radius r: incircle radius r_( a) : excircle radius corresponding A

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{II}_{\:{a}} ^{\:\mathrm{2}} \:\overset{?} {=}\:\mathrm{4}{R}\:\left(\:{r}_{\:{a}} \:−\:{r}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\mathrm{I}\::\:{incircle}\:\:{center} \\ $$$$\:\:\:\mathrm{I}_{\:{a}} \::\:{excircle}\:{center}\:{corresponding}\:{A} \\ $$$$\:\:\:{R}:\:{circumcircle}\:{radius} \\ $$$$\:\:\:\:\:{r}:\:{incircle}\:{radius} \\ $$$$\:\:\:\:\:{r}_{\:{a}} \::\:{excircle}\:{radius}\:{corresponding}\:{A} \\ $$

Question Number 190100    Answers: 1   Comments: 1

Question Number 190098    Answers: 0   Comments: 0

Question Number 190095    Answers: 1   Comments: 0

  Pg 312      Pg 313      Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com