Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 317
Question Number 189325 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\:{cos}\left({x}\right)+{cos}\left(\mathrm{5}{x}\right)}{\mathrm{1}+\:\mathrm{2}{sin}\left({x}\right)}\:\overset{\:?} {=}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$
Question Number 189323 Answers: 1 Comments: 0
Question Number 189319 Answers: 0 Comments: 4
Question Number 189309 Answers: 1 Comments: 0
Question Number 189304 Answers: 2 Comments: 1
Question Number 189302 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\:\:{Q}:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{solutions}\:\:\mathrm{for}\:: \\ $$$$ \\ $$$$\:\:\left(\:{x}_{\:\mathrm{1}} \:+\:{x}_{\:\mathrm{2}} \:\right)^{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{4}} \:+\:{x}_{\:\mathrm{5}} \:=\mathrm{11} \\ $$$$\:\:\: \\ $$$$\:\:\:\:{Hint}:\:\:\:\left(\:{x}_{\:{i}} \:\:\in\:\:\mathbb{Z}^{\:\:+} \:\:\cup\:\left\{\:\mathrm{0}\:\right\}\:\:\right) \\ $$$$\: \\ $$
Question Number 189293 Answers: 1 Comments: 0
Question Number 189292 Answers: 0 Comments: 2
Question Number 189291 Answers: 0 Comments: 0
Question Number 189290 Answers: 1 Comments: 0
Question Number 189285 Answers: 2 Comments: 0
$${f}\left({x}\right)\:{is}\:{continous}\:{function}\:{on}\:{R} \\ $$$${and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{f}\left(\frac{{x}+\mathrm{1}}{{x}}\right)−\mathrm{6}}{\left(\frac{{x}−\mathrm{1}}{{x}}\right)^{\mathrm{2}} }=\mathrm{2} \\ $$$${Evalute}\::\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{{f}\left({x}\right)+{x}}−{x}}{\left({x}−\mathrm{1}\right)}=¿ \\ $$
Question Number 189270 Answers: 2 Comments: 1
Question Number 189269 Answers: 1 Comments: 0
Question Number 189267 Answers: 3 Comments: 1
Question Number 189266 Answers: 1 Comments: 0
$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:\mathrm{x}}}{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}\:\mathrm{dx}\:=? \\ $$
Question Number 189263 Answers: 0 Comments: 1
$$\boldsymbol{{evaluate}}\:\int\int_{\boldsymbol{\mathrm{E}}} \int\mathrm{15}{Zdv},\:{where}\:{E} \\ $$$$\:{is}\:{the}\:{region}\:{between}\:\mathrm{2}{x}+{y}+{z}=\mathrm{4} \\ $$$$\:{and}\:\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{20}\:{which}\:{is}\:{in}\: \\ $$$${front}\:{of}\:{the}\:{region}\:{in}\:{the}\:{yz}\:{plane}\: \\ $$$${bounded}\:{by}\:{z}=\mathrm{2}{y}^{\mathrm{2}} \:{and}\:{z}=\sqrt{\mathrm{4}{y}} \\ $$
Question Number 189257 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{determine}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\: \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{portion}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{z}}=\mathrm{13}−\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \: \\ $$$$\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{above}}\:\boldsymbol{\mathrm{z}}=\mathrm{1}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{x}}\leq\mathrm{0}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}\geq\mathrm{0} \\ $$
Question Number 189256 Answers: 1 Comments: 0
$${Prove}\:{that} \\ $$$$\mathrm{sin10}°\:=\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−...........\infty}}}}}}}}}}}}} \\ $$
Question Number 189254 Answers: 1 Comments: 0
Question Number 189250 Answers: 0 Comments: 1
Question Number 189248 Answers: 2 Comments: 0
Question Number 189242 Answers: 0 Comments: 0
Question Number 189233 Answers: 1 Comments: 2
$$\mathrm{1}\bullet{Evaluer}\::\boldsymbol{{Aire}}\left(\boldsymbol{{A}}'\boldsymbol{{B}}'\boldsymbol{{C}}'\boldsymbol{{D}}'\right) \\ $$$$\mathrm{2}\bullet{En}\:{deduire}:\frac{\boldsymbol{{Aire}}\left(\boldsymbol{{A}}'\boldsymbol{{B}}'\boldsymbol{{C}}'\boldsymbol{{D}}'\right)}{\boldsymbol{{Aire}}\left(\boldsymbol{{ABCD}}\right)} \\ $$
Question Number 189223 Answers: 0 Comments: 2
$${who}\:{did}\:{discoer}\:{the}\:{light}'{s}\:{speed}\:{and} \\ $$$${by}\:{which}\:{method}? \\ $$
Question Number 189212 Answers: 0 Comments: 0
Question Number 189208 Answers: 2 Comments: 0
Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321
Terms of Service
Privacy Policy
Contact: info@tinkutara.com