Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 316

Question Number 187132    Answers: 0   Comments: 0

Question Number 187124    Answers: 2   Comments: 0

(a/x)=(b/y)=(c/z)=(1/3) , a−2b+c=2 and −2y+z=1 x=? An altered form of q#187020 (In this case solveable)

$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:, \\ $$$${a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:−\mathrm{2}{y}+{z}=\mathrm{1}\:\:\:\: \\ $$$${x}=? \\ $$$${An}\:{altered}\:{form}\:{of}\:\:{q}#\mathrm{187020} \\ $$$$\left({In}\:{this}\:{case}\:{solveable}\right) \\ $$

Question Number 187100    Answers: 1   Comments: 0

Question Number 187095    Answers: 2   Comments: 1

∫_0 ^1 (1/( (√(1 − x^2 )))) + (1/( (√(1 − x^2 )))) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\boldsymbol{{x}}^{\mathrm{2}} }}\:\:+\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\boldsymbol{{x}}^{\mathrm{2}} }}\:\:\boldsymbol{{dx}}\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 187092    Answers: 2   Comments: 0

lim_(x→0) ((sin x^3 −sin^3 x)/(x^3 (cos x^3 −cos^3 x))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{3}} \left(\mathrm{cos}\:{x}^{\mathrm{3}} −\mathrm{cos}\:^{\mathrm{3}} {x}\right)}\:=? \\ $$

Question Number 187091    Answers: 2   Comments: 0

⌊x^2 ⌋ − ⌊x⌋^2 =100 x∈R min(x)=?

$$ \\ $$$$\lfloor{x}^{\mathrm{2}} \rfloor\:\:−\:\:\lfloor{x}\rfloor^{\mathrm{2}} \:=\mathrm{100} \\ $$$${x}\in\mathbb{R} \\ $$$${min}\left({x}\right)=? \\ $$

Question Number 187088    Answers: 0   Comments: 1

prove to (0/0)=2

$$\mathrm{prove}\:\mathrm{to}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2} \\ $$

Question Number 187087    Answers: 0   Comments: 1

(a/x)=(b/y)=(c/z)=(1/3) ,a−2b+c=2 and 2y−3z=1 x=? how is solution this qution solve by the Properties of proportion

$$ \\ $$$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:,{a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:\mathrm{2}{y}−\mathrm{3}{z}=\mathrm{1}\:\:\:\:{x}=? \\ $$$${how}\:{is}\:{solution} \\ $$$$\:{this}\:{qution}\:{solve}\:{by}\:{the}\:\mathrm{Properties}\:\mathrm{of}\:\mathrm{proportion} \\ $$$$ \\ $$$$ \\ $$

Question Number 187086    Answers: 0   Comments: 0

Question Number 187085    Answers: 1   Comments: 0

Question Number 187080    Answers: 0   Comments: 0

The hands of a clock are known to move in clockwise direction. If the minute hand is turned manually thrice, in an anticlockwise movement from 11 round the clock and then left pointing to 4, calculate the smallest angle which would have been covered of the minute hand was moving in clockwise direction.

$$ \\ $$The hands of a clock are known to move in clockwise direction. If the minute hand is turned manually thrice, in an anticlockwise movement from 11 round the clock and then left pointing to 4, calculate the smallest angle which would have been covered of the minute hand was moving in clockwise direction.

Question Number 187076    Answers: 3   Comments: 0

(a/b)+(b/a)=5 ; (a^2 /b)+(b^2 /a) =12 (1/a)+(1/b)=?

$$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}\:\:;\:\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}} }{{a}}\:=\mathrm{12} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=? \\ $$

Question Number 187073    Answers: 0   Comments: 0

suppose that a sample of size n=8 is drawn from a population with PDF: {f(x)=(x^2 /9), 0 < x < 3} find (1) p(1 < x < 2) (2) PDF and CDF of the fourth smallest O.S

$${suppose}\:{that}\:{a}\:{sample}\:{of}\:{size} \\ $$$${n}=\mathrm{8}\:{is}\:{drawn}\:{from}\:{a}\:{population}\:{with}\:{PDF}:\: \\ $$$$\left\{{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{9}},\:\mathrm{0}\:<\:{x}\:<\:\mathrm{3}\right\} \\ $$$${find} \\ $$$$\left(\mathrm{1}\right)\:\:\:{p}\left(\mathrm{1}\:<\:{x}\:<\:\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)\:\:{PDF}\:{and}\:{CDF}\:{of}\:{the}\:{fourth}\:{smallest}\:{O}.{S} \\ $$

Question Number 187072    Answers: 0   Comments: 0

let x be the Discrete random variable with (PGF) P_x (t) = (t/5)(2+3t^2 ) find the distribution of x

$${let}\:{x}\:{be}\:{the}\:{Discrete}\:{random}\:{variable}\:{with}\:\left({PGF}\right)\: \\ $$$${P}_{{x}} \left({t}\right)\:=\:\frac{{t}}{\mathrm{5}}\left(\mathrm{2}+\mathrm{3}{t}^{\mathrm{2}} \right) \\ $$$${find}\:{the}\:{distribution}\:{of}\:{x} \\ $$

Question Number 187069    Answers: 1   Comments: 0

(2x −3y +2z +4)^(2 ) +(x−y−z)^2 +(x+y+z−8)^2 =0 find x , y, z

$$\left(\mathrm{2}{x}\:−\mathrm{3}{y}\:+\mathrm{2}{z}\:+\mathrm{4}\right)^{\mathrm{2}\:} +\left({x}−{y}−{z}\right)^{\mathrm{2}} +\left({x}+{y}+{z}−\mathrm{8}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${find} \\ $$$${x}\:,\:{y},\:{z}\: \\ $$

Question Number 187066    Answers: 3   Comments: 1

Question Number 187059    Answers: 1   Comments: 1

Question Number 187054    Answers: 0   Comments: 2

Question Number 187053    Answers: 1   Comments: 0

How do you make a curve y=ax^3 +bx^2 +cx+d with a critical point of (1,0) and (−2,27) ?

$$\:{How}\:{do}\:{you}\:{make}\:{a}\:{curve}\: \\ $$$$\:{y}={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\:{with}\:{a}\:{critical} \\ $$$$\:{point}\:{of}\:\left(\mathrm{1},\mathrm{0}\right)\:{and}\:\left(−\mathrm{2},\mathrm{27}\right)\:? \\ $$

Question Number 187051    Answers: 0   Comments: 1

Question Number 187050    Answers: 0   Comments: 1

∫^(𝛑/4) _0 ((cos^(−1) x + cos x)/(Ln x)) dx =??

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \:\:\frac{\boldsymbol{{cos}}^{−\mathrm{1}} \boldsymbol{{x}}\:+\:\boldsymbol{{cos}}\:\boldsymbol{{x}}}{\boldsymbol{{Ln}}\:\boldsymbol{{x}}}\:\:\boldsymbol{{dx}}\:=??\:\:\: \\ $$$$ \\ $$

Question Number 187046    Answers: 1   Comments: 0

find the general solution for the following system of equations ((dx_1 /dt))=2x_1 +2x_2 ((dx_2 /dt))=x_1 +3x_2

$${find}\:\:\:{the}\:{general}\:\:{solution}\:{for}\:\:{the}\:{following} \\ $$$${system}\:{of}\:{equations} \\ $$$$\left(\frac{{dx}_{\mathrm{1}} }{{dt}}\right)=\mathrm{2}{x}_{\mathrm{1}} +\mathrm{2}{x}_{\mathrm{2}} \\ $$$$\left(\frac{{dx}_{\mathrm{2}} }{{dt}}\right)={x}_{\mathrm{1}} +\mathrm{3}{x}_{\mathrm{2}} \\ $$$$ \\ $$

Question Number 187029    Answers: 1   Comments: 0

Question Number 187027    Answers: 1   Comments: 0

Question Number 187025    Answers: 1   Comments: 0

Question Number 187044    Answers: 0   Comments: 0

f(x,y)={(x+y),0<x<1, 0<y<1 0, otherwise find: (1) σxy (2) p(0<x<((1/4))∣((2/5))>y>((1/3))) note: f(x,y) is the joint PDF

$${f}\left({x},{y}\right)=\left\{\left({x}+{y}\right),\mathrm{0}<{x}<\mathrm{1},\:\mathrm{0}<{y}<\mathrm{1}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0},\:{otherwise} \\ $$$${find}: \\ $$$$\left(\mathrm{1}\right)\:\sigma{xy} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:{p}\left(\mathrm{0}<{x}<\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\mid\left(\frac{\mathrm{2}}{\mathrm{5}}\right)>{y}>\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right) \\ $$$$ \\ $$$${note}:\:{f}\left({x},{y}\right)\:{is}\:{the}\:{joint}\:{PDF} \\ $$

  Pg 311      Pg 312      Pg 313      Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com