Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 311

Question Number 189842    Answers: 0   Comments: 0

lim_(x→(π/3)) ((2cos 5x tan^2 x−2sin^2 2x)/(4sin 2x cos x−tan x))=?

$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\mathrm{5x}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{2x}}{\mathrm{4sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}}=? \\ $$

Question Number 189716    Answers: 3   Comments: 0

Question Number 189715    Answers: 1   Comments: 0

Question Number 189711    Answers: 0   Comments: 0

Question Number 189710    Answers: 3   Comments: 0

Question Number 189704    Answers: 0   Comments: 0

Question Number 189701    Answers: 1   Comments: 1

Question Number 189700    Answers: 2   Comments: 2

Question Number 189697    Answers: 0   Comments: 0

calculate ... S= Σ_(n=1) ^∞ (( ζ (2n ))/n^( 2) ) = ? −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\:... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\mathrm{2}{n}\:\right)}{{n}^{\:\mathrm{2}} }\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 189693    Answers: 2   Comments: 1

Question Number 189685    Answers: 2   Comments: 0

Question Number 189684    Answers: 1   Comments: 1

Question Number 189683    Answers: 1   Comments: 0

Question Number 189680    Answers: 0   Comments: 6

Question Number 189679    Answers: 0   Comments: 0

Question Number 189672    Answers: 0   Comments: 2

Question Number 189667    Answers: 0   Comments: 0

Question Number 189666    Answers: 0   Comments: 0

Question Number 189665    Answers: 1   Comments: 0

Question Number 189662    Answers: 0   Comments: 0

Question Number 189661    Answers: 0   Comments: 0

Question Number 189660    Answers: 0   Comments: 0

Question Number 189643    Answers: 1   Comments: 0

f(x)=((sinx+cosx)/3) R_(f(x)) =?

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{sinx}+\mathrm{cosx}}{\mathrm{3}} \\ $$$$\mathrm{R}_{\mathrm{f}\left(\mathrm{x}\right)} =? \\ $$

Question Number 189641    Answers: 1   Comments: 3

A man has equal chances of travelling by air(A), bus(B) and train(T). the probability that when he travels by air, bus or train he will have an accident are (1/3), (3/5) and (1/(10)). find the probability that (a) he travelled and was involved in an accident (b) he was travelling by air given that he was involved in an accident. (c) he was travelling by bus or he arrived safely

$$\mathrm{A}\:\mathrm{man}\:\mathrm{has}\:\mathrm{equal}\:\mathrm{chances}\:\mathrm{of}\:\mathrm{travelling}\:\mathrm{by}\: \\ $$$$\mathrm{air}\left(\mathrm{A}\right),\:\mathrm{bus}\left(\mathrm{B}\right)\:\mathrm{and}\:\mathrm{train}\left(\mathrm{T}\right).\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{when}\:\mathrm{he}\:\mathrm{travels}\:\mathrm{by}\:\mathrm{air},\:\mathrm{bus}\:\mathrm{or}\:\mathrm{train}\:\mathrm{he} \\ $$$$\mathrm{will}\:\mathrm{have}\:\mathrm{an}\:\mathrm{accident}\:\mathrm{are}\:\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{10}}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{he}\:\mathrm{travelled}\:\mathrm{and}\:\mathrm{was}\:\mathrm{involved}\:\mathrm{in}\:\mathrm{an}\:\mathrm{accident} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{he}\:\mathrm{was}\:\mathrm{travelling}\:\mathrm{by}\:\mathrm{air}\:\mathrm{given}\:\mathrm{that}\:\mathrm{he}\:\mathrm{was} \\ $$$$\mathrm{involved}\:\mathrm{in}\:\mathrm{an}\:\mathrm{accident}. \\ $$$$\left(\mathrm{c}\right)\:\mathrm{he}\:\mathrm{was}\:\mathrm{travelling}\:\mathrm{by}\:\mathrm{bus}\:\mathrm{or}\:\mathrm{he}\:\mathrm{arrived}\:\mathrm{safely} \\ $$

Question Number 189639    Answers: 1   Comments: 1

(((20)),(( 0)) ) (((10)),(( 1)) ) + (((20)),(( 1)) ) (((10)),(( 2)) ) +...+ ((( 20)),(( 9)) ) ((( 10)),(( 10)) ) =?

$$ \\ $$$$\:\:\begin{pmatrix}{\mathrm{20}}\\{\:\mathrm{0}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{1}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{20}}\\{\:\mathrm{1}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{10}}\\{\:\:\mathrm{2}}\end{pmatrix}\:+...+\:\begin{pmatrix}{\:\:\:\mathrm{20}}\\{\:\:\mathrm{9}}\end{pmatrix}\:\begin{pmatrix}{\:\:\mathrm{10}}\\{\:\mathrm{10}}\end{pmatrix}\:=? \\ $$$$ \\ $$

Question Number 189664    Answers: 1   Comments: 0

  Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312      Pg 313      Pg 314      Pg 315   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com