Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 308

Question Number 190263    Answers: 0   Comments: 0

Question Number 190260    Answers: 1   Comments: 0

f : [1, 3] →R , f(x) = (1/x) A(1, 1) B(1, (1/3)) B′(b, (1/b)) , b ≥ 1 Find i. equation of line AB′ ii. equation of tangent T ′ to C_f at point with x = ((1 + b)/2) iii. Study relative positions of L_(AB ′) , T ′ to C_f

$${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}} \\ $$$${iii}.\:{Study}\:{relative}\:{positions}\:{of}\:{L}_{{AB}\:'} \:,\:{T}\:'\:{to}\:{C}_{{f}} \\ $$

Question Number 190259    Answers: 0   Comments: 4

solve the differential equation. (d^2 /dt^2 ) x + ω^2 x(t) =0 ;x(0)=0;x^2 (0)=υ_o

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\: \\ $$$$\mathrm{equation}. \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} }\:\mathrm{x}\:+\:\omega^{\mathrm{2}} \mathrm{x}\left(\mathrm{t}\right)\:=\mathrm{0} \\ $$$$;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{x}^{\mathrm{2}} \left(\mathrm{0}\right)=\upsilon_{\mathrm{o}} \\ $$

Question Number 190257    Answers: 0   Comments: 2

$$ \\ $$

Question Number 190253    Answers: 1   Comments: 0

Question Number 190249    Answers: 1   Comments: 0

if 8% error is made on x, what is the percentage error on λx^(1/5) ?

$${if}\:\mathrm{8\%}\:{error}\:{is}\:{made}\:{on}\:{x},\: \\ $$$${what}\:{is}\:{the}\:{percentage}\:{error} \\ $$$${on}\:\lambda{x}^{\frac{\mathrm{1}}{\mathrm{5}}} \:? \\ $$

Question Number 190246    Answers: 0   Comments: 0

Question Number 190242    Answers: 0   Comments: 0

Question Number 190241    Answers: 1   Comments: 0

show that a⊛b=a+ab+b is a monoid when G=Z

$${show}\:{that}\:{a}\circledast{b}={a}+{ab}+{b}\:{is}\:{a}\:{monoid}\:{when}\:{G}={Z} \\ $$

Question Number 190239    Answers: 0   Comments: 0

Question Number 190238    Answers: 0   Comments: 0

Question Number 190237    Answers: 0   Comments: 0

Question Number 190230    Answers: 2   Comments: 0

Question Number 190216    Answers: 2   Comments: 3

Question Number 190199    Answers: 1   Comments: 0

Question Number 190198    Answers: 1   Comments: 0

Question Number 190192    Answers: 3   Comments: 2

if a>b>0, find the minimum of a^2 +(1/((a−b)b))=?

$${if}\:{a}>{b}>\mathrm{0},\:{find}\:{the}\:{minimum}\:{of} \\ $$$${a}^{\mathrm{2}} +\frac{\mathrm{1}}{\left({a}−{b}\right){b}}=? \\ $$

Question Number 190191    Answers: 1   Comments: 0

Question Number 190186    Answers: 0   Comments: 1

determinant ((( If , Ω= ∫_0 ^( (π/2)) (( 4cos^( 2) (4x))/(3(1+sin^( 2) (2x ))))dx= a(√2) + b ))) ⇒ Find the value of , a− b=?

$$ \\ $$$$\:\:\:\:\begin{array}{|c|}{\:\:\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\mathrm{4cos}^{\:\mathrm{2}} \:\left(\mathrm{4}{x}\right)}{\mathrm{3}\left(\mathrm{1}+\mathrm{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\:\right)\right)}\mathrm{d}{x}=\:{a}\sqrt{\mathrm{2}}\:\:+\:{b}\:\:\:\:\:\:\:\:\:\:}\\\hline\end{array}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\mathrm{of}\:\:\:,\:\:{a}−\:{b}=? \\ $$$$ \\ $$

Question Number 190185    Answers: 0   Comments: 1

In AB^Δ C : If , sin (A^ ) = (1/(2 (√( 2+ (√3))))) ⇒ A^ = ?

$$ \\ $$$$\:\:\:\:\:\:\mathrm{In}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\::\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{If}\:,\:\mathrm{sin}\:\left(\hat {\mathrm{A}}\:\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\:\sqrt{\:\mathrm{2}+\:\sqrt{\mathrm{3}}}}\:\:\:\:\:\Rightarrow\:\:\:\:\:\hat {\mathrm{A}}\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 190182    Answers: 0   Comments: 4

Lim_(x→π/2) ((sinx−sinx^(sinx) )/(1−sinx+logsinx)) a)4 b)2 c)1/2 d)none

$${Li}\underset{{x}\rightarrow\pi/\mathrm{2}} {{m}}\frac{{sinx}−{sinx}^{{sinx}} }{\mathrm{1}−{sinx}+{logsinx}} \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\:\:\:\:\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:{c}\right)\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:{d}\right){none} \\ $$

Question Number 190178    Answers: 0   Comments: 1

calculate lim_( n→∞) (( Γ ( (( n+3)/2) ))/(n^( (3/2)) .Γ ((n/2) ))) = ?

$$ \\ $$$$\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:\mathrm{n}\rightarrow\infty} \frac{\:\Gamma\:\left(\:\frac{\:{n}+\mathrm{3}}{\mathrm{2}}\:\right)}{{n}^{\:\frac{\mathrm{3}}{\mathrm{2}}} .\Gamma\:\left(\frac{{n}}{\mathrm{2}}\:\right)}\:=\:? \\ $$

Question Number 190172    Answers: 1   Comments: 0

Integrate ∫_0 ^1 Sin^2 (2Πx)dx

$${Integrate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{Sin}^{\mathrm{2}} \left(\mathrm{2}\Pi{x}\right){dx} \\ $$

Question Number 190169    Answers: 3   Comments: 3

Question Number 190168    Answers: 0   Comments: 2

1)∫^∞ _0 ((sin x)/(x^p +sin x))dx ,p>0 2)∫^∞ _π ((xcos x)/(x^p +x^q ))dx,p>0and q>0 3)∫^∞ _0 ((sin x^p )/( x^q ))dx, p>0,q>0 4)∫^2 _0 (dx/(∣ln x∣^p )) ,p>0 5)∫^1 _0 ((cos(1/(1−x)))/( ((1−x^2 ))^(1/n) ))dx 6)∫^∞ _0 (dx/(x^p ((sin^2 x))^(1/3) ))

$$\left.\mathrm{1}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}}{{x}^{{p}} +{sin}\:{x}}{dx}\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\underset{\pi} {\int}^{\infty} \frac{{xcos}\:{x}}{{x}^{{p}} +{x}^{{q}} }{dx},{p}>\mathrm{0}{and}\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}^{{p}} }{\:{x}^{{q}} }{dx},\:{p}>\mathrm{0},{q}>\mathrm{0} \\ $$$$\left.\mathrm{4}\right)\underset{\mathrm{0}} {\int}^{\mathrm{2}} \frac{{dx}}{\mid{ln}\:{x}\mid^{{p}} }\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{5}\right)\underset{\mathrm{0}} {\int}^{\mathrm{1}} \frac{{cos}\frac{\mathrm{1}}{\mathrm{1}−{x}}}{\:\sqrt[{{n}}]{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\left.\mathrm{6}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{dx}}{{x}^{{p}} \sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} {x}}} \\ $$

Question Number 190167    Answers: 0   Comments: 0

  Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com