Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 308
Question Number 190263 Answers: 0 Comments: 0
Question Number 190260 Answers: 1 Comments: 0
$${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}} \\ $$$${iii}.\:{Study}\:{relative}\:{positions}\:{of}\:{L}_{{AB}\:'} \:,\:{T}\:'\:{to}\:{C}_{{f}} \\ $$
Question Number 190259 Answers: 0 Comments: 4
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\: \\ $$$$\mathrm{equation}. \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} }\:\mathrm{x}\:+\:\omega^{\mathrm{2}} \mathrm{x}\left(\mathrm{t}\right)\:=\mathrm{0} \\ $$$$;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{x}^{\mathrm{2}} \left(\mathrm{0}\right)=\upsilon_{\mathrm{o}} \\ $$
Question Number 190257 Answers: 0 Comments: 2
$$ \\ $$
Question Number 190253 Answers: 1 Comments: 0
Question Number 190249 Answers: 1 Comments: 0
$${if}\:\mathrm{8\%}\:{error}\:{is}\:{made}\:{on}\:{x},\: \\ $$$${what}\:{is}\:{the}\:{percentage}\:{error} \\ $$$${on}\:\lambda{x}^{\frac{\mathrm{1}}{\mathrm{5}}} \:? \\ $$
Question Number 190246 Answers: 0 Comments: 0
Question Number 190242 Answers: 0 Comments: 0
Question Number 190241 Answers: 1 Comments: 0
$${show}\:{that}\:{a}\circledast{b}={a}+{ab}+{b}\:{is}\:{a}\:{monoid}\:{when}\:{G}={Z} \\ $$
Question Number 190239 Answers: 0 Comments: 0
Question Number 190238 Answers: 0 Comments: 0
Question Number 190237 Answers: 0 Comments: 0
Question Number 190230 Answers: 2 Comments: 0
Question Number 190216 Answers: 2 Comments: 3
Question Number 190199 Answers: 1 Comments: 0
Question Number 190198 Answers: 1 Comments: 0
Question Number 190192 Answers: 3 Comments: 2
$${if}\:{a}>{b}>\mathrm{0},\:{find}\:{the}\:{minimum}\:{of} \\ $$$${a}^{\mathrm{2}} +\frac{\mathrm{1}}{\left({a}−{b}\right){b}}=? \\ $$
Question Number 190191 Answers: 1 Comments: 0
Question Number 190186 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\begin{array}{|c|}{\:\:\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\mathrm{4cos}^{\:\mathrm{2}} \:\left(\mathrm{4}{x}\right)}{\mathrm{3}\left(\mathrm{1}+\mathrm{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\:\right)\right)}\mathrm{d}{x}=\:{a}\sqrt{\mathrm{2}}\:\:+\:{b}\:\:\:\:\:\:\:\:\:\:}\\\hline\end{array}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\mathrm{of}\:\:\:,\:\:{a}−\:{b}=? \\ $$$$ \\ $$
Question Number 190185 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\mathrm{In}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\::\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{If}\:,\:\mathrm{sin}\:\left(\hat {\mathrm{A}}\:\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\:\sqrt{\:\mathrm{2}+\:\sqrt{\mathrm{3}}}}\:\:\:\:\:\Rightarrow\:\:\:\:\:\hat {\mathrm{A}}\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Question Number 190182 Answers: 0 Comments: 4
$${Li}\underset{{x}\rightarrow\pi/\mathrm{2}} {{m}}\frac{{sinx}−{sinx}^{{sinx}} }{\mathrm{1}−{sinx}+{logsinx}} \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\:\:\:\:\:\:\:\:{b}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:{c}\right)\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:{d}\right){none} \\ $$
Question Number 190178 Answers: 0 Comments: 1
$$ \\ $$$$\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:\mathrm{n}\rightarrow\infty} \frac{\:\Gamma\:\left(\:\frac{\:{n}+\mathrm{3}}{\mathrm{2}}\:\right)}{{n}^{\:\frac{\mathrm{3}}{\mathrm{2}}} .\Gamma\:\left(\frac{{n}}{\mathrm{2}}\:\right)}\:=\:? \\ $$
Question Number 190172 Answers: 1 Comments: 0
$${Integrate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{Sin}^{\mathrm{2}} \left(\mathrm{2}\Pi{x}\right){dx} \\ $$
Question Number 190169 Answers: 3 Comments: 3
Question Number 190168 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}}{{x}^{{p}} +{sin}\:{x}}{dx}\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\underset{\pi} {\int}^{\infty} \frac{{xcos}\:{x}}{{x}^{{p}} +{x}^{{q}} }{dx},{p}>\mathrm{0}{and}\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}^{{p}} }{\:{x}^{{q}} }{dx},\:{p}>\mathrm{0},{q}>\mathrm{0} \\ $$$$\left.\mathrm{4}\right)\underset{\mathrm{0}} {\int}^{\mathrm{2}} \frac{{dx}}{\mid{ln}\:{x}\mid^{{p}} }\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{5}\right)\underset{\mathrm{0}} {\int}^{\mathrm{1}} \frac{{cos}\frac{\mathrm{1}}{\mathrm{1}−{x}}}{\:\sqrt[{{n}}]{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\left.\mathrm{6}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{dx}}{{x}^{{p}} \sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} {x}}} \\ $$
Question Number 190167 Answers: 0 Comments: 0
Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312
Terms of Service
Privacy Policy
Contact: info@tinkutara.com