Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 308

Question Number 190568    Answers: 0   Comments: 1

Question Number 190569    Answers: 1   Comments: 0

The number of 4−digit numbers that contain the number 6 and are divisible by 3 is ___

$$\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}−\mathrm{digit}\: \\ $$$$\:\mathrm{numbers}\:\mathrm{that}\:\mathrm{contain}\:\mathrm{the} \\ $$$$\:\mathrm{number}\:\mathrm{6}\:\mathrm{and}\:\mathrm{are}\:\mathrm{divisible}\: \\ $$$$\:\mathrm{by}\:\mathrm{3}\:\mathrm{is}\:\_\_\_ \\ $$

Question Number 190565    Answers: 1   Comments: 0

Question Number 190564    Answers: 2   Comments: 0

Question Number 190563    Answers: 1   Comments: 0

Question Number 190557    Answers: 2   Comments: 0

Question Number 190552    Answers: 1   Comments: 1

∫_(1/2) ^2 ln(((ln(x+(1/x)))/(ln(x^2 −x+((17)/6)))))dx=?

$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} {ln}\left(\frac{{ln}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{{ln}\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{17}}{\mathrm{6}}\right)}\right){dx}=? \\ $$

Question Number 190546    Answers: 2   Comments: 0

Given x,y,z>0 and x^2 +y^2 +z^2 +x+2y+3z=23 find maximum of x+y+z.

$$\:\mathrm{Given}\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\mathrm{and}\: \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\mathrm{x}+\mathrm{2y}+\mathrm{3z}=\mathrm{23}\: \\ $$$$\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}+\mathrm{z}. \\ $$

Question Number 190544    Answers: 1   Comments: 1

Given p,q,r,s sre distinc prime numbers such that pq−rs divisible by 30. minimum value of p+q+r+s =?

$$\mathrm{Given}\:\mathrm{p},\mathrm{q},\mathrm{r},\mathrm{s}\:\mathrm{sre}\:\mathrm{distinc}\:\mathrm{prime}\:\mathrm{numbers} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{pq}−\mathrm{rs}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{30}. \\ $$$$\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}\:=? \\ $$

Question Number 190542    Answers: 0   Comments: 0

Question Number 190537    Answers: 1   Comments: 0

Question Number 190536    Answers: 1   Comments: 0

If p,q and r are the roots of equation x^3 −3x^2 +1 = 0 then find the value of ((3p−2))^(1/3) +((3q−2))^(1/3) +((3r−2))^(1/3)

$$\:\mathrm{If}\:\mathrm{p},\mathrm{q}\:\mathrm{and}\:\mathrm{r}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\sqrt[{\mathrm{3}}]{\mathrm{3p}−\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3q}−\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{3r}−\mathrm{2}}\: \\ $$

Question Number 190533    Answers: 1   Comments: 0

Question Number 190532    Answers: 1   Comments: 0

10x^2 −9xy+2y^2 =10 please how do I find the ratio of x:y

$$\mathrm{10x}^{\mathrm{2}} −\mathrm{9xy}+\mathrm{2y}^{\mathrm{2}} =\mathrm{10} \\ $$$$\:\mathrm{please}\:\mathrm{how}\:\mathrm{do}\:\mathrm{I}\:\mathrm{find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of} \\ $$$$\:\mathrm{x}:\mathrm{y} \\ $$

Question Number 190527    Answers: 1   Comments: 1

Question Number 190523    Answers: 1   Comments: 0

Question Number 190522    Answers: 1   Comments: 0

Question Number 190521    Answers: 1   Comments: 0

Question Number 190520    Answers: 2   Comments: 0

if a,b and c root of the x^3 −16x^2 −57x+1=0 thi find thd volue of a^(1/5) +b^(1/5) +c^(1/5) =?

$${if}\:{a},{b}\:{and}\:{c}\:{root}\:{of}\:{the} \\ $$$${x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} −\mathrm{57}{x}+\mathrm{1}=\mathrm{0} \\ $$$${thi}\:{find}\:{thd}\:{volue}\:{of} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{b}^{\frac{\mathrm{1}}{\mathrm{5}}} +{c}^{\frac{\mathrm{1}}{\mathrm{5}}} =? \\ $$

Question Number 190512    Answers: 1   Comments: 0

Question Number 190508    Answers: 3   Comments: 0

Question Number 190487    Answers: 1   Comments: 0

Question Number 190480    Answers: 1   Comments: 0

Proof that ((√2))^(√2) ∈R\Q

$$\mathrm{Proof}\:\mathrm{that}\:\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \in\mathbb{R}\backslash\mathrm{Q} \\ $$

Question Number 190464    Answers: 1   Comments: 0

{ ((u_(n+1) = u_n −3 )),((v_(n+1) = 4v_n )) :} : u_0 = v_0 = 1 w_n = ((1−u_n )/v_n ) − show that w_n is bounded − find a,b∈R such that a ≤ w_n ≤ b

$$\begin{cases}{{u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} −\mathrm{3}\:}\\{{v}_{{n}+\mathrm{1}} \:=\:\mathrm{4}{v}_{{n}} }\end{cases}\::\:{u}_{\mathrm{0}} \:=\:{v}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${w}_{{n}} \:=\:\frac{\mathrm{1}−{u}_{{n}} }{{v}_{{n}} } \\ $$$$−\:{show}\:{that}\:{w}_{{n}} \:{is}\:{bounded} \\ $$$$−\:{find}\:{a},{b}\in\mathbb{R}\:{such}\:{that}\:{a}\:\leqslant\:{w}_{{n}} \:\leqslant\:{b} \\ $$

Question Number 190452    Answers: 0   Comments: 0

∫((cos^(1.5) x−sin^(1.5) x)/( (√(sinx cosx)))) dx = ∫((cos^(3/2) x)/(sin^(1/2) x cos^(1/2) x))dx−∫((sin^(3/2) x)/(sin^(1/2) x cos^(1/2) x)) dx = ∫ ((cosx)/(sin^(1/2) x)) dx − ∫ ((sinx)/(cos^(1/2) x)) dx = ∫ (dt/t^(1/2) ) − ∫ (((−dz))/z^(1/2) ) where cosx = z and sinx = t = 2 (√(sinx)) + 2 (√(cosx)) + C

$$\int\frac{{cos}^{\mathrm{1}.\mathrm{5}} {x}−{sin}^{\mathrm{1}.\mathrm{5}} {x}}{\:\sqrt{{sinx}\:{cosx}}}\:{dx} \\ $$$$=\:\int\frac{{cos}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}{dx}−\int\frac{{sin}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\ $$$$=\:\int\:\frac{{cosx}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx}\:−\:\int\:\frac{{sinx}}{{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\ $$$$=\:\int\:\frac{{dt}}{{t}^{\mathrm{1}/\mathrm{2}} }\:−\:\int\:\frac{\left(−{dz}\right)}{{z}^{\mathrm{1}/\mathrm{2}} } \\ $$$${where}\:{cosx}\:=\:{z}\:{and}\:{sinx}\:=\:{t} \\ $$$$=\:\mathrm{2}\:\sqrt{{sinx}}\:+\:\mathrm{2}\:\sqrt{{cosx}}\:+\:{C} \\ $$

Question Number 190459    Answers: 1   Comments: 7

hi me tinko Tara Hello, when I use my mobile keyboard, the writing is on the right side, and when I use the math editor keyboard, the writing is still on the right side. I want the question to be typed on the left side, like

$$ \\ $$hi me tinko Tara Hello, when I use my mobile keyboard, the writing is on the right side, and when I use the math editor keyboard, the writing is still on the right side. I want the question to be typed on the left side, like

  Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com