Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 308

Question Number 190508    Answers: 3   Comments: 0

Question Number 190487    Answers: 1   Comments: 0

Question Number 190480    Answers: 1   Comments: 0

Proof that ((√2))^(√2) ∈R\Q

$$\mathrm{Proof}\:\mathrm{that}\:\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \in\mathbb{R}\backslash\mathrm{Q} \\ $$

Question Number 190464    Answers: 1   Comments: 0

{ ((u_(n+1) = u_n −3 )),((v_(n+1) = 4v_n )) :} : u_0 = v_0 = 1 w_n = ((1−u_n )/v_n ) − show that w_n is bounded − find a,b∈R such that a ≤ w_n ≤ b

$$\begin{cases}{{u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} −\mathrm{3}\:}\\{{v}_{{n}+\mathrm{1}} \:=\:\mathrm{4}{v}_{{n}} }\end{cases}\::\:{u}_{\mathrm{0}} \:=\:{v}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${w}_{{n}} \:=\:\frac{\mathrm{1}−{u}_{{n}} }{{v}_{{n}} } \\ $$$$−\:{show}\:{that}\:{w}_{{n}} \:{is}\:{bounded} \\ $$$$−\:{find}\:{a},{b}\in\mathbb{R}\:{such}\:{that}\:{a}\:\leqslant\:{w}_{{n}} \:\leqslant\:{b} \\ $$

Question Number 190452    Answers: 0   Comments: 0

∫((cos^(1.5) x−sin^(1.5) x)/( (√(sinx cosx)))) dx = ∫((cos^(3/2) x)/(sin^(1/2) x cos^(1/2) x))dx−∫((sin^(3/2) x)/(sin^(1/2) x cos^(1/2) x)) dx = ∫ ((cosx)/(sin^(1/2) x)) dx − ∫ ((sinx)/(cos^(1/2) x)) dx = ∫ (dt/t^(1/2) ) − ∫ (((−dz))/z^(1/2) ) where cosx = z and sinx = t = 2 (√(sinx)) + 2 (√(cosx)) + C

$$\int\frac{{cos}^{\mathrm{1}.\mathrm{5}} {x}−{sin}^{\mathrm{1}.\mathrm{5}} {x}}{\:\sqrt{{sinx}\:{cosx}}}\:{dx} \\ $$$$=\:\int\frac{{cos}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}{dx}−\int\frac{{sin}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\ $$$$=\:\int\:\frac{{cosx}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx}\:−\:\int\:\frac{{sinx}}{{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\ $$$$=\:\int\:\frac{{dt}}{{t}^{\mathrm{1}/\mathrm{2}} }\:−\:\int\:\frac{\left(−{dz}\right)}{{z}^{\mathrm{1}/\mathrm{2}} } \\ $$$${where}\:{cosx}\:=\:{z}\:{and}\:{sinx}\:=\:{t} \\ $$$$=\:\mathrm{2}\:\sqrt{{sinx}}\:+\:\mathrm{2}\:\sqrt{{cosx}}\:+\:{C} \\ $$

Question Number 190459    Answers: 1   Comments: 7

hi me tinko Tara Hello, when I use my mobile keyboard, the writing is on the right side, and when I use the math editor keyboard, the writing is still on the right side. I want the question to be typed on the left side, like

$$ \\ $$hi me tinko Tara Hello, when I use my mobile keyboard, the writing is on the right side, and when I use the math editor keyboard, the writing is still on the right side. I want the question to be typed on the left side, like

Question Number 190450    Answers: 0   Comments: 0

Question Number 190449    Answers: 1   Comments: 0

John stands at 10m from a mango tree while Philip stands between John and the Philip. The angle of elevation from John and Philip is 55º and 70º respectively. If John is 1.7m tall and Philip is 1.5m tall, find the minimum length of stick they will each need to touch the mango from their position. Help Please

$$ \\ $$John stands at 10m from a mango tree while Philip stands between John and the Philip. The angle of elevation from John and Philip is 55º and 70º respectively. If John is 1.7m tall and Philip is 1.5m tall, find the minimum length of stick they will each need to touch the mango from their position. Help Please

Question Number 190448    Answers: 1   Comments: 0

Question Number 190443    Answers: 0   Comments: 0

Question Number 190501    Answers: 1   Comments: 0

lim_(x→∞) (3^x /(x!))=? solution?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}^{\mathrm{x}} }{\mathrm{x}!}=? \\ $$$$\mathrm{solution}? \\ $$

Question Number 190435    Answers: 2   Comments: 0

how is solution lim_(x→0) ((x^(10) ∙sin^4 x∙cos^8 x∙(x+1)^3 )/(x^4 +3x^3 +3x^2 +x))=?

$$ \\ $$$$\mathrm{how}\:\mathrm{is}\:\mathrm{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{10}} \centerdot\mathrm{sin}^{\mathrm{4}} \mathrm{x}\centerdot\mathrm{cos}^{\mathrm{8}} \mathrm{x}\centerdot\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{3x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{x}}=? \\ $$$$ \\ $$

Question Number 190425    Answers: 1   Comments: 0

Question Number 190420    Answers: 1   Comments: 2

laplace transform −−−−−−− L_t { (( sin(t ))/t) } = F (s ) F (s )= ? then calculate . Ω=∫_0 ^( ∞) ((e^( −2t) sin(t ))/t) dt =? −−−−−−−−

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{laplace}\:\:\mathrm{transform} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathcal{L}_{{t}} \:\left\{\:\:\frac{\:\mathrm{sin}\left({t}\:\right)}{{t}}\:\:\right\}\:=\:\mathcal{F}\:\left({s}\:\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathcal{F}\:\left({s}\:\right)=\:\:?\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:{then}\:\:{calculate}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\:−\mathrm{2}{t}} {sin}\left({t}\:\right)}{{t}}\:{dt}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−− \\ $$

Question Number 190419    Answers: 1   Comments: 0

∫_(−1) ^1 ∫_(−(√(1−y^2 ))) ^(√(1−y^2 )) ln (x^2 +y^2 +1)dx dy =?

$$\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\underset{−\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} {\overset{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} {\int}}\:\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}\right){dx}\:{dy}\:=? \\ $$

Question Number 190407    Answers: 2   Comments: 0

Question Number 190405    Answers: 5   Comments: 0

Question Number 190402    Answers: 0   Comments: 6

v2.272 fixes some issues with cursor position while writing Right to Left Languages (such as arabic) using system keyboard.

$$\mathrm{v2}.\mathrm{272}\:\mathrm{fixes}\:\mathrm{some}\:\mathrm{issues}\:\mathrm{with}\:\mathrm{cursor} \\ $$$$\mathrm{position}\:\mathrm{while}\:\mathrm{writing}\:\mathrm{Right}\:\mathrm{to}\:\mathrm{Left} \\ $$$$\mathrm{Languages}\:\left(\mathrm{such}\:\mathrm{as}\:\mathrm{arabic}\right)\:\mathrm{using} \\ $$$$\mathrm{system}\:\mathrm{keyboard}. \\ $$

Question Number 190401    Answers: 1   Comments: 0

Determine the validity of the following argument. Having nasal congestion is not sufficient to be diagnosed of Covid−19 disease. Being accinated against covid−19 is necessary for not being diagnosed of covid−19. Therefore,if i′m diagnosed of covid−19 then it is not the case that either I have not vaccinated against covid−19 or I have nasal congestion.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{validity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{argument}. \\ $$$$\mathrm{Having}\:\mathrm{nasal}\:\mathrm{congestion}\:\mathrm{is}\:\mathrm{not}\:\mathrm{sufficient}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{diagnosed}\:\mathrm{of}\:\mathrm{Covid}−\mathrm{19}\:\mathrm{disease}. \\ $$$$\mathrm{Being}\:\mathrm{accinated}\:\mathrm{against}\:\mathrm{covid}−\mathrm{19}\:\mathrm{is}\: \\ $$$$\mathrm{necessary}\:\mathrm{for}\:\mathrm{not}\:\mathrm{being}\:\mathrm{diagnosed} \\ $$$$\mathrm{of}\:\mathrm{covid}−\mathrm{19}.\:\mathrm{Therefore},\mathrm{if}\:\mathrm{i}'\mathrm{m}\:\mathrm{diagnosed} \\ $$$$\mathrm{of}\:\mathrm{covid}−\mathrm{19}\:\mathrm{then}\:\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{the}\:\mathrm{case}\:\mathrm{that} \\ $$$$\mathrm{either}\:\mathrm{I}\:\mathrm{have}\:\mathrm{not}\:\mathrm{vaccinated}\:\mathrm{against}\:\mathrm{covid}−\mathrm{19} \\ $$$$\mathrm{or}\:\mathrm{I}\:\mathrm{have}\:\mathrm{nasal}\:\mathrm{congestion}. \\ $$

Question Number 190397    Answers: 1   Comments: 0

Question Number 190395    Answers: 3   Comments: 0

which is larger, 2^(234) or 5^(100) ?

$${which}\:{is}\:{larger}, \\ $$$$\mathrm{2}^{\mathrm{234}} \:{or}\:\mathrm{5}^{\mathrm{100}} \:? \\ $$

Question Number 190392    Answers: 1   Comments: 1

If a + b = 3 Find: ((a^2 + b^2 − 2a − 2b)/(a^2 − b^2 − 4a + 4))

$$\mathrm{If}\:\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{2a}\:−\:\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{4a}\:+\:\mathrm{4}} \\ $$

Question Number 190388    Answers: 0   Comments: 0

Question Number 190385    Answers: 1   Comments: 0

Question Number 190371    Answers: 1   Comments: 0

Question Number 190370    Answers: 1   Comments: 0

  Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com