Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 304

Question Number 190998    Answers: 3   Comments: 6

Question Number 190996    Answers: 0   Comments: 0

If lim_(x→3) (((√(3x))−3)/( (√(2x−4))−(√2))) = A andlim_(x→3) (((√(3x))+x−6)/( (√(4x−8))+1−x)) = pA then p =?

$$\:\:\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3x}}−\mathrm{3}}{\:\sqrt{\mathrm{2x}−\mathrm{4}}−\sqrt{\mathrm{2}}}\:=\:\mathrm{A} \\ $$$$\:\:\:\mathrm{and}\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3x}}+\mathrm{x}−\mathrm{6}}{\:\sqrt{\mathrm{4x}−\mathrm{8}}+\mathrm{1}−\mathrm{x}}\:=\:\mathrm{pA} \\ $$$$\:\:\:\mathrm{then}\:\mathrm{p}\:=?\: \\ $$

Question Number 190993    Answers: 3   Comments: 0

sin^2 x ∙cos^2 x=?

$${sin}^{\mathrm{2}} {x}\:\centerdot{cos}^{\mathrm{2}} {x}=? \\ $$

Question Number 190987    Answers: 1   Comments: 0

Question Number 190985    Answers: 0   Comments: 0

Question Number 190984    Answers: 2   Comments: 0

∫_0 ^3 ∫_0 ^2 x^2 ydydx

$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \mathrm{ydydx}\: \\ $$$$ \\ $$

Question Number 190983    Answers: 0   Comments: 0

∫_(x= ) ^ ∫_(y= ) ^( −x) ∫_(z= ) ^( −x−y) xdzdydx

$$ \\ $$$$\:\:\:\:\int_{\boldsymbol{{x}}= } ^{ } \int_{\boldsymbol{{y}}= } ^{ −\boldsymbol{{x}}} \int_{\boldsymbol{{z}}= } ^{ −\boldsymbol{{x}}−\boldsymbol{{y}}} \boldsymbol{{xdzdydx}} \\ $$$$ \\ $$

Question Number 190982    Answers: 1   Comments: 1

p(x)=2x^2 y^3 −3xy+10 a_0 =? a_1 =? a_2 =? a_(10) =?

$${p}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{3}} −\mathrm{3}{xy}+\mathrm{10} \\ $$$${a}_{\mathrm{0}} =?\:\:{a}_{\mathrm{1}} =?\:\:\:\:\:{a}_{\mathrm{2}} =?\:\:{a}_{\mathrm{10}} =? \\ $$

Question Number 190972    Answers: 3   Comments: 0

Question Number 190962    Answers: 0   Comments: 1

A massless spring with a spring constant K=10Nm^(−1) is suspended from rigid support carries a mass m=100g at it lower end the system is subjected to resistive force −pv.it observed that the system oscillates and its energy to one third of it initial value in one and half minutes calculates the value of p

$$\mathrm{A}\:\mathrm{massless}\:\mathrm{spring}\:\mathrm{with}\:\mathrm{a}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\mathrm{K}=\mathrm{10Nm}^{−\mathrm{1}} \:\mathrm{is}\:\mathrm{suspended}\:\mathrm{from}\:\mathrm{rigid}\:\mathrm{support} \\ $$$$\mathrm{carries}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{m}=\mathrm{100g}\:\mathrm{at}\:\mathrm{it}\:\mathrm{lower}\:\mathrm{end} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{is}\:\mathrm{subjected}\:\mathrm{to}\:\mathrm{resistive}\:\mathrm{force} \\ $$$$−\mathrm{pv}.\mathrm{it}\:\mathrm{observed}\:\mathrm{that}\:\mathrm{the}\:\mathrm{system}\:\mathrm{oscillates} \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{energy}\:\mathrm{to}\:\mathrm{one}\:\mathrm{third}\:\mathrm{of}\:\mathrm{it}\:\mathrm{initial}\:\mathrm{value} \\ $$$$\mathrm{in}\:\mathrm{one}\:\mathrm{and}\:\mathrm{half}\:\mathrm{minutes}\:\mathrm{calculates}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{p} \\ $$

Question Number 190960    Answers: 0   Comments: 4

Question Number 190961    Answers: 3   Comments: 0

Question Number 190957    Answers: 0   Comments: 0

Question Number 190953    Answers: 1   Comments: 3

Hello Tinku Tara When I copy one qustion or letter from another app I can not to paste in this Math Editor and copy to Latex do not paste in this Math Editor

$$\boldsymbol{\mathrm{Hello}}\:\boldsymbol{\mathrm{Tinku}}\:\boldsymbol{\mathrm{Tara}} \\ $$$$\mathrm{When}\:\mathrm{I}\:\mathrm{copy}\:\mathrm{one}\:\mathrm{qustion}\:\mathrm{or}\: \\ $$$$\mathrm{letter}\:\mathrm{from}\:\mathrm{another}\:\mathrm{app}\:\mathrm{I}\:\mathrm{can} \\ $$$$\mathrm{not}\:\mathrm{to}\:\mathrm{paste}\:\mathrm{in}\:\mathrm{this}\:\mathrm{Math}\:\mathrm{Editor} \\ $$$$\mathrm{and}\:\mathrm{copy}\:\mathrm{to}\:\mathrm{Latex}\:\mathrm{do}\:\mathrm{not}\:\mathrm{paste}\: \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{Math}\:\mathrm{Editor} \\ $$

Question Number 190947    Answers: 1   Comments: 0

Question Number 190942    Answers: 2   Comments: 0

(x+y)(x^2 −xy+y^2 )=2 ((x^3 y^3 )/(x^9 +y^9 −8))=?

$$\left({x}+{y}\right)\left({x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} \right)=\mathrm{2} \\ $$$$\frac{{x}^{\mathrm{3}} {y}^{\mathrm{3}} }{{x}^{\mathrm{9}} +{y}^{\mathrm{9}} −\mathrm{8}}=? \\ $$

Question Number 190940    Answers: 1   Comments: 0

The parametric equation of a curve are x=3t^2 and y=3t−t^2 . Find the volume generated when the plane bounded by the curve ,the x−axis and the ordinates corresponding to t=0 and t=2 rotates about the y−axis

$$\mathrm{The}\:\mathrm{parametric}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{curve}\:\:\mathrm{are} \\ $$$$\mathrm{x}=\mathrm{3t}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}=\mathrm{3t}−\mathrm{t}^{\mathrm{2}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{generated} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$$$,\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{and}\:\mathrm{the}\:\mathrm{ordinates}\: \\ $$$$\mathrm{corresponding}\:\mathrm{to}\: \\ $$$$\mathrm{t}=\mathrm{0}\:\:\:\mathrm{and}\:\mathrm{t}=\mathrm{2}\:\:\mathrm{rotates}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis} \\ $$

Question Number 190938    Answers: 1   Comments: 0

Question Number 190937    Answers: 1   Comments: 0

Show that ∫ ((sech (√x) tanh (√x))/( (√x)))=−(2/(cosh (√x)))

$$\mathrm{Show}\:\:\mathrm{that}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\mathrm{sech}\:\sqrt{\mathrm{x}}\:\mathrm{tanh}\:\sqrt{\mathrm{x}}}{\:\sqrt{\mathrm{x}}}=−\frac{\mathrm{2}}{\mathrm{cosh}\:\sqrt{\mathrm{x}}} \\ $$

Question Number 190936    Answers: 1   Comments: 0

Determine the value of x such that e^(sinh^(−1) x) =1+e^(cosh^(−1) x)

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{e}^{\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{x}} =\mathrm{1}+\mathrm{e}^{\mathrm{cosh}\:^{−\mathrm{1}} \mathrm{x}} \\ $$

Question Number 190935    Answers: 1   Comments: 0

Given that sinh^(−1) y=sech^(−1) y show that y^2 =(((√5)−1)/2)

$$\mathrm{G}{iven}\:{that}\:\:\:\:\:\:\:\:\mathrm{sinh}\:^{−\mathrm{1}} {y}=\mathrm{sech}\:^{−\mathrm{1}} {y}\:\:\:\: \\ $$$${show}\:{that}\:\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\:\:\: \\ $$$$ \\ $$

Question Number 190934    Answers: 1   Comments: 0

Question Number 190927    Answers: 2   Comments: 0

Question Number 190925    Answers: 1   Comments: 1

Question Number 190920    Answers: 0   Comments: 1

solve graphically { ((x−3y<6)),((y≤((3x)/2)+5)) :}

$${solve}\:{graphically}\:\begin{cases}{{x}−\mathrm{3}{y}<\mathrm{6}}\\{{y}\leq\frac{\mathrm{3}{x}}{\mathrm{2}}+\mathrm{5}}\end{cases} \\ $$

Question Number 190916    Answers: 0   Comments: 1

  Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com