Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 302
Question Number 190920 Answers: 0 Comments: 1
$${solve}\:{graphically}\:\begin{cases}{{x}−\mathrm{3}{y}<\mathrm{6}}\\{{y}\leq\frac{\mathrm{3}{x}}{\mathrm{2}}+\mathrm{5}}\end{cases} \\ $$
Question Number 190916 Answers: 0 Comments: 1
Question Number 190907 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{is}\:\mathrm{explanotory}\:\mathrm{solution} \\ $$$$\mathrm{4}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{2}} +\mathrm{4}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{7}} =\mathrm{4}^{\mathrm{2x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$
Question Number 190903 Answers: 1 Comments: 0
Question Number 190902 Answers: 1 Comments: 0
Question Number 190894 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:{mx}\:+\:{cos}\left({x}\right)\:\:,\:\:{m}>\mathrm{1} \\ $$$$\:\:\:\:,\:\:\:{f}^{\:−\mathrm{1}} \left(\mathrm{3}\right)=\:\mathrm{2}{f}^{\:−\mathrm{1}} \left(\mathrm{2}\:\right) \\ $$$$\:\:\:\:\:{find}\::\:\:\:\:\:\:{f}\:\left(\:\frac{\mathrm{1}}{{m}}\:\right)=\:? \\ $$
Question Number 190893 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{if}\:,\:\:\frac{{sin}\left({x}\right)−{cos}\left({x}\right)}{{sin}\left({x}\right)+{cos}\left({x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\Rightarrow\:{find}\:\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{F}\:=\:{sin}^{\:\mathrm{6}} \left({x}\right)\:+\:{cos}^{\:\mathrm{6}} \left({x}\right)=\:? \\ $$$$ \\ $$
Question Number 190891 Answers: 2 Comments: 0
$$\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{a}+\mathrm{b}=? \\ $$
Question Number 190890 Answers: 0 Comments: 1
Question Number 190883 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Elementary}\:\:\:\mathrm{algebra} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\:{x}\:=\:\frac{\mathrm{1}\:+\sqrt{\mathrm{17}}}{\mathrm{2}}\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{E}\:=\:\frac{\:{x}^{\mathrm{8}} −\:{x}^{\:\mathrm{7}} \:+\:{x}^{\:\mathrm{6}} −....−\:{x}\:+\mathrm{1}\:}{{x}^{\:\mathrm{6}} \:−\:{x}^{\:\mathrm{3}} \:+\:\mathrm{1}}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:@\mathrm{nice}\:−\:\mathrm{mathematics}\:\:\: \\ $$$$ \\ $$
Question Number 190882 Answers: 1 Comments: 2
Question Number 190878 Answers: 1 Comments: 0
Question Number 190877 Answers: 0 Comments: 2
Question Number 195661 Answers: 1 Comments: 2
Question Number 195660 Answers: 1 Comments: 2
Question Number 190860 Answers: 0 Comments: 2
Question Number 190875 Answers: 0 Comments: 1
Question Number 190874 Answers: 1 Comments: 0
Question Number 194429 Answers: 1 Comments: 0
$$\:\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{a}\:;\:\mathrm{x}>\mathrm{1}}\\{\frac{\mathrm{3x}+\mathrm{2}}{\mathrm{x}−\mathrm{b}}\:;\:\mathrm{x}\leqslant\mathrm{1}}\end{cases} \\ $$$$\:\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{passes}\:\mathrm{through}\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\:\:\left(\mathrm{2},−\mathrm{4}\right)\:\mathrm{and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{exist}\:,\:\mathrm{find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3a}+\mathrm{2b}.\: \\ $$
Question Number 190856 Answers: 0 Comments: 0
$${Give}\:{M}\:{is}\:{any}\:{point}\:{in}\:{ABC}\:{triangle} \\ $$$${Prove}\:{that}:\:{MA}+{MB}+{MC}<{AC}+{BC} \\ $$
Question Number 190849 Answers: 0 Comments: 0
$${are}\:{there}\:{tow}\:{type}\:{of}\:{quantity}\:{in}\:{physics} \\ $$$${like}\:\left({vector}\:\&\:{scalar}\right)?\:{or}\:{is}\:{any}\:{other} \\ $$$$\mathrm{3}{rd}\:? \\ $$
Question Number 190848 Answers: 0 Comments: 0
Question Number 190845 Answers: 1 Comments: 0
Question Number 190841 Answers: 1 Comments: 0
Question Number 190851 Answers: 1 Comments: 0
Question Number 190824 Answers: 0 Comments: 2
$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}\sqrt{\mathrm{tan}\:\mathrm{x}}}{\mathrm{2cos}\:\mathrm{x}−\mathrm{2sin}\:\mathrm{x}}\:=? \\ $$
Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306
Terms of Service
Privacy Policy
Contact: info@tinkutara.com