i know b_n =0, but a_0 =(4/3)F_0 (according
to solution) my answer is a_0 =(8/3)F_0
where did i did wrong how to
find answer (Fourier transformation)
like picture below (in the comment?
f(t)= { ((((3F_0 )/t_0 )t,0≤t≤(t_0 /3))),((F_0 , (t_0 /3)≤t≤((2t_0 )/3))),((((-3F_0 )/t_0 )t+3F_0 ,((2t_0 )/3)≤t≤t_0 )) :}
a_n =(2/t_0 )∫_0 ^t_0 f(t) cos(nωt)dt
a_n =(2/t_0 )∫_0 ^t_0 f(t) cos(nωt)dt
a_0 =(2/t_0 )∫_0 ^t_0 f(t) dt
∫_0 ^((4t_0 )/3) f(t) dt =∫_0 ^(t_0 /3) ((3F_0 )/t_0 )tdt+∫_(t_0 /3) ^((2t_0 )/3) F_0 dt+∫_((2t_0 )/3) ^t_0 ((-3F_0 )/t_0 )t+3F_0 dt
=[((3F_0 )/t_0 )t]_0 ^(t_0 /3) +[F_0 t]_(t_0 /3) ^((2t_0 )/3) +[((-3F_0 )/t_0 )t+3F_0 t]_((2t_0 )/3) ^t_0
=F_0 +(1/3)F_0 t_0 −F_0 +F_0 t_0
=(4/3) F_0 t_0
so a_0 =(2/t_0 )×(4/3)F_0 t_0 =(8/3)F_0
|