Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 30
Question Number 221831 Answers: 1 Comments: 0
$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx} \\ $$$$ \\ $$
Question Number 221830 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx} \\ $$$$ \\ $$
Question Number 221829 Answers: 4 Comments: 0
$$\sqrt{\mathrm{70}.\mathrm{71}.\mathrm{72}.\mathrm{73}+\mathrm{1}} \\ $$
Question Number 221815 Answers: 1 Comments: 0
Question Number 221814 Answers: 1 Comments: 0
Question Number 221788 Answers: 6 Comments: 0
Question Number 221787 Answers: 1 Comments: 0
$$\:\:\sqrt{\frac{\mathrm{1}−\mathrm{4x}\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}{\mathrm{2}}}\:=\:\mathrm{1}−\mathrm{8x}^{\mathrm{2}} \\ $$$$\:\:\mathrm{x}=?\: \\ $$
Question Number 221786 Answers: 0 Comments: 0
$$\:\mathrm{Express}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{z}^{{z}^{{z}^{\iddots} } } \:\mathrm{d}{z}\:\:\mathrm{closed}\:\mathrm{form}... \\ $$$${z}\upuparrows^{\infty} ={z}^{{z}^{{z}^{\iddots} } } \\ $$
Question Number 221782 Answers: 0 Comments: 0
$$\left(\sqrt[{\sqrt[{\mathrm{3}^{{a}} }]{\mathrm{27}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$$${where}\:{a}=\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } {and}\:{b}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{n} \\ $$
Question Number 221778 Answers: 0 Comments: 0
$$\mathrm{For}\:\forall{n}\in\boldsymbol{{N}}^{\ast} ,{n}\geq\mathrm{3}\:\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{\mathrm{2}<{p}\leq\mathrm{2}{n}} {\sum}{e}^{\mathrm{2}\pi{ip}+\alpha} \right)^{\mathrm{2}} {e}^{−\mathrm{4}\pi{in}\alpha} {d}\alpha>\mathrm{0},{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number} \\ $$
Question Number 221770 Answers: 0 Comments: 0
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arcsin}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\frac{\sqrt{\mathrm{2}}\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}}\mathrm{ln}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\mid{z}_{\mathrm{0}} \mid^{\mathrm{2}{n}+\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\left(\mathrm{2}{n}+\mathrm{1}\right)\beta\right) \\ $$
Question Number 221769 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{{a}}{{a}−\mathrm{cos}^{\mathrm{2}{n}} {x}}{dx}=?,{a}>\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}}{\mathrm{2}−\mathrm{cos}^{\mathrm{4}} {x}}{dx}=? \\ $$$$\underset{{m}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}^{\mathrm{2}{n}} \left(\mathrm{2}{mx}\right)}{{a}−\mathrm{cos}^{\mathrm{2}{n}} {x}}{dx}=?,{a}>\mathrm{1},{n}\in\mathbb{N}^{+} \\ $$
Question Number 221760 Answers: 1 Comments: 0
Question Number 221754 Answers: 1 Comments: 0
$$\left.\sqrt[{\sqrt[{\sqrt[{\:\mathrm{3}^{\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } } }]{\mathrm{27}}}]{\mathrm{64}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$
Question Number 221733 Answers: 0 Comments: 19
Question Number 221721 Answers: 2 Comments: 0
Question Number 221707 Answers: 1 Comments: 13
Question Number 221697 Answers: 2 Comments: 0
$${Is}\:\sqrt{{i}}\:{an}\:{imaginary}\:{number}\:\left({i}=\sqrt{−\mathrm{1}}\right)\:{answer}\:{with}\:{logic} \\ $$
Question Number 221686 Answers: 3 Comments: 2
Question Number 221668 Answers: 0 Comments: 0
Question Number 221663 Answers: 0 Comments: 3
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{x}^{{k}} \right){dx}=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{23}}}\centerdot\frac{\mathrm{sinh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{6}}}{\mathrm{2}\:\mathrm{cosh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{3}}−\mathrm{1}} \\ $$
Question Number 221661 Answers: 1 Comments: 1
Question Number 221647 Answers: 0 Comments: 1
$${solve}\:{for}\:{x}. \\ $$$${x}^{\mathrm{1}} \:+\:{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} \:\:=\:\:\mathrm{4096} \\ $$
Question Number 221638 Answers: 1 Comments: 0
Question Number 221637 Answers: 1 Comments: 0
Question Number 221626 Answers: 3 Comments: 0
Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33 Pg 34
Terms of Service
Privacy Policy
Contact: info@tinkutara.com