prove Sphere S;R^3 →R
x^2 +y^2 +z^2 =R^2 , Euler characteristic 𝛘=2
by gauss-Bonnet theorem
2π𝛘(𝛀)=∫_( 𝛀) dA K
Gauss curvature defined as K=((det Π)/(det I))=((LN−M^2 )/(EG−F^2 ))
such that
I=(dζ^1 dζ^2 ) ((E,F),(F,G) ) ((dζ^1 ),(dζ^2 ) )=Σ_(jk) (∂f/∂ζ^j )∙(∂f/∂ζ^k ) dζ^j dζ^k
E=x_u ∗x_u ,F=x_u ∗x_v , G=x_v ∗x_v
Π=(dζ^1 dζ^2 ) ((L,M),(M,N) ) ((dζ^1 ),(dζ^2 ) )=Σ_(ıȷ) n^ ∗(∂^2 f/(∂ζ^ı ∂ζ^ȷ )) dζ^ı dζ^ȷ
n^ =((x_u ×x_v )/(∣∣x_u ×x_v ∣∣))
L=x_(uu) ∗n^ , M=x_(uv) ∗n^ , N=x_(vv) ∗n^
|