(1):∫_0 ^u x^(ν−1) (u^2 −x^2 )^(ϱ−1) e^(μx) dx=Σ_(n=0) ^∞ (μ^n /(n!))∫_0 ^u x^(ν+n−1) (u^2 −x^2 )^(ϱ−1) dx
=Σ_(n=0) ^∞ (μ^n /(n!))∙(u^(2ϱ+ν+n−2) /2)B(((ν+n)/2),ϱ)
=(u^(2ϱ+ν+2) /2)Σ_(n=0) ^∞ (((μν)^n )/(n!)) ((Γ(((ν+n)/2))Γ(ϱ))/(Γ(((ν+n)/2)+ϱ)))
=((u^(2ρ+ν−2) Γ(ϱ))/2)[Σ_(k=0) ^∞ (((μν)^(2k) )/((2k)!)) ((Γ(ν/2+k))/(Γ(ν/2+ϱ+k)))+Σ_(k=0) ^∞ (((μν)^(2k+1) )/((2k+1))) ((Γ(((ν+1)/2)+k))/(Γ(((ν−1)/2)+ϱ+k)))]
=((u^(2ϱ+ν−2) Γ(ϱ))/2)[((Γ(ν/2))/(Γ(ν/2+ϱ))) _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))+((μνΓ(((ν+1)/2)))/(Γ(((ν+1)/2)+ϱ))) _1 F_2 (((ν+1)/2);(3/2),((ν+1)/2)+ϱ;((μ^2 u^2 )/4))]
=(1/( 2))B(ν,ϱ)u^(2ν+2ϱ+2) _1 F_2 (ν;(1/2)+ϱ,((μ^2 u^2 )/4))+(μ/2)B(ν+(1/2),ϱ)u^(2ν+2ϱ−1) _1 F_2 (ν+(1/2);(3/2),ν+ϱ+(1/2);((μ^2 u^2 )/4))
(2):=Σ_(k=0) ^∞ (μ^k /(k!))∫_0 ^1 x^(ν+k−1) (u^2 −x^2 )^(ϱ−1) dx
=^(x=ut) u^(ν+2ϱ−1) Σ_(k=0) ^∞ (((μu)^k )/(k!))∫_0 ^1 t^(ν+k−1) (1−t^2 )^(ϱ−1) dt
=(u^(ν+2ϱ−1) /2)Σ_(k=0) ^∞ (((μν)^k )/(k!))B(((ν+k)/2),ϱ)
=(u^(ν+2ϱ−1) /2)[Σ_(m=0) ^∞ (((μν)^(2m) )/((2m)!))B(ν+m,ϱ)+Σ_(m=0) ^∞ (((μu)^(2m+1) )/((2m+1)))B(ν+m+(1/2),ϱ)]
=((B(ν,ϱ))/2)u^(ν+2ϱ−1) Σ_(m=0) ^∞ (((ν)_m )/((ν+ϱ)_m )) (((μν/2)^(2m) )/(m!))
+((μB(ν+(1/2),ϱ))/2)u^(ν+2ϱ) Σ_(m=0) ^∞ (((ν+(1/2))_m )/((ν+ϱ+(1/2))_m )) (((μν/2)^(2m) )/((2m+1)!!))
=(1/( 2))B(ν,ϱ)u^(2ν+2ϱ+2) _1 F_2 (ν;(1/2)+ϱ,((μ^2 u^2 )/4))+(μ/2)B(ν+(1/2),ϱ)u^(2ν+2ϱ−1) _1 F_2 (ν+(1/2);(3/2),ν+ϱ+(1/2);((μ^2 u^2 )/4))
(3):∫_0 ^u x^(ν−1) (u^2 −x^2 )^(ϱ−1) e^(μx) dx=(u^(2ϱ+ν−2) /2)Γ(ϱ)Γ((ν/2))Σ_(k=0) ^∞ (((((μ^2 u^2 )/4))^k )/(k!Γ((ν/2)+k+ϱ)Γ(k+(1/2))))
Γ(k+(1/2))=(((2k−1)!!)/2^k )(√π),Γ((ν/2)+k+ϱ)=Γ((ν/2)+ϱ)((ν/2)+ϱ)_k
Σ_(k=0) ^∞ (z^k /(k!((ν/2)+ϱ)_k Γ(k+(1/2))))=(1/( Γ(1/2)))Σ_(k=0) ^∞ (((1)_k z^k )/(((ν/2)+ϱ)_k k!((1/2))_k ))=(1/( (√π))) _1 F_2 (1;(1/2),(ν/2)+ϱ;z)
_1 F_2 (1;(1/2),(ν/2)+ϱ;z)=Σ_(k=0) ^∞ (((1)_k z^k )/(((1/2))_k ((ν/2)+ϱ)_k k!))
z=((μ^2 u^2 )/4),(1)_k =k!
_1 F_2 (1;(1/2),(ν/2)+ϱ;((μ^2 +ν^2 )/4))=Σ_(k=0) ^∞ (((((μ^2 −u^2 )/4))^k )/(((1/2))_k ((ν/2)+ϱ)_k ))
=(1/( 2))B(ν,ϱ)u^(2ν+2ϱ+2) _1 F_2 (ν;(1/2)+ϱ,((μ^2 u^2 )/4))+(μ/2)B(ν+(1/2),ϱ)u^(2ν+2ϱ−1) _1 F_2 (ν+(1/2);(3/2),ν+ϱ+(1/2);((μ^2 u^2 )/4))
(4):∫_0 ^u x^(ν−1) (u^2 −x^2 )^(ϱ−1) e^(μx) dx=∫_0 ^u x^(ν−1) (u^2 −x^2 )^(ϱ−1) e^(μx) dx
x=ut⇒dx=udt,t∈(0,1)
=∫_0 ^1 (ut)^(ν−1) (u^2 (1−t^2 ))^(ϱ−1) e^(μut) udt=u^(ν−1) u^(2ϱ−2) u∫_0 ^1 t^(ν−1) (1−t^2 )^(ϱ−1) e^(μut) dt
=u^(v+2ρ−2) ∫_0 ^1 t^(ν−1) (1−t^2 )^(ϱ−1) e^(μut) dt
e^(μνt) =Σ_(k=0) ^∞ (((μut)^k )/(k!))
=u^(ν+2ϱ−2) Σ_(k=0) ^∞ (((μu)^k )/(k!))∫_0 ^1 t^(ν+k−1) (1−t^2 )^(ϱ−1) dt
t^2 =s⇒t=s^(1/2) ,dt=(1/2)s^(−1/2) ds
∫_0 ^1 t^(ν+k−1) (1−t^2 )^(ϱ−1) dt=∫_0 ^1 s^(((ν+k)/2)−(1/2)) (1−s)^(ϱ−1) ds=(1/2)B(((ν+k)/2),ϱ)
=(1/2)u^(ν+2ϱ−2) Σ_(k=0) ^∞ (((μu)^k )/(k!))B(((ν+k)/2),ϱ)
B(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))
=(1/2)u^(ν+2ϱ−2) Γ(ϱ)Σ_(k=0) ^∞ (((μu)^k )/(k!)) ((Γ(((ν+k)/2)))/(Γ(((ν+k)/2)+ϱ)))
k=2m ∧ k=2m+1
=(1/2)u^(ν+2ϱ−2) Γ(a)[Σ_(m=0) ^∞ (((μu)^(2m) )/((2m)!)) ((Γ((ν/2)+m))/(Γ((ν/2)+m+ϱ)))+Σ_(m=0) ^∞ (((μu)^(2m+1) )/((2m+1)!)) ((Γ(((ν+1)/2)+m))/(Γ(((ν−1)/2)+m+ϱ)))]
Γ(a+m)=Γ(a)(a)_m
=(1/2)u^(ν+2ϱ−2) Γ(a)[((Γ((ν/2)))/(Γ((ν/2)+ϱ)))Σ_(m=0) ^∞ (((μu)^(2m) )/((2m)!))((ν/2))_m /((ν/2)+ϱ)_m +((Γ(((ν+1)/2)))/(Γ(((ν+1)/2)+ϱ)))Σ_(m=0) ^∞ ((((μu)^(2m+1) )/((2m+1)!)) ((Γ(((ν+1)/2)+m))/(Γ(((ν+1)/2)+m+ϱ)))]
(1/((2m)!))=(1/(4^m ((1/2))_m m!)),(1/((2m+1)!))=(1/(2^(2m) ((3/2))_m m!))∙(1/(2m+1))∙(1/(Γ((3/2))))Γ((3/2))
(2m)!=4^m ((1/2))_m m!,(2m+1)(2m)!=(2m+1)^(4m) ((1/2))_m m!=2^(2m+1) ((m!)/((−)))
((3/2))=((Γ(m+(3/2)))/(Γ((3/2))))=(((2m+1)!!)/2^m )
(2m+1)!=(2m+1)!!∙2^m m!=(((2m+1)!)/(2^m m!))∙2^m m!=(2m+1)!
Σ_(m=0) ^∞ (((μu)^(2m) )/((2m)!)) ((((ν/n))_m )/(((ν/2)+ϱ)_m ))=Σ_(m=0) ^∞ (((((μ^2 u^2 )/4))^m )/(((1/2))_m m!)) ((((ν/2))_m )/(((1/2))_m )) _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))
Σ_(m=0) ^∞ (((μn)^(2m+1) )/((2m)!)) ((((ν/2))_m )/(((ν/2)+ϱ)))= _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))
Σ_(m=0) ^∞ (((μu)^(2m+1) )/((2m+1)!)) (((((ν+1)/2))_m )/(Γ(((ν+1)/2)+ϱ)_m ))=(μu)Σ_(m=0) ^∞ (((μ^2 u^2 )^m )/((2m+1)!)) (((((ν+1)/2))_m )/((((ν+1)/2)+ϱ)))=μu _1 F_2 (((ν+1)/2);(3/2),((ν+1)/2)+ϱ;((μ^2 u^2 )/4))
B((ν/2),ϱ)=((Γ((ν/2))Γ(ϱ))/(Γ((ν/2)+ϱ))),B(((ν+1)/2),ϱ)=((Γ(((ν+1)/2))Γ(ϱ))/(Γ(((ν+1)/2)+ϱ)))
Γ(ϱ)=((Γ((ν/2)))/(Γ((ν/2)+ϱ)))=((Γ((ν/2))Γ(ϱ))/(Γ((ν/2)+ϱ)))=B((ν/2),ϱ)=B((ν/2),ϱ)
Γ(ϱ)((Γ((ν/2)))/(Γ((ν/2)+ϱ)))=B((ν/2),ϱ)
Γ(ϱ)((Γ(((ν+1)/2)))/(Γ(((ν+1)/2)+ϱ)))=B(((ν+1)/2),ϱ)
=(1/2)u^(ν+2ϱ−2) [B((ν/2),ϱ)Σ_(m=0) ^∞ (((μu)^(2m) )/((2m)!)) ((((ν/2))_m )/(((ν/2)+ϱ)_m ))+B(((ν+1)/2),ϱ)Σ_(m=0) ^∞ (((μu)^(2m+1) )/((2m+1)!)) (((((ν+1)/2))_m )/((((ν+1)/2)+ϱ)_m ))]
Σ_(m=0) ^∞ (((μu)^(2m) )/((2m)!)) ((((v/2))_m )/(((ν/2)+ϱ)))= _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))
Σ_(m=0) ^∞ (((μu)^(2m+1) )/((2m+1)!)) (((((ν+1)/2))_m )/((((ν+1)/2)+ϱ)_m ))=μu _1 F_2 (((ν+1)/2);(1/2);(ν/2)+ϱ;((μ^2 u^2 )/4))
B((ν/2),ϱ)=((Γ((ν/2))Γ(ϱ))/(Γ((ν/2)+ϱ))),B(((ν+1)/2),ϱ)=((Γ(((ν+1)/2))Γ(ϱ))/(Γ(((ν+1)/2)+ϱ)))
(1/2)u^(ν+2ϱ−2) B((ν/2),ϱ) _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))+(1/2)u^(ν+2ϱ−2) ∙μuB(((ν+1)/2),ϱ) _1 F_(2 ) (((ν+1)/2);(3/2),((ν+1)/2)+ϱ;((μ^2 u^2 )/4))
=(1/2)B((ν/2),ϱ)u^(ν+2ϱ−2) _1 F_2 ((ν/2);(1/2),(ν/2)+ϱ;((μ^2 u^2 )/4))+(μ/2)B(((ν+1)/2),ϱ)u^(ν+2ϱ−1) _1 F_2 (((ν+1)/2);(3/2),((ν+1)/2)+ϱ;((μ^2 u^2 )/4))
=(1/( 2))B(ν,ϱ)u^(2ν+2ϱ+2) _1 F_2 (ν;(1/2)+ϱ,((μ^2 u^2 )/4))+(μ/2)B(ν+(1/2),ϱ)u^(2ν+2ϱ−1) _1 F_2 (ν+(1/2);(3/2),ν+ϱ+(1/2);((μ^2 u^2 )/4))
|