Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 3

Question Number 226112    Answers: 2   Comments: 0

Question Number 226111    Answers: 1   Comments: 0

Show that the equation (1/(sinθ+cosθ)) + (1/(sinθ−cosθ)) = 1 may be express in the form a(sinθ)^2 +bsinθ+c=0 where a b and c are constants to be found.

$${Show}\:{that}\:{the}\:{equation} \\ $$$$\frac{\mathrm{1}}{{sin}\theta+{cos}\theta}\:+\:\frac{\mathrm{1}}{{sin}\theta−{cos}\theta}\:=\:\mathrm{1} \\ $$$${may}\:{be}\:{express}\:{in}\:{the}\:{form} \\ $$$${a}\left({sin}\theta\right)^{\mathrm{2}} +{bsin}\theta+{c}=\mathrm{0}\:{where}\:{a}\:{b}\: \\ $$$${and}\:{c}\:{are}\:{constants}\:{to}\:{be}\:{found}. \\ $$

Question Number 226104    Answers: 1   Comments: 0

Q226042

$${Q}\mathrm{226042} \\ $$

Question Number 226103    Answers: 0   Comments: 0

Question Number 226102    Answers: 0   Comments: 0

Question Number 226101    Answers: 0   Comments: 0

S^→ (u,v)= { ((r∙(2+v∙sin(u))sin(2πv))),((rv∙cos(u))),((r∙(2+v∙sin(u))cos(2πv)+r∙(2v−2))) :} D=(0≤r<∞ , −π≤u≤π , 0≤v≤(π/2) ) ∫∫_( D) det S_u ^→ ×S_v ^→ dV=??

$$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)=\begin{cases}{{r}\centerdot\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{sin}\left(\mathrm{2}\pi{v}\right)}\\{{rv}\centerdot\mathrm{cos}\left({u}\right)}\\{{r}\centerdot\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{cos}\left(\mathrm{2}\pi{v}\right)+{r}\centerdot\left(\mathrm{2}{v}−\mathrm{2}\right)}\end{cases} \\ $$$$\mathcal{D}=\left(\mathrm{0}\leq{r}<\infty\:,\:−\pi\leq{u}\leq\pi\:,\:\mathrm{0}\leq{v}\leq\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\int\int_{\:\mathcal{D}} \:\mathrm{det}\:\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}_{{u}} ×\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}_{{v}} \:\mathrm{d}{V}=?? \\ $$

Question Number 226100    Answers: 0   Comments: 0

please need help, how to copy the required equation to ms word.

$${please}\:{need}\:{help},\:{how}\:{to}\:{copy}\:{the}\:{required}\:{equation}\:{to} \\ $$$${ms}\:{word}.\: \\ $$

Question Number 226097    Answers: 0   Comments: 1

I have multiple rectangular boxes whose sides are x and y. I need to fit n such boxes into a larger rectangular box whose sides are X and Y. Now, find the values of X and Y such that the area of the larger box is minimum.

I have multiple rectangular boxes whose sides are x and y. I need to fit n such boxes into a larger rectangular box whose sides are X and Y. Now, find the values of X and Y such that the area of the larger box is minimum.

Question Number 226053    Answers: 1   Comments: 0

The coefficient of x^2 in the expansion of (1+ (2/p)x)^5 + (1+px)^6 is 70. Find the possible values of the constant p.

$${The}\:{coefficient}\:{of}\:{x}^{\mathrm{2}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left(\mathrm{1}+\:\left(\mathrm{2}/{p}\right){x}\right)^{\mathrm{5}} \:+\:\left(\mathrm{1}+{px}\right)^{\mathrm{6}} \:{is}\:\mathrm{70}. \\ $$$${Find}\:{the}\:{possible}\:{values}\:{of}\:{the} \\ $$$${constant}\:{p}. \\ $$

Question Number 226049    Answers: 0   Comments: 9

Question Number 226045    Answers: 0   Comments: 0

Question Number 226044    Answers: 1   Comments: 0

Question Number 226042    Answers: 0   Comments: 6

Question Number 226022    Answers: 0   Comments: 1

∫_0 ^1 (x^x )^((x^x )^((x^x )^(...) ) ) dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{...} } } {dx}=? \\ $$

Question Number 226015    Answers: 1   Comments: 0

Question Number 226014    Answers: 2   Comments: 1

Question Number 226007    Answers: 0   Comments: 0

Question Number 226006    Answers: 0   Comments: 2

(3/7)^0 prove and evalute show all working

$$\left(\mathrm{3}/\mathrm{7}\right)^{\mathrm{0}} \:\:\:{prove}\:{and}\:{evalute}\:{show}\:{all} \\ $$$${working} \\ $$

Question Number 226003    Answers: 1   Comments: 1

If r^2 +r((√3)−(1/( (√3))))sin θ=(2/3) find A=∫_(π/6) ^( π/2) ((r^2 /2))dθ

$${If}\:\:{r}^{\mathrm{2}} +{r}\left(\sqrt{\mathrm{3}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{A}=\int_{\pi/\mathrm{6}} ^{\:\pi/\mathrm{2}} \left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\right){d}\theta \\ $$$$\: \\ $$

Question Number 225994    Answers: 2   Comments: 0

Question Number 225993    Answers: 0   Comments: 0

Question Number 225980    Answers: 2   Comments: 4

Question Number 225970    Answers: 0   Comments: 2

2^(100!) ? 2^(100) ![=,<or >]

$$\mathrm{2}^{\mathrm{100}!} \:?\:\mathrm{2}^{\mathrm{100}} !\left[=,<{or}\:>\right] \\ $$

Question Number 225954    Answers: 3   Comments: 0

(√(x−(1/x)))+(√(1−(1/x)))=x

$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x} \\ $$$$ \\ $$

Question Number 225955    Answers: 1   Comments: 10

can we find the perimeter of an ellipse?

$${can}\:{we}\:{find}\:{the}\:{perimeter} \\ $$$${of}\:{an}\:{ellipse}? \\ $$

Question Number 225941    Answers: 2   Comments: 1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com