Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 290

Question Number 191887    Answers: 3   Comments: 0

Question Number 191874    Answers: 1   Comments: 0

lim_(x⇒∞) ((e^(x+1) +pi^(x−1) )/(e^(x−1) +pi^(x+1) ))

$${lim}_{{x}\Rightarrow\infty} \frac{{e}^{{x}+\mathrm{1}} +{pi}^{{x}−\mathrm{1}} }{{e}^{{x}−\mathrm{1}} +{pi}^{{x}+\mathrm{1}} } \\ $$$$ \\ $$

Question Number 191873    Answers: 4   Comments: 0

Question Number 191868    Answers: 2   Comments: 0

A particle of mass m moves under the central repulsive force ((mb)/r^3 ) and is initially moving at a distance ′a′ from the origin of a force with velocity ′v′ at right angle to ′a′. show that rcos pθ=a where p =(b/(a^2 v^2 ))+1.

$${A}\:{particle}\:{of}\:{mass}\:{m}\:{moves}\:{under}\:{the}\:{central} \\ $$$${repulsive}\:{force}\:\frac{{mb}}{{r}^{\mathrm{3}} }\:\:{and}\:{is}\:{initially}\:{moving} \\ $$$${at}\:{a}\:{distance}\:'{a}'\:\:{from}\:{the}\:{origin}\:{of}\:\:{a}\:{force} \\ $$$${with}\:{velocity}\:\:'{v}'\:{at}\:{right}\:{angle}\:{to}\:\:'{a}'. \\ $$$${show}\:{that}\:\:\: \\ $$$$\:\:\:\:\:{r}\mathrm{cos}\:{p}\theta={a}\:\:{where}\:{p}\:=\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }+\mathrm{1}. \\ $$$$ \\ $$

Question Number 191867    Answers: 1   Comments: 0

Prove that if u=f(x^3 +y^3 ),where f is arbitry function then x^2 (∂u/∂y) = y^2 (∂u/∂x)

$${Prove}\:{that}\:{if}\:\:\:{u}={f}\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right),{where}\:{f}\:\:{is}\:{arbitry} \\ $$$${function}\:{then}\:\:\:\:{x}^{\mathrm{2}} \:\frac{\partial{u}}{\partial{y}}\:=\:{y}^{\mathrm{2}} \frac{\partial{u}}{\partial{x}} \\ $$

Question Number 191862    Answers: 1   Comments: 1

Find the last digit from (2^(400) −2^(320) )(2^(200) +2^(160) )(2^(200) −2^(160) )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{from}\: \\ $$$$\:\left(\mathrm{2}^{\mathrm{400}} −\mathrm{2}^{\mathrm{320}} \right)\left(\mathrm{2}^{\mathrm{200}} +\mathrm{2}^{\mathrm{160}} \right)\left(\mathrm{2}^{\mathrm{200}} −\mathrm{2}^{\mathrm{160}} \right) \\ $$

Question Number 191859    Answers: 1   Comments: 1

Question Number 191856    Answers: 1   Comments: 0

Question Number 191855    Answers: 0   Comments: 0

Question Number 191854    Answers: 1   Comments: 0

Question Number 191846    Answers: 1   Comments: 0

find the last three digits of 4^2^(42) Mohammed Alwan

$${find}\:{the}\:{last}\:{three}\:{digits} \\ $$$${of}\:\mathrm{4}^{\mathrm{2}^{\mathrm{42}} } \\ $$$${Mohammed}\:{Alwan} \\ $$

Question Number 191841    Answers: 2   Comments: 0

Question Number 191840    Answers: 0   Comments: 0

calcul ∫_0 ^1 2∣cosu∣(√(1+3u^2 ))du

$${calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}\mid{cosu}\mid\sqrt{\mathrm{1}+\mathrm{3}{u}^{\mathrm{2}} \:}{du} \\ $$

Question Number 191839    Answers: 1   Comments: 0

2^a = 3^b = 36^c then prove that ab = 2c(a + b).

$$\mathrm{2}^{{a}} \:=\:\mathrm{3}^{{b}} \:=\:\mathrm{36}^{{c}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${ab}\:=\:\mathrm{2}{c}\left({a}\:+\:{b}\right). \\ $$

Question Number 191833    Answers: 3   Comments: 0

Question Number 191832    Answers: 0   Comments: 0

Question Number 191831    Answers: 1   Comments: 0

Question Number 191830    Answers: 0   Comments: 0

Question Number 191821    Answers: 1   Comments: 0

Q ▶ Show that: Σ_(i=1) ^(2n) (−1)^(i+1) (1/i)=Σ_(i=1) ^n (1/(i+n))

$$\:{Q}\:\blacktriangleright\:{Show}\:{that}: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} \frac{\mathrm{1}}{{i}}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{i}+{n}} \\ $$

Question Number 191804    Answers: 2   Comments: 1

Question Number 191811    Answers: 2   Comments: 0

∫x^2 e^(−x) dx=?

$$\int{x}^{\mathrm{2}} {e}^{−{x}} {dx}=? \\ $$

Question Number 191798    Answers: 2   Comments: 2

Question Number 191796    Answers: 2   Comments: 1

Question Number 191795    Answers: 1   Comments: 1

3^x −2^x =19 x=??

$$\mathrm{3}^{\mathrm{x}} −\mathrm{2}^{\mathrm{x}} =\mathrm{19} \\ $$$$\mathrm{x}=?? \\ $$

Question Number 191790    Answers: 1   Comments: 7

prove that ((2x−4)/(2∙3∙4))+((3x−5)/(3∙4∙5))+((4x−6)/(4∙5∙6))+.....+((100x−102)/(100∙101∙102))=((103)/(102))

$${prove}\:{that} \\ $$$$\frac{\mathrm{2}{x}−\mathrm{4}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}+\frac{\mathrm{3}{x}−\mathrm{5}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}+\frac{\mathrm{4}{x}−\mathrm{6}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}+.....+\frac{\mathrm{100}{x}−\mathrm{102}}{\mathrm{100}\centerdot\mathrm{101}\centerdot\mathrm{102}}=\frac{\mathrm{103}}{\mathrm{102}} \\ $$$$ \\ $$

Question Number 191787    Answers: 0   Comments: 0

Ques. 2 (Metric Space Question) Let d be a metric on a non−empty set X. Show that the function U is defined by U(x,y)=((d(x,y))/(1+d(x,y))), where x and y are arbitrary element X is also a metric on X.

$$\mathrm{Ques}.\:\mathrm{2}\:\left(\mathrm{Metric}\:\mathrm{Space}\:\mathrm{Question}\right) \\ $$$$\:\:\:\:\:\:\mathrm{Let}\:\mathrm{d}\:\mathrm{be}\:\mathrm{a}\:\mathrm{metric}\:\mathrm{on}\:\mathrm{a}\:\mathrm{non}−\mathrm{empty} \\ $$$$\mathrm{set}\:\mathrm{X}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{U}\:\mathrm{is} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\mathrm{U}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{d}\left(\mathrm{x},\mathrm{y}\right)}{\mathrm{1}+\mathrm{d}\left(\mathrm{x},\mathrm{y}\right)},\:\mathrm{where} \\ $$$$\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{arbitrary}\:\mathrm{element}\:\mathrm{X}\:\mathrm{is}\:\mathrm{also} \\ $$$$\mathrm{a}\:\mathrm{metric}\:\mathrm{on}\:\mathrm{X}. \\ $$

  Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com