Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 290

Question Number 192044    Answers: 0   Comments: 0

Question Number 192045    Answers: 0   Comments: 0

(1/((1+(√2))(1+(2)^(1/4) )(1+(2)^(1/8) )(1+(2)^(1/(16)) )))×(((1−(2)^(1/(16)) )/(1−(2_ )^(1/(16)) ))) ⇒_ ((1−(2)^(1/(16)) )/((1+(√2))(1+(2)^(1/4) )(1+(2)^(1/8) )(1−(2)^(1/8) )))⇒(1/((1+(√2))(1+(2)^(1/4) )(1−(2)^(1/4) )))

$$\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{16}}]{\mathrm{2}}\right)}×\left(\frac{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}}}{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}_{} }}\right) \\ $$$$ \\ $$$$\Rightarrow_{} \frac{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)}\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)} \\ $$$$ \\ $$

Question Number 192024    Answers: 1   Comments: 0

Question Number 192023    Answers: 2   Comments: 0

Question Number 192046    Answers: 2   Comments: 0

tow type creams are in a box that one type of these have 25gr mass and another ones have 37gr mass, if the total mass of those is 870gr then find the number of each type of creams.

$${tow}\:{type}\:{creams}\:{are}\:{in}\:{a}\:{box}\:{that}\:{one}\: \\ $$$${type}\:{of}\:{these}\:{have}\:\mathrm{25}{gr}\:{mass}\:{and}\:{another} \\ $$$${ones}\:{have}\:\mathrm{37}{gr}\:{mass},\:{if}\:{the}\:{total}\:{mass} \\ $$$${of}\:{those}\:{is}\:\mathrm{870}{gr}\:{then}\:{find}\:{the}\:{number} \\ $$$${of}\:{each}\:{type}\:{of}\:{creams}. \\ $$

Question Number 192039    Answers: 0   Comments: 0

let x,y,z be positive real number such that x^4 +y^4 +z^4 = 1 find the minimum value of (x^3 /(1−x^8 )) + (y^3 /(1−y^8 )) + (z^3 /(1−z^8 ))

$$\mathrm{let}\:{x},{y},{z}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} \:=\:\mathrm{1}\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of} \\ $$$$\:\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}−{x}^{\mathrm{8}} }\:+\:\frac{{y}^{\mathrm{3}} }{\mathrm{1}−{y}^{\mathrm{8}} }\:+\:\frac{{z}^{\mathrm{3}} }{\mathrm{1}−{z}^{\mathrm{8}} } \\ $$

Question Number 192015    Answers: 1   Comments: 0

Question Number 192013    Answers: 0   Comments: 0

∫e^(at^b ) dt with a,b as a constant how to evaluate this

$$ \\ $$$$\:\int{e}^{{at}^{{b}} } {dt} \\ $$$$\:{with}\:{a},{b}\:{as}\:{a}\:{constant} \\ $$$$\:{how}\:{to}\:{evaluate}\:{this} \\ $$$$ \\ $$

Question Number 192009    Answers: 2   Comments: 0

if a>1 , show ((Σ_(k=1) ^(a^2 −1) (√(a+(√k))))/(Σ_(k=1) ^(a^2 −1) (√(a−(√k))))) = (√2) + 1

$$\:\:\:\:\:{if}\:\:{a}>\mathrm{1}\:,\:{show} \\ $$$$\:\:\:\:\:\frac{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}+\sqrt{{k}}}}{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}−\sqrt{{k}}}}\:\:\:=\:\:\:\sqrt{\mathrm{2}}\:\:+\:\:\mathrm{1} \\ $$

Question Number 192001    Answers: 2   Comments: 1

Question Number 191997    Answers: 1   Comments: 2

Show that C={−1,1,−ı,ı} where ı=(√(−1)) with addition operation is a group. Help!

$$\mathrm{Show}\:\mathrm{that}\:\mathbb{C}=\left\{−\mathrm{1},\mathrm{1},−\imath,\imath\right\}\:\mathrm{where} \\ $$$$\imath=\sqrt{−\mathrm{1}}\:\mathrm{with}\:\mathrm{addition}\:\mathrm{operation}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{group}. \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 191993    Answers: 0   Comments: 0

Question Number 191986    Answers: 1   Comments: 0

Ques. 1 Let (G,∗) be a group, then show that for each a∈G, ∃ a unique element e∈G ∣ a∗e=e∗a=a Ques. 2 If a∈G ⇒ x∈G and x is unique show that if x∗a=e, then a∗x=e. Hello!

$$\mathrm{Ques}.\:\mathrm{1} \\ $$$$\mathrm{Let}\:\left(\mathrm{G},\ast\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{group},\:\mathrm{then}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{for}\:\mathrm{each}\:\mathrm{a}\in\mathrm{G},\:\exists\:\mathrm{a}\:\mathrm{unique}\: \\ $$$$\mathrm{element}\:\mathrm{e}\in\mathrm{G}\:\mid\:\mathrm{a}\ast\mathrm{e}=\mathrm{e}\ast\mathrm{a}=\mathrm{a} \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{2} \\ $$$$\mathrm{If}\:\mathrm{a}\in\mathrm{G}\:\Rightarrow\:\mathrm{x}\in\mathrm{G}\:\mathrm{and}\:\mathrm{x}\:\mathrm{is}\:\mathrm{unique} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{x}\ast\mathrm{a}=\mathrm{e},\:\mathrm{then}\:\mathrm{a}\ast\mathrm{x}=\mathrm{e}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Hello}! \\ $$

Question Number 191966    Answers: 1   Comments: 0

Question Number 191962    Answers: 1   Comments: 0

Question Number 191961    Answers: 0   Comments: 0

Question Number 191960    Answers: 2   Comments: 0

Question Number 191958    Answers: 1   Comments: 2

Question Number 191950    Answers: 1   Comments: 0

(√a) = 1 + (1/a) find: a^2 −a−(√a) = ?

$$\sqrt{\mathrm{a}}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\:\:\mathrm{find}:\:\:\:\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\sqrt{\mathrm{a}}\:=\:? \\ $$

Question Number 191946    Answers: 1   Comments: 0

((fof^(−1) (5)+fof^(−1) (15))/(fof^(−1) (5)))=?

$$\frac{\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{5}\right)+\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{15}\right)}{\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{5}\right)}=? \\ $$

Question Number 191947    Answers: 2   Comments: 0

prove that (√(a+b(√(a−b(√(a+b(√(a−b(√(...)))))))))) = (((√(4a−3b^2 ))+b)/2)

$${prove}\:{that} \\ $$$$\sqrt{{a}+{b}\sqrt{{a}−{b}\sqrt{{a}+{b}\sqrt{{a}−{b}\sqrt{...}}}}}\:\:=\:\:\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}{b}^{\mathrm{2}} }+{b}}{\mathrm{2}} \\ $$

Question Number 191937    Answers: 1   Comments: 0

Check whether (Q, ∙) is a group or not Hello bosses!

$$\mathrm{Check}\:\mathrm{whether}\:\left(\mathrm{Q},\:\centerdot\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{or} \\ $$$$\mathrm{not} \\ $$$$ \\ $$$$\mathrm{Hello}\:\mathrm{bosses}! \\ $$

Question Number 191935    Answers: 2   Comments: 0

Question Number 191934    Answers: 1   Comments: 0

Question Number 195092    Answers: 1   Comments: 0

lim_(x→1^+ ) ((4x+5)/(x−x^2 ))=?

$$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{4}{x}+\mathrm{5}}{{x}−{x}^{\mathrm{2}} }=? \\ $$

Question Number 191930    Answers: 1   Comments: 2

What is the value of inside Area of (ABCDEF)? Such that: ∡AOB=120 ∡ANB=60;°R=ON (OA=OB=32cm) ArcAE=ArcBF(r=12cm) BASE is circulare (Aider le tailleur a savoir la surface du tissu necessaire pour couvrir l ′espace indique dans la figure?)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{inside}\:\mathrm{Area}\:\mathrm{of} \\ $$$$\left(\mathrm{ABCDEF}\right)? \\ $$$$\mathrm{Such}\:\mathrm{that}:\:\measuredangle\mathrm{AOB}=\mathrm{120}\:\:\:\measuredangle\mathrm{ANB}=\mathrm{60};°\mathrm{R}=\mathrm{ON} \\ $$$$\:\left(\mathrm{OA}=\mathrm{OB}=\mathrm{32cm}\right)\:\mathrm{ArcAE}=\mathrm{ArcBF}\left(\mathrm{r}=\mathrm{12cm}\right) \\ $$$$\mathrm{BASE}\:\mathrm{is}\:\mathrm{circulare} \\ $$$$\left({Aider}\:{le}\:{tailleur}\:{a}\:{savoir}\:{la}\:{surface}\right. \\ $$$${du}\:{tissu}\:{necessaire}\:{pour}\:{couvrir}\: \\ $$$$\left.\:{l}\:'\mathrm{e}{space}\:{indique}\:{dans}\:{la}\:{figure}?\right) \\ $$

  Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com