Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 290

Question Number 192367    Answers: 1   Comments: 0

Question Number 192363    Answers: 0   Comments: 0

Solve for x x_i −x+(2cx−cb)(y_i +cx^2 −cbx)=0 the following is true for this equaition i)c>0 ii)b>0 iii)there is only one real solution

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}_{{i}} −{x}+\left(\mathrm{2}{cx}−{cb}\right)\left({y}_{{i}} +{cx}^{\mathrm{2}} −{cbx}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equaition} \\ $$$$\left.{i}\right)\mathrm{c}>\mathrm{0} \\ $$$$\left.{ii}\right)\mathrm{b}>\mathrm{0} \\ $$$$\left.{iii}\right)\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$

Question Number 192343    Answers: 1   Comments: 0

Find minimum value of y=((1−sin^2 x)/(2 tan^2 x))

$$\:\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{y}=\frac{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{2}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$

Question Number 192342    Answers: 1   Comments: 0

1) Compute in S_a , a^(−1) ba where a=(1 2)(1 3 5), b=(1 5 7 1) 2) Given permutation α = (1 2)(3 4), β = (1 3)(5 6). Find a permutation x∈S_6 ∃αx = β. help!

$$\left.\mathrm{1}\right)\:\mathrm{Compute}\:\mathrm{in}\:\mathrm{S}_{\mathrm{a}} \:,\:\mathrm{a}^{−\mathrm{1}} \mathrm{ba}\:\:\mathrm{where}\: \\ $$$$\mathrm{a}=\left(\mathrm{1}\:\mathrm{2}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\right),\:\mathrm{b}=\left(\mathrm{1}\:\mathrm{5}\:\mathrm{7}\:\mathrm{1}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Given}\:\mathrm{permutation}\:\alpha\:=\:\left(\mathrm{1}\:\mathrm{2}\right)\left(\mathrm{3}\:\mathrm{4}\right), \\ $$$$\beta\:=\:\left(\mathrm{1}\:\mathrm{3}\right)\left(\mathrm{5}\:\mathrm{6}\right).\:\mathrm{Find}\:\mathrm{a}\:\mathrm{permutation} \\ $$$$\mathrm{x}\in\mathrm{S}_{\mathrm{6}} \:\exists\alpha\mathrm{x}\:=\:\beta. \\ $$$$ \\ $$$$\mathrm{help}! \\ $$

Question Number 192341    Answers: 1   Comments: 0

1) Find the sign of odd or even (or pality) of permutation θ=(1 2 3 4 5 6 7 8) 2) prove that any permutation θ:S→S where S is a finite set can be written as a product of disjoint cycle help!

$$\left.\mathrm{1}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{or}\:\mathrm{even}\:\left(\mathrm{or}\:\mathrm{pality}\right) \\ $$$$\mathrm{of}\:\mathrm{permutation}\:\theta=\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{8}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{any}\:\mathrm{permutation} \\ $$$$\theta:\mathrm{S}\rightarrow\mathrm{S}\:\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{set}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{written}\:\mathrm{as}\:\mathrm{a}\:\mathrm{product}\:\mathrm{of}\:\mathrm{disjoint} \\ $$$$\mathrm{cycle} \\ $$$$ \\ $$$$\mathrm{help}! \\ $$

Question Number 192340    Answers: 1   Comments: 0

Prove that the order of any permuta− tion θ is the least common multiple of the length of its disjoint cycles. hi

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{any}\:\mathrm{permuta}− \\ $$$$\mathrm{tion}\:\theta\:\mathrm{is}\:\mathrm{the}\:\mathrm{least}\:\mathrm{common}\:\mathrm{multiple} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{its}\:\mathrm{disjoint}\:\mathrm{cycles}. \\ $$$$ \\ $$$$\:\mathrm{hi} \\ $$

Question Number 192339    Answers: 1   Comments: 0

Express as the product of disjoint cycle the permutation a) θ(1)=4 θ(2)=6 θ(1)=5 θ(4)=1 θ(5)=3 θ(6)=2 b) (1 6 3)(1 3 5 7)(6 7)(1 2 3 4 5) c) (1 2 3 4 5)(6 7)(1 3 5 7) Find the order of each of them help!

$$\mathrm{Express}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{disjoint}\: \\ $$$$\mathrm{cycle}\:\mathrm{the}\:\mathrm{permutation} \\ $$$$\left.\mathrm{a}\right)\:\theta\left(\mathrm{1}\right)=\mathrm{4}\:\:\theta\left(\mathrm{2}\right)=\mathrm{6}\:\:\theta\left(\mathrm{1}\right)=\mathrm{5}\:\:\theta\left(\mathrm{4}\right)=\mathrm{1} \\ $$$$\theta\left(\mathrm{5}\right)=\mathrm{3}\:\:\theta\left(\mathrm{6}\right)=\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\left(\mathrm{1}\:\mathrm{6}\:\mathrm{3}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right) \\ $$$$ \\ $$$$\left.\mathrm{c}\right)\:\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them} \\ $$$$ \\ $$$$\mathrm{help}! \\ $$

Question Number 192338    Answers: 2   Comments: 0

y= ((((lim_(h→0) (((x+h)^3 −x^3 )/h))(Σ_(n=0) ^∞ (x^(n+1) /(n+1))))/(∫_0 ^( x) lnt dt))) (dy/dx)?

$${y}=\:\left(\frac{\left(\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+{h}\right)^{\mathrm{3}} −{x}^{\mathrm{3}} }{{h}}\right)\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right)}{\int_{\mathrm{0}} ^{\:{x}} {lnt}\:{dt}}\right) \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}? \\ $$

Question Number 192336    Answers: 1   Comments: 0

Question Number 192331    Answers: 0   Comments: 0

Question Number 192330    Answers: 0   Comments: 0

Question Number 192325    Answers: 1   Comments: 0

Question Number 192345    Answers: 1   Comments: 0

Question Number 192344    Answers: 0   Comments: 4

Question Number 192346    Answers: 1   Comments: 0

Question Number 192350    Answers: 2   Comments: 0

Question Number 192349    Answers: 1   Comments: 0

Question Number 192348    Answers: 2   Comments: 0

Question Number 192299    Answers: 2   Comments: 0

Question Number 192297    Answers: 2   Comments: 0

Question Number 192288    Answers: 1   Comments: 0

Question Number 192289    Answers: 1   Comments: 0

∫_(−e) ^e ((sin x)/(sec^2 x+1)) dx =?

$$\:\:\:\:\:\:\:\:\underset{−\mathrm{e}} {\overset{\mathrm{e}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:=? \\ $$

Question Number 192286    Answers: 1   Comments: 0

Determine whether f(x)=(1/x)(2x^2 +1)is: 1.A function 2. injective 3. surjective 4. bijective

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}}\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{is}: \\ $$$$\mathrm{1}.\mathrm{A}\:\mathrm{function} \\ $$$$\mathrm{2}.\:\mathrm{injective} \\ $$$$\mathrm{3}.\:\mathrm{surjective} \\ $$$$\mathrm{4}.\:\mathrm{bijective} \\ $$

Question Number 192282    Answers: 1   Comments: 0

find the value of tan (π/9) + 4sin (π/9) = ?

$$\:\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\:+\:\mathrm{4sin}\:\frac{\pi}{\mathrm{9}}\:=\:? \\ $$

Question Number 192281    Answers: 0   Comments: 0

help me proving this f:R→R dan c∈R lim_(x→c) f(x)=L ⇔ lim_(c→0) f(x+c)=L

$$ \\ $$$$ \\ $$$$\:{help}\:{me}\:{proving}\:{this} \\ $$$$\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:{dan}\:{c}\in\mathbb{R} \\ $$$$\:\underset{{x}\rightarrow{c}} {\mathrm{lim}}\:{f}\left({x}\right)={L}\:\Leftrightarrow\:\underset{{c}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}+{c}\right)={L} \\ $$$$\: \\ $$$$ \\ $$

Question Number 192280    Answers: 2   Comments: 0

  Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com