Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 290
Question Number 189205 Answers: 0 Comments: 6
Question Number 189463 Answers: 1 Comments: 0
Question Number 189145 Answers: 6 Comments: 0
$${pleas}\:{solve}\:{this} \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+\mathrm{4}{x}+\centerdot\centerdot\centerdot\centerdot\centerdot+{nx}} −{e}^{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}} }{{x}−\mathrm{1}}=? \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{\mathrm{2}^{{x}} \centerdot\mathrm{3}^{{x}} \centerdot\mathrm{4}^{{x}} \centerdot\centerdot\centerdot\centerdot{n}^{{x}} } −{e}^{{n}!} }{{x}−\mathrm{1}}=? \\ $$$$\left.\mathrm{3}\right)\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.......+{x}^{{n}} } −{e}^{{n}} }{{x}−\mathrm{1}}=? \\ $$
Question Number 189144 Answers: 0 Comments: 1
$$\: \\ $$$$\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\sqrt{{x}\:+\:{y}\:+\:{z}}}{\:\sqrt{{x}}\:+\:\sqrt{{y}}\:+\:\sqrt{{z}}\:}\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 189140 Answers: 2 Comments: 0
Question Number 189135 Answers: 2 Comments: 0
Question Number 189137 Answers: 0 Comments: 2
$$\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\:\mathrm{x}\:\:\mathrm{is}\:\mathrm{rational} \\ $$$$\mathrm{x}\:\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{?}}}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dufference}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{vaules} \\ $$$$\mathrm{of}\:\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 189133 Answers: 1 Comments: 0
$$\mathrm{Convert}\:\mathrm{hexadecimal}\:\mathrm{number} \\ $$$$\mathrm{4}\:\mathrm{A}\:\mathrm{F}_{\mathrm{16}} \:\:\mathrm{to}\:\mathrm{decimal} \\ $$
Question Number 189131 Answers: 2 Comments: 0
Question Number 189127 Answers: 3 Comments: 0
Question Number 189126 Answers: 1 Comments: 0
Question Number 189125 Answers: 2 Comments: 0
Question Number 189124 Answers: 1 Comments: 0
Question Number 189123 Answers: 2 Comments: 0
Question Number 189132 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{13a}+\mathrm{2b}+\mathrm{c}+\mathrm{6d}+\mathrm{2e}=\mathrm{96}}\\{\mathrm{5a}+\mathrm{9b}+\mathrm{2c}+\mathrm{7d}+\mathrm{3e}=\mathrm{75}}\\{\mathrm{7a}+\mathrm{8b}+\mathrm{17c}+\mathrm{11d}+\mathrm{7e}=\mathrm{99}}\\{\mathrm{3a}+\mathrm{3b}+\mathrm{3c}+\mathrm{d}+\mathrm{8e}=\mathrm{55}}\\{\mathrm{a}+\mathrm{7b}+\mathrm{6c}+\mathrm{4d}+\mathrm{9e}=\mathrm{79}}\end{cases} \\ $$
Question Number 189114 Answers: 2 Comments: 0
Question Number 189112 Answers: 0 Comments: 3
Question Number 189110 Answers: 0 Comments: 1
Question Number 189101 Answers: 0 Comments: 1
Question Number 189079 Answers: 1 Comments: 0
Question Number 189077 Answers: 0 Comments: 0
Question Number 189070 Answers: 1 Comments: 0
Question Number 189066 Answers: 2 Comments: 0
$$\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)+\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} \:\mathrm{f}\left(\mathrm{y}\right)\:\mathrm{dy}=\mathrm{2x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{1} \\ $$$$\:\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right). \\ $$
Question Number 189057 Answers: 0 Comments: 6
$$\: \\ $$$$\:\mathrm{Help}! \\ $$$$\: \\ $$$$\:\mathrm{Evaluate}\:\:\mathrm{the}\:\:\mathrm{following}\:\:\mathrm{integral}\:\:\mathrm{usings}\:\:\mathrm{Green}\:\mathrm{theorem}: \\ $$$$\: \\ $$$$\:\oint\mathrm{4xy}{d}\mathrm{x}\:\:+\:\:\mathrm{x}^{\mathrm{2}} {d}\mathrm{y} \\ $$$$\: \\ $$$$\:\mathrm{Where}\:\:{C}\:\:\mathrm{is}\:\:\mathrm{the}\:\:\mathrm{square}\:\:\mathrm{of}\:\:\mathrm{vertices}\:\:\left(\mathrm{0},\mathrm{0}\right),\:\left(\mathrm{0},\mathrm{2}\right),\:\left(\mathrm{2},\mathrm{0}\right)\:\:\mathrm{and}\:\:\left(\mathrm{2},\mathrm{2}\right). \\ $$$$\: \\ $$
Question Number 189054 Answers: 1 Comments: 0
Question Number 189053 Answers: 3 Comments: 0
$${find}\:{f}\left({x}\right) \\ $$$$\mathrm{1}:{f}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)={x}+\mathrm{3};\:{x}\neq\mathrm{1} \\ $$$$\mathrm{2}:{f}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{1}}\right)={x}^{\mathrm{2}} +\mathrm{2}{x}\:;{x}\neq\mathrm{1} \\ $$$$\mathrm{3}:{f}\left({x}+\mathrm{1}\right)+{f}\left({x}−{y}\right)=\mathrm{2}{f}\left({x}\right){cosy}\:\forall{x},{y} \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\frac{\pi}{\mathrm{2}}\right)=\mathrm{1} \\ $$
Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294
Terms of Service
Privacy Policy
Contact: info@tinkutara.com