Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 29
Question Number 222511 Answers: 0 Comments: 0
$${Is}\:{the}\:{statement}\:{correct}? \\ $$$${in}\:{const}.``\:{x}+{a}−{bx}^{{n}} =\left\{\mathrm{0}\right\}\:'' \\ $$$${x}=\begin{cases}{−{a}\pm\frac{\mathrm{2}{b}}{{n}+\mathrm{1}}\:,\:{n}>\mathrm{0}}\\{{N}_{{b}} ^{\:{a}} \:\int_{{b}} ^{\:{a}} {G}\left({n}−\mathrm{1}\right),\:{n}\leqslant\mathrm{0}}\end{cases} \\ $$
Question Number 222541 Answers: 0 Comments: 3
$$ \\ $$$$\:\:\:\mathrm{very}\:\mathrm{very}\:\mathrm{crazy}\:\mathrm{problem},\:\:\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{found} \\ $$$$\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}; \\ $$$$\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\:\sqrt{{z}}\:+\:\sqrt{{z}−{h}}\:+\:\sqrt{{z}−\mathrm{2}{h}}}\:{dz} \\ $$$$ \\ $$
Question Number 222501 Answers: 1 Comments: 0
$${This}\:{is}\:{VERY}\:{HARD} \\ $$$$\begin{cases}{\begin{cases}{{x}+{y}=\mathrm{0}}\\{{l}\left({y}\right)=\mathrm{1}}\end{cases}}\\{\begin{cases}{{x}\in\mathbb{N}}\\{−{y}=\begin{cases}{{v\%},\:\:{for}\:{x}\circlearrowleft\gamma\left(\mathrm{1}\right)}\\{−{v\%},\:\:{for}\:{x}\looparrowright\theta\left(\oint_{−{x}} ^{\:\mathrm{0}} \frac{{c}}{\mathrm{7}}\right)}\end{cases}}\end{cases}}\end{cases} \\ $$$${x}=?,\:{y}=? \\ $$
Question Number 222512 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{xsinxcosx}}{{tan}^{\mathrm{2}} {x}+{cotan}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 222487 Answers: 0 Comments: 0
$$'{Delete}\:{all}\:{lines}'\:{function}\:{deletes}\:{all}\:{lines}\:{without}\:{asking}\:{after}\:{deleting}\:{all}\:{lines}\:{for}\:{the}\:{first}\:{time}\:{in}\:{the}\:{equation}\:{editor} \\ $$
Question Number 222583 Answers: 0 Comments: 0
$${solve}\:{for}\:{p},{q},{s}\:{in}\:{terms}\:{of}\:{c}. \\ $$$$\bullet\:\left(\frac{{qs}}{{q}−{sp}}\right)^{\mathrm{2}} −{s}\left(\frac{{qs}}{{q}−{sp}}\right)+{p}=\mathrm{0} \\ $$$$\bullet\:\left(\frac{{q}+{c}}{{p}+\mathrm{1}}\right)^{\mathrm{2}} ={sp}−{q} \\ $$$$\bullet\:\left({q}−{cp}\right)\left({p}+\mathrm{1}\right)^{\mathrm{2}} =\left({q}+{c}\right)^{\mathrm{3}} \\ $$$${I}\:{have}\:{to}\:{find}\:{non}\:{zero}\:{real}\:{x}=−\left(\frac{{q}+{c}}{{p}+\mathrm{1}}\right)\:. \\ $$
Question Number 222482 Answers: 2 Comments: 1
Question Number 222479 Answers: 4 Comments: 1
Question Number 222478 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:=\:? \\ $$$$\:{note}:\:\:\:{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}}\: \\ $$
Question Number 222466 Answers: 0 Comments: 4
$$\mathrm{find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}.\: \\ $$
Question Number 222462 Answers: 2 Comments: 0
$${i}^{{i}} =?? \\ $$
Question Number 222453 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{tanh}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$
Question Number 222448 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$
Question Number 222441 Answers: 2 Comments: 0
$$\mathrm{0}^{{i}} \\ $$
Question Number 222427 Answers: 1 Comments: 0
$$\:\:\boldsymbol{{if}}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{3}} }+\frac{\boldsymbol{{a}}}{\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{b}}\right)=\mathrm{1}\: \\ $$$$\:\:\:\:\boldsymbol{{find}}\:\boldsymbol{{a}}\:\boldsymbol{{and}}\:\boldsymbol{{b}}\:\:\boldsymbol{{without}} \\ $$$$\:\:\:\:\:\:\boldsymbol{{using}}\:\boldsymbol{{LH}}{opial}\:{rule} \\ $$
Question Number 222425 Answers: 3 Comments: 0
$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\infty} \left(\mathrm{4}\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{\mathrm{x}}}\right) \\ $$$$\boldsymbol{\mathrm{ans}}:\frac{\mathrm{3}}{\mathrm{8}} \\ $$
Question Number 222424 Answers: 1 Comments: 0
$$\int_{\mathrm{2}} ^{\:\infty} \:\:\:\:\frac{\mathrm{d}{z}}{\mathrm{ln}\left({z}\right)}−\underset{{l}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{ln}\left({l}\right)}=?? \\ $$
Question Number 222422 Answers: 0 Comments: 0
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{+\infty} \frac{{x}^{\mathrm{2}} \mathrm{lnsinh}{x}}{\mathrm{cosh}\:\mathrm{3}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{9}}\pi^{\mathrm{2}} {G}−\frac{\mathrm{5}}{\mathrm{108}}\pi^{\mathrm{3}} \mathrm{ln}\:\mathrm{2} \\ $$
Question Number 222419 Answers: 0 Comments: 1
Question Number 222418 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}:\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:\left[\:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{n}\right)−\mathrm{2}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{n}} \frac{\mathrm{lnt}}{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\:\mathrm{dt}\:\right]=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$
Question Number 222415 Answers: 3 Comments: 0
Question Number 222432 Answers: 0 Comments: 0
Question Number 222411 Answers: 3 Comments: 0
$$\:\: \\ $$$$\:\:\:\left[\:\mathrm{1}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{dx}\:\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{2}\:.\right]\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx} \\ $$$$\:\left[\:\mathrm{3}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{4}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 222568 Answers: 0 Comments: 0
$${f}\left({x}\right)=\left(\sqrt{{x}−\mathrm{2}}\right)^{\mathrm{0}} \:\:{and}\:{g}\left({x}\right)=\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{0}} } \\ $$$${dom}\:{f}\left({x}\right)=?\:,\:{dom}\:{g}\left({x}\right)=? \\ $$
Question Number 222436 Answers: 1 Comments: 0
Question Number 222409 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{Solve}\:;\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}^{{n}} \:\mathrm{sin}\:\theta}{\mathrm{sin}^{{p}} \:\theta\:\mathrm{cos}^{{q}} \:\theta}\:\mathrm{d}\theta\:,\:\mathrm{for}\:{n},{p},{q}\:\in\:\mathbb{R}_{\geqslant\:\mathrm{0}} \:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33
Terms of Service
Privacy Policy
Contact: info@tinkutara.com