example..
x(t)=∮_( C) ((s−2)/(s^2 −4s+6)) e^(st) ds
Res_(s=2+(√2)i) {((s−2)/(s−2+(√2)i))}e^(st) +Res_(s=2−(√2)i) {((s−2)/(s−2−(√2)i))}e^(st)
because Σ Res_(s=z_j ) {f(s)}e^(st)
x(t)=(((√2)i)/(2(√2)i))e^(2t+(√2)it) +(((√2)i)/(2(√2)i))e^(2t−(√2)it)
x(t)=e^(2t) (((e^((√2)it) +e^(−(√2)it) )/2))
∴x(t)=e^(2t) cos((√2)t)
Bromwich integral is defined as
L_s ^(−1) {f(s)}= (1/(2πi)) ∮_( C) f(s)e^(st) ds
if complex function f(s) is entire
Does L_s ^(−1) {f(s)} dosen′t Exist?
for example....
∫_0 ^( ∞) J_ν (r)e^(−rt) dr=(((t+(√(t^2 +1)))^(−ν) )/( (√(t^2 +1)))) and
we all know J_ν (s)=∮_( C) (((t+(√(t^2 +1)))^(−ν) )/( (√(t^2 +1)))) e^(st) dt
But....can′t calculate...Σ_(h=1) ^N Res_(t=z_h ) {(((t+(√(t^2 +1)))^(−ν) )/( (√(t^2 +1))))} e^(st)
and J_ν (s) can′t express by e^(λ_h t) , h=1,2,3...
and by my Searching
J_ν (s) defined as Σ_(j=0) ^∞ Res_(t=−j−(1/2)) {((𝚪(s+(1/2)ν))/(𝚪(1−s+(1/2)ν)))((s/2))^(2s) }
|