Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 29
Question Number 214317 Answers: 1 Comments: 0
$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{11}{x}^{\mathrm{2}} +{x}−\mathrm{12}={f}\left({x}\right)×{g}\left({x}\right) \\ $$$${f}\left({x}\right)=?\:\:\:\:{g}\left({x}\right)=? \\ $$
Question Number 214329 Answers: 2 Comments: 0
$${what}\:{is}\:{the}\:{coefficient}\:{of} \\ $$$${x}^{\mathrm{50}\:\:} \:{in} \\ $$$$\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +...+\mathrm{101}{x}^{\mathrm{100}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...+{x}^{\mathrm{25}} \right) \\ $$
Question Number 214326 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{4}}]{{x}}−\sqrt[{\mathrm{6}}]{{x}}}{\:\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{6}}]{{x}}}=? \\ $$
Question Number 214335 Answers: 1 Comments: 0
$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{k}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$${e}^{{kx}} =\mathrm{3}\sqrt{{x}}\:\mathrm{have}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{R}? \\ $$
Question Number 214310 Answers: 2 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{2}!}\:+\:\frac{\mathrm{2}}{\mathrm{3}!}\:+\:\frac{\mathrm{3}}{\mathrm{4}!}\:+\:...\:+\:\frac{\mathrm{99}}{\mathrm{100}!} \\ $$
Question Number 214297 Answers: 1 Comments: 3
Question Number 214293 Answers: 1 Comments: 0
$${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}^{\mathrm{2}} +\mathrm{3}\right)\:\:\:\:\:{mod}\left(\mathrm{5}{x}−\mathrm{1}\right) \\ $$$${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}−\mathrm{2}\right)\:\:\:\:\:\:\:\:\:{mod}\left(\mathrm{16}\right) \\ $$$${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}−\mathrm{2}\right)\:\:\:{mod}\left(?\right) \\ $$
Question Number 214302 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left(\mathrm{4}{n}−\mathrm{1}\right)^{\mathrm{2}} }=\:? \\ $$
Question Number 214301 Answers: 1 Comments: 1
$$\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:\mathrm{x}\right)+\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=? \\ $$
Question Number 214280 Answers: 1 Comments: 1
Question Number 214342 Answers: 1 Comments: 3
$$\mathrm{why} \\ $$$$\mathrm{differantiable}\:{f}\:\rightarrow\:{f}\:\mathrm{is}\:\mathrm{continious}\: \\ $$$$\mathrm{but}\:{f}\:\mathrm{is}\:\mathrm{continous}\:\nrightarrow\:\mathrm{differantiable}\:?? \\ $$
Question Number 214341 Answers: 2 Comments: 0
$$\int\frac{{dx}}{\mathrm{3}+{cosx}}=? \\ $$
Question Number 214264 Answers: 1 Comments: 1
Question Number 214258 Answers: 3 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{6}}]{\mathrm{x}^{\mathrm{6}} −\mathrm{x}^{\mathrm{5}} }−\sqrt[{\mathrm{6}}]{\mathrm{x}^{\mathrm{6}} +\mathrm{5x}^{\mathrm{5}} }\:=? \\ $$
Question Number 214256 Answers: 0 Comments: 0
$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\:\rightarrow\:\mathrm{1}} \propto.\boldsymbol{{arctan}}\left(\frac{\mathrm{2}}{\mathrm{1}\:+\boldsymbol{{x}}}\:−\:\mathrm{1}\right) \\ $$$$\bullet\:\boldsymbol{{Calculons}}\:\boldsymbol{{la}}\:\boldsymbol{{limite}}\:\boldsymbol{{a}}\:\boldsymbol{{l}}'\boldsymbol{{intrieur}}: \\ $$$$\frac{\mathrm{2}}{\mathrm{1}\:+\:\boldsymbol{{x}}}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\: \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\:\rightarrow\:\mathrm{1}} {arctan}\left(\frac{\mathrm{2}}{\mathrm{1}\:+\:{x}}\:−\:\mathrm{1}\right)=\:\boldsymbol{{arctan}}\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$$\: \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{1}} \propto.{arctan}\left(\frac{\mathrm{2}}{\mathrm{1}+\:{x}}\:−\:\mathrm{1}\right)\:=\propto.\mathrm{0}\: \\ $$$$\: \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{1}} \propto.\boldsymbol{{arctan}}\left(\frac{\mathrm{2}}{\mathrm{1}\:+\:\boldsymbol{{x}}}\:−\mathrm{1}\right)\:=\:\mathrm{0} \\ $$
Question Number 214251 Answers: 1 Comments: 1
Question Number 214248 Answers: 3 Comments: 1
Question Number 214247 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{2a}\:=\:\mathrm{1}\:−\:\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\mathrm{Find}\:\:\:\frac{\mathrm{2a}^{\mathrm{2}} \:+\:\sqrt{\mathrm{a}}}{\mathrm{2a}}\:=\:? \\ $$
Question Number 214244 Answers: 1 Comments: 0
$$\mathrm{4}=\sqrt{{x}−\mathrm{7}} \\ $$$$ \\ $$
Question Number 214228 Answers: 5 Comments: 1
Question Number 214220 Answers: 1 Comments: 0
Question Number 214216 Answers: 1 Comments: 0
$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\frac{{x}−{a}_{{n}−\mathrm{1}} }{{t}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =? \\ $$
Question Number 214205 Answers: 1 Comments: 0
$${f}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)={x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+{f}\left(\mathrm{6}\right)=? \\ $$
Question Number 214199 Answers: 2 Comments: 1
Question Number 214191 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\begin{cases}{\mathrm{y}^{\mathrm{3}} =\:\mathrm{x}^{\mathrm{x}+\mathrm{y}} }\\{\mathrm{y}^{\mathrm{x}+\mathrm{y}} \:=\:\mathrm{x}^{\mathrm{6}} \mathrm{y}^{\mathrm{3}} }\end{cases} \\ $$$$\:\:\:\:\cancel{\underline{ }} \\ $$
Question Number 214186 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{1}\:\:\:\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{61}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{61}} }+\:\mathrm{4}\:\:=\:? \\ $$
Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33
Terms of Service
Privacy Policy
Contact: info@tinkutara.com