Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 285

Question Number 192261    Answers: 0   Comments: 0

f(x)=⌊ (( 1)/(1+(√x))) ⌋ is derivable on ( 0 , k ). find the value of k_( max) =?

$$ \\ $$$$\:\:\:{f}\left({x}\right)=\lfloor\:\frac{\:\mathrm{1}}{\mathrm{1}+\sqrt{{x}}}\:\rfloor\:{is}\:{derivable}\: \\ $$$$\:\:{on}\:\:\left(\:\mathrm{0}\:,\:\:{k}\:\right).\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{k}_{\:{max}} =?\: \\ $$$$\:\:\: \\ $$

Question Number 192257    Answers: 0   Comments: 3

A bullet with a velocity of 30 ms^(−1) after pentrating a 6 cm whole tree the velocity is reduced by one−third and then the bullet travels for 1s more. Will the bullet penetratee th tree? Analyze mathematically.

$$ \\ $$$$\mathrm{A}\:\mathrm{bullet}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{30}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{after} \\ $$$$\mathrm{pentrating}\:\mathrm{a}\:\mathrm{6}\:{cm}\:\mathrm{whole}\:\mathrm{tree}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{is}\: \\ $$$$\mathrm{reduced}\:\mathrm{by}\:\mathrm{one}−\mathrm{third}\:\mathrm{and}\:\mathrm{then}\:\mathrm{the}\:\mathrm{bullet} \\ $$$$\mathrm{travel}{s}\:\mathrm{for}\:\mathrm{1s}\:\mathrm{more}.\: \\ $$$$ \\ $$$$ \\ $$$${Will}\:\mathrm{the}\:\mathrm{bullet}\:\mathrm{penetratee} \\ $$$$\mathrm{th}\:\mathrm{tree}?\:\mathrm{Analyze}\:\mathrm{mathematically}. \\ $$

Question Number 192256    Answers: 0   Comments: 0

given f(x)=cx(x−20) and A=(2,5) find the nearst point to A on the graph

$$\mathrm{given}\:{f}\left({x}\right)={cx}\left({x}−\mathrm{20}\right)\:\mathrm{and}\:{A}=\left(\mathrm{2},\mathrm{5}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{nearst}\:\mathrm{point}\:\mathrm{to}\:{A}\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$

Question Number 192255    Answers: 0   Comments: 0

If θ be the acute angle between two regression line in the case of two variables x and y Show that tan θ=((1−r)/r).((σ_x σ_y )/(σ_x ^2 +σ_y ^2 )) where r,σ_x ,σ_y have their usual meanings. Explain the significance where r=0 and r=±r 1/2/2024

$${If}\:\theta\:{be}\:{the}\:{acute}\:{angle}\:{between}\:{two}\:{regression} \\ $$$${line}\:{in}\:{the}\:{case}\:{of}\:{two}\:{variables}\:{x}\:{and}\:{y} \\ $$$${Show}\:{that} \\ $$$$\:\:\mathrm{tan}\:\theta=\frac{\mathrm{1}−{r}}{{r}}.\frac{\sigma_{{x}} \sigma_{{y}} }{\sigma_{{x}} ^{\mathrm{2}} +\sigma_{{y}} ^{\mathrm{2}} }\:\:\: \\ $$$${where}\:\:{r},\sigma_{{x}} ,\sigma_{{y}} \:\:{have}\:{their}\:{usual}\:{meanings}. \\ $$$${Explain}\:{the}\:{significance}\:{where}\:{r}=\mathrm{0}\:\:\:{and}\:{r}=\pm{r} \\ $$$$\mathrm{1}/\mathrm{2}/\mathrm{2024} \\ $$

Question Number 192254    Answers: 0   Comments: 0

Establish the formular σ_(x−y) ^2 =σ_x ^2 +σ_y ^2 −2rσ_x σ_y where by r is the correlation coefficient between x and y 1/2/2024

$${Establish}\:{the}\:{formular}\:\: \\ $$$$\sigma_{{x}−{y}} ^{\mathrm{2}} =\sigma_{{x}} ^{\mathrm{2}} +\sigma_{{y}} ^{\mathrm{2}} −\mathrm{2}{r}\sigma_{{x}} \sigma_{{y}} \:\: \\ $$$${where}\:{by}\:{r}\:{is}\:{the}\:{correlation} \\ $$$${coefficient}\:{between}\:{x}\:{and}\:{y} \\ $$$$\mathrm{1}/\mathrm{2}/\mathrm{2024} \\ $$

Question Number 192248    Answers: 0   Comments: 1

Question Number 192241    Answers: 1   Comments: 0

Question Number 192239    Answers: 1   Comments: 1

Question Number 192233    Answers: 0   Comments: 1

show for all n∈N that 3(1^5 +...+n^5 ) is divisible by 1^3 +...+n^3

$$\mathrm{show}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathrm{N}\:\mathrm{that} \\ $$$$\mathrm{3}\left(\mathrm{1}^{\mathrm{5}} +...+\mathrm{n}^{\mathrm{5}} \right)\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{1}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{3}} \\ $$

Question Number 192238    Answers: 0   Comments: 0

Question Number 192230    Answers: 0   Comments: 0

Question Number 192227    Answers: 2   Comments: 0

Question Number 192226    Answers: 0   Comments: 0

Question Number 192220    Answers: 1   Comments: 2

prove that if n∈N, n>1 and n is odd then 1^n +...+(n−1)^n is divisible by n (dont use ≡(modn))

$$ \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{n}\in\mathbb{N},\:\mathrm{n}>\mathrm{1}\:\mathrm{and}\:\mathrm{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{then} \\ $$$$\:\mathrm{1}^{\mathrm{n}} +...+\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{n} \\ $$$$\left(\mathrm{dont}\:\mathrm{use}\:\equiv\left(\mathrm{modn}\right)\right) \\ $$

Question Number 192212    Answers: 1   Comments: 0

∫−1^x dx

$$\int−\mathrm{1}^{{x}} {dx} \\ $$

Question Number 192208    Answers: 1   Comments: 0

Question Number 192202    Answers: 0   Comments: 0

Question Number 192204    Answers: 1   Comments: 0

Question Number 192203    Answers: 1   Comments: 0

Question Number 192187    Answers: 0   Comments: 0

{ ((z_1 + z_2 = a)),((z_2 + z_3 = b)),((z_3 + z_4 = c)),((z_1 + z_4 = d)) :} solve using gaussian elimination

$$\begin{cases}{{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \:=\:{a}}\\{{z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} \:=\:{b}}\\{{z}_{\mathrm{3}} \:+\:{z}_{\mathrm{4}} \:=\:{c}}\\{{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{4}} \:=\:{d}}\end{cases} \\ $$$${solve}\:{using}\:{gaussian}\:{elimination} \\ $$

Question Number 192186    Answers: 3   Comments: 0

If α, β and γ are the roots of x^3 + px + q = 0, find Σα^4 .

$$\mathrm{If}\:\:\alpha,\:\beta\:\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\mathrm{x}^{\mathrm{3}} \:\:+\:\:\mathrm{px}\:\:+\:\:\mathrm{q}\:\:=\:\:\mathrm{0},\:\:\:\:\mathrm{find}\:\:\:\Sigma\alpha^{\mathrm{4}} . \\ $$

Question Number 192177    Answers: 0   Comments: 0

Question Number 192181    Answers: 1   Comments: 0

Question Number 192179    Answers: 0   Comments: 3

Question Number 192171    Answers: 1   Comments: 2

2^x^x^x =2^(√2) x=?

$$\mathrm{2}^{{x}^{{x}^{{x}} } } =\mathrm{2}^{\sqrt{\mathrm{2}}} \\ $$$${x}=? \\ $$

Question Number 192173    Answers: 1   Comments: 0

prove that (x^2 +a^2 )^4 = (x^4 −6x^2 a^2 +a^4 )^2 +(4x^3 a−4xa^3 )^2

$${prove}\:{that} \\ $$$$\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{4}} \:=\:\left({x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{2}} {a}^{\mathrm{2}} +{a}^{\mathrm{4}} \right)^{\mathrm{2}} +\left(\mathrm{4}{x}^{\mathrm{3}} {a}−\mathrm{4}{xa}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$

  Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com