Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 285

Question Number 190615    Answers: 1   Comments: 1

Question Number 190611    Answers: 0   Comments: 2

Montrer que: 1•c^2 =a^2 +b^2 2• rayon r=(c/(1+(√2)))−((a+b)/(2+(√2)))

$$\mathrm{Montrer}\:\mathrm{que}: \\ $$$$\mathrm{1}\bullet\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\mathrm{2}\bullet\:\mathrm{rayon}\:\:\:\:\:\boldsymbol{\mathrm{r}}=\frac{\boldsymbol{\mathrm{c}}}{\mathrm{1}+\sqrt{\mathrm{2}}}−\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$$ \\ $$

Question Number 190607    Answers: 0   Comments: 0

Question Number 190602    Answers: 1   Comments: 0

let S={a,b,c,d,e,f} if we take any subset S (same subset is allowed), it also can be S, which will form S if we join them, order of operation does not matter ({a,b,c,d},{d,e,f}) is the same as ({d,e,f},{a,b,c,d}) how many ways can we choose?

$$ \\ $$$$\: \\ $$$$\:{let}\:{S}=\left\{{a},{b},{c},{d},{e},{f}\right\} \\ $$$$\:{if}\:{we}\:{take}\:{any}\:{subset}\:{S}\:\left({same}\:{subset}\:{is}\:{allowed}\right), \\ $$$$\:{it}\:{also}\:{can}\:{be}\:{S},\:{which}\:{will}\:{form}\:{S}\:{if}\:{we}\:{join}\:{them}, \\ $$$${order}\:{of}\:{operation}\:{does}\:{not}\:{matter} \\ $$$$\:\left(\left\{{a},{b},{c},{d}\right\},\left\{{d},{e},{f}\right\}\right)\:{is}\:{the}\:{same}\:{as} \\ $$$$\:\left(\left\{{d},{e},{f}\right\},\left\{{a},{b},{c},{d}\right\}\right) \\ $$$$\:{how}\:{many}\:{ways}\:{can}\:{we}\:{choose}? \\ $$$$\: \\ $$$$ \\ $$

Question Number 190644    Answers: 1   Comments: 0

Question Number 190583    Answers: 1   Comments: 0

Question Number 190580    Answers: 1   Comments: 0

Question Number 190579    Answers: 1   Comments: 0

Question Number 190578    Answers: 1   Comments: 0

Question Number 190573    Answers: 1   Comments: 3

a^ 2+2ab+b^ 2

$$\hat {{a}}\mathrm{2}+\mathrm{2}{ab}+\hat {{b}}\mathrm{2} \\ $$

Question Number 190568    Answers: 0   Comments: 1

Question Number 190569    Answers: 1   Comments: 0

The number of 4−digit numbers that contain the number 6 and are divisible by 3 is ___

$$\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}−\mathrm{digit}\: \\ $$$$\:\mathrm{numbers}\:\mathrm{that}\:\mathrm{contain}\:\mathrm{the} \\ $$$$\:\mathrm{number}\:\mathrm{6}\:\mathrm{and}\:\mathrm{are}\:\mathrm{divisible}\: \\ $$$$\:\mathrm{by}\:\mathrm{3}\:\mathrm{is}\:\_\_\_ \\ $$

Question Number 190565    Answers: 1   Comments: 0

Question Number 190564    Answers: 2   Comments: 0

Question Number 190563    Answers: 1   Comments: 0

Question Number 190557    Answers: 2   Comments: 0

Question Number 190552    Answers: 1   Comments: 1

∫_(1/2) ^2 ln(((ln(x+(1/x)))/(ln(x^2 −x+((17)/6)))))dx=?

$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} {ln}\left(\frac{{ln}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{{ln}\left({x}^{\mathrm{2}} −{x}+\frac{\mathrm{17}}{\mathrm{6}}\right)}\right){dx}=? \\ $$

Question Number 190546    Answers: 2   Comments: 0

Given x,y,z>0 and x^2 +y^2 +z^2 +x+2y+3z=23 find maximum of x+y+z.

$$\:\mathrm{Given}\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\mathrm{and}\: \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\mathrm{x}+\mathrm{2y}+\mathrm{3z}=\mathrm{23}\: \\ $$$$\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}+\mathrm{z}. \\ $$

Question Number 190544    Answers: 1   Comments: 1

Given p,q,r,s sre distinc prime numbers such that pq−rs divisible by 30. minimum value of p+q+r+s =?

$$\mathrm{Given}\:\mathrm{p},\mathrm{q},\mathrm{r},\mathrm{s}\:\mathrm{sre}\:\mathrm{distinc}\:\mathrm{prime}\:\mathrm{numbers} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{pq}−\mathrm{rs}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{30}. \\ $$$$\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}\:=? \\ $$

Question Number 190542    Answers: 0   Comments: 0

Question Number 190537    Answers: 1   Comments: 0

Question Number 190536    Answers: 1   Comments: 0

If p,q and r are the roots of equation x^3 −3x^2 +1 = 0 then find the value of ((3p−2))^(1/3) +((3q−2))^(1/3) +((3r−2))^(1/3)

$$\:\mathrm{If}\:\mathrm{p},\mathrm{q}\:\mathrm{and}\:\mathrm{r}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\sqrt[{\mathrm{3}}]{\mathrm{3p}−\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3q}−\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{3r}−\mathrm{2}}\: \\ $$

Question Number 190533    Answers: 1   Comments: 0

Question Number 190532    Answers: 1   Comments: 0

10x^2 −9xy+2y^2 =10 please how do I find the ratio of x:y

$$\mathrm{10x}^{\mathrm{2}} −\mathrm{9xy}+\mathrm{2y}^{\mathrm{2}} =\mathrm{10} \\ $$$$\:\mathrm{please}\:\mathrm{how}\:\mathrm{do}\:\mathrm{I}\:\mathrm{find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of} \\ $$$$\:\mathrm{x}:\mathrm{y} \\ $$

Question Number 190527    Answers: 1   Comments: 1

Question Number 190523    Answers: 1   Comments: 0

  Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com