Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 285

Question Number 192105    Answers: 3   Comments: 0

Question Number 192104    Answers: 1   Comments: 0

Question Number 192103    Answers: 1   Comments: 0

Question Number 192099    Answers: 0   Comments: 1

demontrer l expression suivante

$$\mathrm{demontrer}\:\:\mathrm{l}\:\mathrm{expression}\:\mathrm{suivante} \\ $$

Question Number 192098    Answers: 1   Comments: 0

Question Number 192095    Answers: 0   Comments: 0

Prove a non−empty set S of a group G wrt binary operation ∗ is a sub− group of G. Iff 1) a,b ∈ S ⇒ a∗b∈S 2) a ∈ S ⇒ a^(−1) ∈ S. Hello

$$\mathrm{Prove}\:\mathrm{a}\:\mathrm{non}−\mathrm{empty}\:\mathrm{set}\:\mathrm{S}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group} \\ $$$$\mathrm{G}\:\mathrm{wrt}\:\mathrm{binary}\:\mathrm{operation}\:\ast\:\mathrm{is}\:\mathrm{a}\:\mathrm{sub}− \\ $$$$\mathrm{group}\:\mathrm{of}\:\mathrm{G}.\:\mathrm{Iff}\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{S}\:\Rightarrow\:\mathrm{a}\ast\mathrm{b}\in\mathrm{S} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}\:\in\:\mathrm{S}\:\Rightarrow\:\mathrm{a}^{−\mathrm{1}} \:\in\:\mathrm{S}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Hello} \\ $$

Question Number 192094    Answers: 0   Comments: 0

Prove that the order of a subgroup S of a finite group G, always divide the order of group G.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{a}\:\mathrm{subgroup} \\ $$$$\mathrm{S}\:\mathrm{of}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{group}\:\mathrm{G},\:\mathrm{always}\:\mathrm{divide} \\ $$$$\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{group}\:\mathrm{G}. \\ $$

Question Number 192087    Answers: 0   Comments: 3

Let {H_α } ∈ Ω, be a family of subgroup of a group G, then prove that ∩_(α ∈ Ω) H_α .

$$\mathrm{Let}\:\left\{\mathrm{H}_{\alpha} \right\}\:\in\:\Omega,\:\mathrm{be}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\: \\ $$$$\mathrm{subgroup}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group}\:\mathrm{G},\:\mathrm{then}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\cap_{\alpha\:\in\:\Omega} \mathrm{H}_{\alpha} . \\ $$$$ \\ $$$$ \\ $$

Question Number 192084    Answers: 4   Comments: 0

f(x)+x∙f(−x)=x^2 +1 f((√2))=?

$${f}\left({x}\right)+{x}\centerdot{f}\left(−{x}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${f}\left(\sqrt{\mathrm{2}}\right)=? \\ $$

Question Number 192083    Answers: 1   Comments: 0

f(x)=ax^2 +bx+c f(x−1)+f(x)+f(x+1)=x^2 +1 f(2)=?

$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({x}−\mathrm{1}\right)+{f}\left({x}\right)+{f}\left({x}+\mathrm{1}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=? \\ $$

Question Number 192080    Answers: 1   Comments: 0

f^(−1) (((x+1)/x))=x^3 f^(−1) (x)+f(8)=?

$${f}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)={x}^{\mathrm{3}} \:\: \\ $$$${f}^{−\mathrm{1}} \left({x}\right)+{f}\left(\mathrm{8}\right)=? \\ $$

Question Number 192077    Answers: 1   Comments: 0

Let H be a non−empty subset of a group G, prove that the follow− ing are equivalent 1) H is a subgroup of G 2) for a,b ∈ H, ab^(−1) ∈ H 3) for a,b ∈ ab ∈ H 4) for a ∈ H, a^(−1) ∈ H Hint: prove 1)→2)→3)→4)→1) Help!!!

$$\mathrm{Let}\:\mathrm{H}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{empty}\:\mathrm{subset}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{G},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{follow}− \\ $$$$\mathrm{ing}\:\mathrm{are}\:\mathrm{equivalent} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{H}\:\mathrm{is}\:\mathrm{a}\:\mathrm{subgroup}\:\mathrm{of}\:\mathrm{G} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{H},\:\mathrm{ab}^{−\mathrm{1}} \:\in\:\mathrm{H} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{ab}\:\in\:\mathrm{H} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{for}\:\mathrm{a}\:\in\:\mathrm{H},\:\mathrm{a}^{−\mathrm{1}} \:\in\:\mathrm{H} \\ $$$$ \\ $$$$\left.\mathrm{H}\left.\mathrm{i}\left.\mathrm{n}\left.\mathrm{t}\left.:\:\mathrm{prove}\:\mathrm{1}\right)\rightarrow\mathrm{2}\right)\rightarrow\mathrm{3}\right)\rightarrow\mathrm{4}\right)\rightarrow\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{Help}!!! \\ $$

Question Number 192076    Answers: 1   Comments: 0

f(x)=x^2 +6x f^(−1) (x)=?

$${f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{6}{x}\:\:\:\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 192073    Answers: 1   Comments: 0

Reponse a l exercice deja pose

$$\mathrm{Reponse}\:\mathrm{a}\:\:\mathrm{l}\:\mathrm{exercice}\:\mathrm{deja}\:\:\mathrm{pose} \\ $$

Question Number 192062    Answers: 2   Comments: 3

prove it : times_n ; (√(4+(√(4+(√(4+...+(√4))))) )) < 3

$${prove}\:{it}\::\: \\ $$$$\:\:\:{times\_n}\:\:\:;\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}\:\:}\:<\:\mathrm{3} \\ $$

Question Number 192057    Answers: 1   Comments: 0

Simplify: (((√a) + (√a^2 ) + (√a^3 ) + (√a^4 ))/(((√a) + 1)∙(a + 1)))

$$\mathrm{Simplify}: \\ $$$$\frac{\sqrt{\mathrm{a}}\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{2}} }\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{3}} }\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{4}} }}{\left(\sqrt{\mathrm{a}}\:\:+\:\:\mathrm{1}\right)\centerdot\left(\mathrm{a}\:\:+\:\:\mathrm{1}\right)} \\ $$

Question Number 192054    Answers: 1   Comments: 0

If Q = ((2−x)/(y−1)) ; −5≤x<−1 , 5≤y<6 Find Q_(max) .

$$\:\:\:\mathrm{If}\:\mathrm{Q}\:=\:\frac{\mathrm{2}−\mathrm{x}}{\mathrm{y}−\mathrm{1}}\:;\:−\mathrm{5}\leqslant\mathrm{x}<−\mathrm{1}\:,\:\mathrm{5}\leqslant\mathrm{y}<\mathrm{6} \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{Q}_{\mathrm{max}} .\: \\ $$

Question Number 192049    Answers: 2   Comments: 0

fog(x)=4x−1 g(x)=x−2 f(x)=?

$${fog}\left({x}\right)=\mathrm{4}{x}−\mathrm{1} \\ $$$${g}\left({x}\right)={x}−\mathrm{2} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 192048    Answers: 1   Comments: 0

if the combined function is h(x)=(√(3x^2 +1)) then find the tow other functions of its.

$${if}\:{the}\:{combined}\:{function}\:{is}\:{h}\left({x}\right)=\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${then}\:{find}\:{the}\:{tow}\:{other}\:{functions}\:{of}\:{its}. \\ $$

Question Number 192047    Answers: 1   Comments: 0

we have three digit number like XYZ that X+Y+Z=16, if we replace X by Z then it will be changed to ZYX number that ZYX=XYZ−594 find XYZ number.

$${we}\:{have}\:{three}\:{digit}\:{number}\:{like}\:{XYZ} \\ $$$${that}\:{X}+{Y}+{Z}=\mathrm{16},\:{if}\:{we}\:{replace}\:{X}\:{by}\:{Z} \\ $$$${then}\:{it}\:{will}\:{be}\:{changed}\:{to}\:{ZYX}\:{number}\: \\ $$$${that}\:{ZYX}={XYZ}−\mathrm{594} \\ $$$${find}\:{XYZ}\:{number}. \\ $$

Question Number 192033    Answers: 2   Comments: 0

Question Number 192044    Answers: 0   Comments: 0

Question Number 192045    Answers: 0   Comments: 0

(1/((1+(√2))(1+(2)^(1/4) )(1+(2)^(1/8) )(1+(2)^(1/(16)) )))×(((1−(2)^(1/(16)) )/(1−(2_ )^(1/(16)) ))) ⇒_ ((1−(2)^(1/(16)) )/((1+(√2))(1+(2)^(1/4) )(1+(2)^(1/8) )(1−(2)^(1/8) )))⇒(1/((1+(√2))(1+(2)^(1/4) )(1−(2)^(1/4) )))

$$\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{16}}]{\mathrm{2}}\right)}×\left(\frac{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}}}{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}_{} }}\right) \\ $$$$ \\ $$$$\Rightarrow_{} \frac{\mathrm{1}−\sqrt[{\mathrm{16}}]{\mathrm{2}}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{8}}]{\mathrm{2}}\right)}\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)} \\ $$$$ \\ $$

Question Number 192024    Answers: 1   Comments: 0

Question Number 192023    Answers: 2   Comments: 0

Question Number 192046    Answers: 2   Comments: 0

tow type creams are in a box that one type of these have 25gr mass and another ones have 37gr mass, if the total mass of those is 870gr then find the number of each type of creams.

$${tow}\:{type}\:{creams}\:{are}\:{in}\:{a}\:{box}\:{that}\:{one}\: \\ $$$${type}\:{of}\:{these}\:{have}\:\mathrm{25}{gr}\:{mass}\:{and}\:{another} \\ $$$${ones}\:{have}\:\mathrm{37}{gr}\:{mass},\:{if}\:{the}\:{total}\:{mass} \\ $$$${of}\:{those}\:{is}\:\mathrm{870}{gr}\:{then}\:{find}\:{the}\:{number} \\ $$$${of}\:{each}\:{type}\:{of}\:{creams}. \\ $$

  Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com