Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 281
Question Number 192676 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\:\mathrm{lg}\left(\mathrm{5x}^{\mathrm{2}} \:−\:\mathrm{6}\right)\centerdot\mathrm{lg}\left(\mathrm{5x}\:−\:\mathrm{6}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{2}.\:\:\left(\mathrm{2x}\:−\:\mathrm{5}\right)\centerdot\mathrm{log}_{\mathrm{3}} \left(\mathrm{1},\mathrm{5}\:−\:\mathrm{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{3}.\:\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{14}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{32}\:=\:\mathrm{0} \\ $$
Question Number 192675 Answers: 1 Comments: 0
Question Number 192668 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}}{e}^{{x}} {dx}\:−\:\int_{\mathrm{0}} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}}{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}} {dx}=\:? \\ $$
Question Number 192664 Answers: 0 Comments: 0
Question Number 192663 Answers: 1 Comments: 0
Question Number 192661 Answers: 1 Comments: 2
Question Number 192652 Answers: 2 Comments: 0
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−\sqrt{{cos}\left({x}\right)}}{\mathrm{1}+{cos}\left(\sqrt{{x}}\right)} \\ $$
Question Number 192651 Answers: 2 Comments: 0
$$ \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{2}−\sqrt{{cos}\left({x}\right)}−{cos}\left({x}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 192650 Answers: 2 Comments: 0
$$ \\ $$$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \frac{{x}−{sen}\left({x}\right)}{{tan}^{\mathrm{3}} \left({x}\right)} \\ $$$${without}\:{lhopital}\:{rule} \\ $$
Question Number 192648 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\right) \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1} \\ $$
Question Number 192646 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\Rightarrow\mathrm{3}} \sqrt{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}+\mathrm{3}}{\boldsymbol{\mathrm{x}}−\mathrm{3}}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{limit}} \\ $$
Question Number 192639 Answers: 2 Comments: 0
$$ \\ $$lim_(x⇒∝ ) ((3x^3 +3x^2 +1)/(5x^3 +4x^2 +x)) find the limit
Question Number 192636 Answers: 1 Comments: 0
$${lim}_{{x}\rightarrow\mathrm{1}\:} \left(\mathrm{3}{x}^{\mathrm{2}} \:−\mathrm{7}{x}+\mathrm{3}\right)^{\mathrm{10}} \: \\ $$$${find}\:{the}\:{limit} \\ $$
Question Number 192634 Answers: 1 Comments: 0
$$\int\boldsymbol{{sin}}\left(\mathrm{12}{x}\:+\mathrm{8}\:\right){dx} \\ $$
Question Number 192630 Answers: 0 Comments: 0
$${z}={xy}−\mathrm{5}{x}+\mathrm{2}{y}.\:{find}\:\frac{{dz}}{{dx}}\:{and}\:\frac{{dz}}{{dy}}\:{at}\left(\mathrm{2},\mathrm{4}\right) \\ $$
Question Number 192629 Answers: 0 Comments: 0
$${Z}={f}\left({x}_{\mathrm{1},} {x}_{\mathrm{2},} {x}_{\mathrm{3}} \right)={x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{1}} ^{\mathrm{5}} −{x}_{\mathrm{2}} ^{\mathrm{2}} {x}_{\mathrm{3}} \:{find}\:{f}_{\mathrm{1}} ,{f}_{\mathrm{11}} ,{and}\:{f}_{\mathrm{21}} \\ $$
Question Number 192625 Answers: 3 Comments: 1
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}^{\mathrm{4}} \left(\pi{cos}\left({x}\right)\right)}{\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left({x}\right)\right)\right)} \\ $$
Question Number 192624 Answers: 1 Comments: 0
$${cos}\mathrm{36}−{cos}\mathrm{72}=? \\ $$
Question Number 192623 Answers: 1 Comments: 0
$${cot}\mathrm{70}+\mathrm{4}{cos}\mathrm{70}=? \\ $$
Question Number 192622 Answers: 1 Comments: 0
$$\frac{\mathrm{3}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \sqrt{\frac{\mathrm{2}}{\mathrm{2}+\pi^{\mathrm{2}} }}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}\pi}}{\mathrm{2}+\pi^{\mathrm{2}} }+\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\pi} \\ $$
Question Number 192617 Answers: 2 Comments: 0
Question Number 192616 Answers: 0 Comments: 0
Question Number 192612 Answers: 1 Comments: 3
$$\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{y}}\:+\:\frac{\mathrm{1}}{{z}}\:=\:\mathrm{1}\: \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \\ $$
Question Number 192608 Answers: 2 Comments: 0
$${let}\:{k}\:{be}\:{natural}\:{number}.\:{defined}\:{s}_{{k}} \:{as}\:{the} \\ $$$${sum}\:{of}\:{the}\:{infinite}\:{series}\:{s}_{{k}} =\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{0}} }\:+\:\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{1}} }\:+\:\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} }\:+... \\ $$$${find}\:{the}\:{value}\:{of}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left[\frac{{s}_{{k}} }{\mathrm{2}^{{k}−\mathrm{1}} }\right]\:\:. \\ $$
Question Number 192606 Answers: 0 Comments: 1
$${proof}\:{that}\:\mathrm{0}^{\mathrm{0}} =\mathrm{1}\:{without}\:{limit}! \\ $$
Question Number 192604 Answers: 0 Comments: 1
$${many}\:{people}\:{say}\:{that}\:{the}\:\mathrm{0}^{\mathrm{0}\:} {is}\:{an}\:{uninfinity} \\ $$$${ones}\:{of}\:{them}\:{say}\:{that}\:\mathrm{0}^{\mathrm{0}} \:{is}\:{infinity}\:{and}\:{equal}\:{to}\:\mathrm{1}! \\ $$$${what}\:{do}\:{you}\:{think}\:{wich}\:{ones}\:{of}\:{them} \\ $$$${say}\:{right}? \\ $$
Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 Pg 284 Pg 285
Terms of Service
Privacy Policy
Contact: info@tinkutara.com