Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 28

Question Number 222487    Answers: 0   Comments: 0

′Delete all lines′ function deletes all lines without asking after deleting all lines for the first time in the equation editor

$$'{Delete}\:{all}\:{lines}'\:{function}\:{deletes}\:{all}\:{lines}\:{without}\:{asking}\:{after}\:{deleting}\:{all}\:{lines}\:{for}\:{the}\:{first}\:{time}\:{in}\:{the}\:{equation}\:{editor} \\ $$

Question Number 222583    Answers: 0   Comments: 0

solve for p,q,s in terms of c. • (((qs)/(q−sp)))^2 −s(((qs)/(q−sp)))+p=0 • (((q+c)/(p+1)))^2 =sp−q • (q−cp)(p+1)^2 =(q+c)^3 I have to find non zero real x=−(((q+c)/(p+1))) .

$${solve}\:{for}\:{p},{q},{s}\:{in}\:{terms}\:{of}\:{c}. \\ $$$$\bullet\:\left(\frac{{qs}}{{q}−{sp}}\right)^{\mathrm{2}} −{s}\left(\frac{{qs}}{{q}−{sp}}\right)+{p}=\mathrm{0} \\ $$$$\bullet\:\left(\frac{{q}+{c}}{{p}+\mathrm{1}}\right)^{\mathrm{2}} ={sp}−{q} \\ $$$$\bullet\:\left({q}−{cp}\right)\left({p}+\mathrm{1}\right)^{\mathrm{2}} =\left({q}+{c}\right)^{\mathrm{3}} \\ $$$${I}\:{have}\:{to}\:{find}\:{non}\:{zero}\:{real}\:{x}=−\left(\frac{{q}+{c}}{{p}+\mathrm{1}}\right)\:. \\ $$

Question Number 222482    Answers: 2   Comments: 1

Question Number 222479    Answers: 4   Comments: 1

Question Number 222478    Answers: 1   Comments: 0

S=Σ_(n=1) ^∞ (−1)^(n−1) (H_n /n^2 ) = ? note: H_n =1+(1/2) +(1/3) +...+(1/n)

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:=\:? \\ $$$$\:{note}:\:\:\:{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}}\: \\ $$

Question Number 222466    Answers: 0   Comments: 4

find the nth term.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}.\: \\ $$

Question Number 222462    Answers: 2   Comments: 0

i^i =??

$${i}^{{i}} =?? \\ $$

Question Number 222453    Answers: 1   Comments: 0

∫_0 ^( ∞) ((tanh^2 (x))/x^2 ) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{tanh}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$

Question Number 222448    Answers: 0   Comments: 0

∫_0 ^1 ((ln(1+x^2 +(√(x^4 +4x^2 +4))))/(1+x^2 )) dx

$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$

Question Number 222441    Answers: 2   Comments: 0

0^i

$$\mathrm{0}^{{i}} \\ $$

Question Number 222427    Answers: 1   Comments: 0

if lim_(x→0) (((sin2x)/x^3 )+(a/x^2 )+b)=1 find a and b without using LHopial rule

$$\:\:\boldsymbol{{if}}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{3}} }+\frac{\boldsymbol{{a}}}{\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{b}}\right)=\mathrm{1}\: \\ $$$$\:\:\:\:\boldsymbol{{find}}\:\boldsymbol{{a}}\:\boldsymbol{{and}}\:\boldsymbol{{b}}\:\:\boldsymbol{{without}} \\ $$$$\:\:\:\:\:\:\boldsymbol{{using}}\:\boldsymbol{{LH}}{opial}\:{rule} \\ $$

Question Number 222425    Answers: 3   Comments: 0

lim_(x→∞) (4x+(√(16x^2 −3x))) ans:(3/8)

$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\infty} \left(\mathrm{4}\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{\mathrm{x}}}\right) \\ $$$$\boldsymbol{\mathrm{ans}}:\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Question Number 222424    Answers: 1   Comments: 0

∫_2 ^( ∞) (dz/(ln(z)))−Σ_(l=2) ^∞ (1/(ln(l)))=??

$$\int_{\mathrm{2}} ^{\:\infty} \:\:\:\:\frac{\mathrm{d}{z}}{\mathrm{ln}\left({z}\right)}−\underset{{l}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{ln}\left({l}\right)}=?? \\ $$

Question Number 222422    Answers: 0   Comments: 0

Prove:∫_0 ^(+∞) ((x^2 lnsinhx)/(cosh 3x))dx=(1/9)π^2 G−(5/(108))π^3 ln 2

$$\mathrm{Prove}:\int_{\mathrm{0}} ^{+\infty} \frac{{x}^{\mathrm{2}} \mathrm{lnsinh}{x}}{\mathrm{cosh}\:\mathrm{3}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{9}}\pi^{\mathrm{2}} {G}−\frac{\mathrm{5}}{\mathrm{108}}\pi^{\mathrm{3}} \mathrm{ln}\:\mathrm{2} \\ $$

Question Number 222419    Answers: 0   Comments: 1

Question Number 222418    Answers: 1   Comments: 0

Prove that: lim_(n→+∞) [ ln^2 (n)−2∫^( n) _( 0) ((lnt)/( (√(1+t^2 )))) dt ]= (π^2 /6)+ln^2 (2)

$$\mathrm{Prove}\:\mathrm{that}:\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:\left[\:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{n}\right)−\mathrm{2}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{n}} \frac{\mathrm{lnt}}{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\:\mathrm{dt}\:\right]=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$

Question Number 222415    Answers: 3   Comments: 0

Question Number 222432    Answers: 0   Comments: 0

∫_0 ^(π/2) ((xsinxcosx)/(tan^2 x+cotan^2 x))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{xsinxcosx}}{{tan}^{\mathrm{2}} {x}+{cotan}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 222411    Answers: 3   Comments: 0

[ 1 .] ∫_0 ^( 1) ((ln(x) ln(1−x^2 )ln(1+x^2 ))/(1−x^2 )) dx [ 2 .] ∫_0 ^1 ((ln(x) ln(1−x) ln(1+x) ln(1+x^2 ))/(1+x)) dx [ 3 .] ∫_0 ^1 ((ln(x) ln(1−x^2 ) ln(1+x^2 ))/x) dx [ 4 .] ∫_0 ^( 1) ((ln(x) ln(1−x) ln(1+x) ln(1−x^2 ))/x) dx

$$\:\: \\ $$$$\:\:\:\left[\:\mathrm{1}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{dx}\:\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{2}\:.\right]\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx} \\ $$$$\:\left[\:\mathrm{3}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{4}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222568    Answers: 0   Comments: 0

f(x)=((√(x−2)))^0 and g(x)=(√((x−2)^0 )) dom f(x)=? , dom g(x)=?

$${f}\left({x}\right)=\left(\sqrt{{x}−\mathrm{2}}\right)^{\mathrm{0}} \:\:{and}\:{g}\left({x}\right)=\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{0}} } \\ $$$${dom}\:{f}\left({x}\right)=?\:,\:{dom}\:{g}\left({x}\right)=? \\ $$

Question Number 222436    Answers: 1   Comments: 0

Question Number 222409    Answers: 0   Comments: 0

Solve ; ∫_0 ^(π/2) ((ln^n sin θ)/(sin^p θ cos^q θ)) dθ , for n,p,q ∈ R_(≥ 0)

$$ \\ $$$$\:\:\:\mathrm{Solve}\:;\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}^{{n}} \:\mathrm{sin}\:\theta}{\mathrm{sin}^{{p}} \:\theta\:\mathrm{cos}^{{q}} \:\theta}\:\mathrm{d}\theta\:,\:\mathrm{for}\:{n},{p},{q}\:\in\:\mathbb{R}_{\geqslant\:\mathrm{0}} \:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222404    Answers: 1   Comments: 0

Question Number 222408    Answers: 1   Comments: 0

∫_1 ^∞ ((1/x))^(x/( (√(x−1)))) dx = ??

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}}{\:\sqrt{{x}−\mathrm{1}}}} \:{dx}\:=\:\:\:?? \\ $$$$ \\ $$

Question Number 222389    Answers: 0   Comments: 0

Prove: ∫_0 ^∞ ((cos(nx)cos(p arctan x))/((1+x^2 )^(p/2) ))=(π/2) ((n^(p−1) e^(−n) )/(Γ(p))) (p>0)

$$\mathrm{Prove}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\left({nx}\right)\mathrm{cos}\left({p}\:\mathrm{arctan}\:{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{p}}{\mathrm{2}}} }=\frac{\pi}{\mathrm{2}}\:\frac{{n}^{{p}−\mathrm{1}} {e}^{−{n}} }{\Gamma\left({p}\right)}\:\left({p}>\mathrm{0}\right) \\ $$

Question Number 222385    Answers: 1   Comments: 2

  Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com