Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 28

Question Number 222356    Answers: 1   Comments: 0

∫_0 ^( ∞) f(r)dr=1 , ∫_0 ^( ∞) g(r)dr=1 ∫_(−∞i+𝛄) ^( ∞i+𝛄) F(t)G(t)dt=?? F(t)=∫_0 ^( ∞) f(r)e^(−rt) dr , G(t)=∫_0 ^( ∞) g(r)e^(−rt) dr

$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right)\mathrm{d}{r}=\mathrm{1}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right)\mathrm{d}{r}=\mathrm{1} \\ $$$$\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:{F}\left({t}\right){G}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${F}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right){e}^{−{rt}} \mathrm{d}{r}\:,\:{G}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$

Question Number 222353    Answers: 1   Comments: 1

solve; ((11)/(29)) = ? , no fraction and no decimal

$$ \\ $$$$\:\:\:\:\:\mathrm{solve};\:\:\frac{\mathrm{11}}{\mathrm{29}}\:=\:?\:,\:\mathrm{no}\:\mathrm{fraction}\:\mathrm{and}\:\mathrm{no}\:\mathrm{decimal}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222352    Answers: 1   Comments: 0

Prove that : (a−b)(a−c)(a−d)(b−c)(b−d)(c−d) divisible by 12, with a,b,c,d ∈Z

$${Prove}\:{that}\::\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12},\:{with}\:{a},{b},{c},{d}\:\in\mathbb{Z} \\ $$

Question Number 222339    Answers: 2   Comments: 0

Solve: ((36))^(1/x) + ((24))^(1/x) = ((16))^(1/x)

$$\mathrm{Solve}:\:\:\:\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{36}}\:\:\:+\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{24}}\:\:\:\:=\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{16}} \\ $$

Question Number 222336    Answers: 0   Comments: 0

∫∫∫ ((−y ± (√(y^2 + 4xy)))/(2x)) dxdydz

$$ \\ $$$$\:\:\:\:\:\:\:\int\int\int\:\:\frac{−{y}\:\pm\:\sqrt{{y}^{\mathrm{2}} \:+\:\mathrm{4}{xy}}}{\mathrm{2}{x}}\:{dxdydz} \\ $$$$ \\ $$

Question Number 222334    Answers: 1   Comments: 4

Question Number 222331    Answers: 0   Comments: 0

Find closed form; ∫_( 0) ^( 1) ((Li_2 (z^2 )Li_2 (−z^2 ))/(1 + z^2 )) dz = ?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Find}\:\mathrm{closed}\:\mathrm{form}; \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\mathrm{2}} \left({z}^{\mathrm{2}} \right)\mathrm{Li}_{\mathrm{2}} \left(−{z}^{\mathrm{2}} \right)}{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\:\mathrm{d}{z}\:=\:? \\ $$

Question Number 222329    Answers: 0   Comments: 1

lim_(x→∞) 4x+(√(16x^2 −3x))

$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\infty} \:\mathrm{4}\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{\mathrm{x}}} \\ $$$$ \\ $$

Question Number 222323    Answers: 1   Comments: 0

a+3^b =b,3^b ∙a^(b+1) max=?

$${a}+\mathrm{3}^{{b}} ={b},\mathrm{3}^{{b}} \centerdot{a}^{{b}+\mathrm{1}} \:\mathrm{max}=? \\ $$

Question Number 222317    Answers: 1   Comments: 0

∫_0 ^( ∞) f(z)dz=(π/2) , ∫_0 ^( ∞) g(z)dz=1 (2/π)∫_0 ^( ∞) f(z)g(z)dz=??

$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{d}{z}=\frac{\pi}{\mathrm{2}}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({z}\right)\mathrm{d}{z}=\mathrm{1} \\ $$$$\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{g}\left({z}\right)\mathrm{d}{z}=?? \\ $$

Question Number 222312    Answers: 1   Comments: 0

Question Number 222309    Answers: 2   Comments: 0

determinant (((4^x +6^x =9^x )))

$$\begin{array}{|c|}{\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} }\\\hline\end{array} \\ $$

Question Number 222300    Answers: 0   Comments: 5

How do you put a box around something?? please tell me

$${How}\:{do}\:{you}\:{put}\:{a}\:{box}\:{around}\:{something}??\:{please}\:{tell}\:{me} \\ $$

Question Number 222299    Answers: 1   Comments: 0

For what value of k the roots of the equation ((x^2 −2x)/(4x−1))=((k−1)/(k+1)) will have same value but with opposite symbol(like x=a and −a) i mean the two valuea of x will be this type x=2 and −2(both 2 but opposite symbols)

$${For}\:{what}\:{value}\:{of}\:\:{k}\:\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${will}\:{have}\:{same}\:{value}\:{but}\:\:{with}\:{opposite}\:{symbol}\left({like}\:{x}={a}\:{and}\:−{a}\right) \\ $$$${i}\:{mean}\:{the}\:{two}\:{valuea}\:{of}\:{x}\:{will}\:{be}\:{this}\:{type} \\ $$$${x}=\mathrm{2}\:{and}\:−\mathrm{2}\left({both}\:\mathrm{2}\:{but}\:{opposite}\:{symbols}\right) \\ $$

Question Number 222295    Answers: 1   Comments: 0

Question Number 222292    Answers: 1   Comments: 0

∫_(−∞) ^∞ sech(z) sech(z−a) dz

$$ \\ $$$$\:\:\:\int_{−\infty} ^{\infty} \mathrm{sech}\left({z}\right)\:\mathrm{sech}\left({z}−{a}\right)\:{dz} \\ $$$$ \\ $$

Question Number 222288    Answers: 1   Comments: 0

Prove that: 1 + 2 + 3 + ... + n = ((n∙(n + 1))/2)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:...\:+\:\boldsymbol{\mathrm{n}}\:=\:\frac{\mathrm{n}\centerdot\left(\mathrm{n}\:+\:\mathrm{1}\right)}{\mathrm{2}} \\ $$

Question Number 222296    Answers: 0   Comments: 0

(1+x^4 )y′−x^3 y = x^5 −x^3 +2x+1

$$\left(\mathrm{1}+{x}^{\mathrm{4}} \right){y}'−{x}^{\mathrm{3}} {y}\:=\:{x}^{\mathrm{5}} −{x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1} \\ $$

Question Number 222284    Answers: 1   Comments: 0

y=(8^x /((in8)^3 )) find (d^6 y/dx^6 )

$$\boldsymbol{\mathrm{y}}=\frac{\mathrm{8}^{\boldsymbol{\mathrm{x}}} }{\left(\boldsymbol{\mathrm{in}}\mathrm{8}\right)^{\mathrm{3}} } \\ $$$$\boldsymbol{\mathrm{find}}\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{6}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{6}} } \\ $$

Question Number 222280    Answers: 0   Comments: 1

y=3x^(2024) −18x^(2020) +5x^(47) −8 find (d^(2025) y/dx^(2025) )

$$\boldsymbol{\mathrm{y}}=\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2024}} −\mathrm{18}\boldsymbol{\mathrm{x}}^{\mathrm{2020}} +\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{47}} −\mathrm{8} \\ $$$$\boldsymbol{\mathrm{find}}\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2025}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2025}} } \\ $$

Question Number 222279    Answers: 2   Comments: 0

(a^2 −b^2 )sin θ+2abcos θ=a^2 +b^2 tan θ=??

$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:\theta+\mathrm{2}{ab}\mathrm{cos}\:\theta={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\mathrm{tan}\:\theta=?? \\ $$

Question Number 222276    Answers: 0   Comments: 0

Prove; Σ_(k = 1) ^∞ (k/(sinh(πk))) = ((Γ((1/4))^4 − 8π^2 )/(32π^3 ))

$$ \\ $$$$\:\mathrm{Prove};\:\underset{{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}}{\mathrm{sinh}\left(\pi{k}\right)}\:=\:\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{4}} −\:\mathrm{8}\pi^{\mathrm{2}} }{\mathrm{32}\pi^{\mathrm{3}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222275    Answers: 1   Comments: 0

Prove ; ∫_(−π) ^( π) ((z sin(z) )/((1 + z + (√(1 + z^2 )))(√(3 + sin^2 (z))))) dz = ζ(2)

$$ \\ $$$$\:\:\mathrm{Prove}\:;\:\int_{−\pi} ^{\:\pi} \:\frac{{z}\:\mathrm{sin}\left({z}\right)\:}{\left(\mathrm{1}\:+\:{z}\:+\:\sqrt{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\right)\sqrt{\mathrm{3}\:+\:\mathrm{sin}^{\mathrm{2}} \left({z}\right)}}\:{dz}\:=\:\zeta\left(\mathrm{2}\right)\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222271    Answers: 2   Comments: 0

y=(((1+(√5))/2))^(10) ,Prove:y=((123+55(√5))/2)

$${y}=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{10}} ,\mathrm{Prove}:{y}=\frac{\mathrm{123}+\mathrm{55}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Question Number 222261    Answers: 1   Comments: 0

lim_(x→0) ((tan(x^2 +4x))/(sin(9x^2 +x))) No L′ho^ pital′s rule allowed!

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)}{\mathrm{sin}\left(\mathrm{9}{x}^{\mathrm{2}} +{x}\right)} \\ $$$$\mathrm{No}\:\mathrm{L}'\mathrm{h}\hat {\mathrm{o}pital}'\mathrm{s}\:\mathrm{rule}\:\mathrm{allowed}! \\ $$

Question Number 222249    Answers: 3   Comments: 0

Prove:∀n∈Z^+ ,1^3 +2^3 +…+n^3 =(1+2+…+n)^2

$$\mathrm{Prove}:\forall{n}\in\mathbb{Z}^{+} ,\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\ldots+{n}^{\mathrm{3}} =\left(\mathrm{1}+\mathrm{2}+\ldots+{n}\right)^{\mathrm{2}} \\ $$

  Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com