Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 28
Question Number 219425 Answers: 2 Comments: 1
Question Number 219423 Answers: 1 Comments: 0
Question Number 219414 Answers: 0 Comments: 0
$$\:\:\:\mathrm{given}\:\mathrm{the}\:\mathrm{recursive}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{define}\:\mathrm{by}\:\mathrm{setting} \\ $$$$\:\:\mathrm{a}_{\mathrm{1}\:} \:\in\:\left(\mathrm{0},\mathrm{1}\right)\:\:\:,\:\:\:\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} \left(\mathrm{1}−\mathrm{a}_{\mathrm{n}} \right)\:\:\:,\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\:\:\mathrm{prove}\:\mathrm{that}\:\:\left(\mathrm{1}\right)\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{na}_{\mathrm{n}} =\:\mathrm{1} \\ $$$$\:\:\left(\mathrm{2}\right)\:\:\mathrm{b}_{\mathrm{n}} \:=\:\mathrm{n}\left(\mathrm{1}−\mathrm{na}_{\mathrm{n}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{incresing}\:\mathrm{sequence} \\ $$$$\:\:\:\mathrm{and}\:\mathrm{diverge}\:\mathrm{to}\:\infty \\ $$$$\:\:\:\left(\mathrm{3}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{n}\left(\mathrm{1}−\mathrm{na}_{\mathrm{n}} \right)}{\mathrm{ln}\left(\mathrm{n}\right)}\:=\:\mathrm{1} \\ $$
Question Number 219408 Answers: 2 Comments: 0
$${a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}.\:{a}_{{n}} =\frac{\mathrm{2}}{{n}+\mathrm{3}}+\left(\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{3}}\right)^{\mathrm{2}} {a}_{{n}−\mathrm{1}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:{a}_{{n}} . \\ $$
Question Number 219404 Answers: 2 Comments: 2
$$\:\:\mathrm{given}\:\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{2023}}{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\mathrm{find}\:\left(\mathrm{gogogogogog}\right)\left(\mathrm{2024}\right) \\ $$
Question Number 219403 Answers: 1 Comments: 0
Question Number 219388 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}^{\mathrm{2}} }\:\mathrm{d}{u}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}^{\mathrm{2}} }{e}^{−{ut}} \mathrm{d}{u}=\int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{{u}}\centerdot\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}}{e}^{−{ut}} \mathrm{d}{u}= \\ $$$$\int_{\:{t}} ^{\:\infty} \:\:\mathcal{L}_{{u}} \left\{\frac{\mathrm{sin}^{\mathrm{2}} \left({p}\right)}{{p}}\right\}\:\mathrm{d}{u}=\int_{\:{t}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{sin}^{\mathrm{2}} \left({p}\right)}{{p}}{e}^{−{up}} \mathrm{d}{p}\mathrm{d}{u} \\ $$$$\int_{\:{t}} ^{\:\infty} \:\int_{\:{w}} ^{\:\infty} \:\mathcal{L}_{{s}} \left\{\mathrm{sin}^{\mathrm{2}} \left({r}\right)\right\}\mathrm{d}{s}\:\mathrm{d}{w} \\ $$$$\int_{\:{t}} ^{\:\infty} \int_{\:{w}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}^{\mathrm{2}} \left({r}\right){e}^{−{sr}} \mathrm{d}{r}\:\mathrm{d}{s}\:\mathrm{d}{w} \\ $$$$\int_{\:{t}} ^{\:\infty} \int_{\:{w}} ^{\:\infty} \:\:\frac{\mathrm{2}}{{s}\left({s}^{\mathrm{2}} +\mathrm{4}\right)}\:\mathrm{d}{s}\:\mathrm{d}{w}=\int_{\:{t}} ^{\:\infty} \:\:\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left({s}\right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left({s}^{\mathrm{2}} +\mathrm{4}\right)\right]_{{s}={w}} ^{{s}=\infty} \mathrm{d}{w} \\ $$$$\int_{\:{t}} ^{\:\infty} \:\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left(\frac{{w}^{\mathrm{2}} }{{w}^{\mathrm{2}} +\mathrm{4}}\right)\mathrm{d}{w}=\left[\frac{\mathrm{1}}{\mathrm{4}}{w}\centerdot\mathrm{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{{w}}\right)^{\mathrm{2}} \right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}{w}\right)\right]_{{w}={t}} ^{{w}=\infty} \\ $$$$\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}{t}\centerdot\mathrm{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{{t}}\right)^{\mathrm{2}} \right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}{t}\right) \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{t}}\right)−\frac{\mathrm{1}}{\mathrm{4}}{t}\centerdot\mathrm{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{{t}}\right)^{\mathrm{2}} \right)\right\}=\frac{\pi}{\mathrm{2}} \\ $$
Question Number 219384 Answers: 1 Comments: 0
Question Number 219377 Answers: 1 Comments: 0
$$\:\mathrm{If}\:\left(\left(\mathrm{fog}\right)^{−\mathrm{1}} \mathrm{of}\right)\left(\mathrm{x}\right)=\:\mathrm{3x}−\mathrm{8} \\ $$$$\:\mathrm{find}\:\mathrm{g}\left(\mathrm{5}\right). \\ $$
Question Number 219374 Answers: 0 Comments: 1
Question Number 219373 Answers: 0 Comments: 0
Question Number 219372 Answers: 0 Comments: 0
Question Number 219371 Answers: 0 Comments: 0
Question Number 219370 Answers: 0 Comments: 0
Question Number 219349 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−{r}^{\mathrm{2}} } \mathrm{cos}\left({r}\right)\:\mathrm{d}{r}=?? \\ $$
Question Number 219348 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:{Y}_{\mathrm{0}} \left({z}\right){e}^{−\mathrm{2}{z}} \mathrm{d}{z}=?? \\ $$$${Y}_{\nu} \left({z}\right)\:\mathrm{is}\:\mathrm{Second}\:\mathrm{Bessel}\:\mathrm{Function} \\ $$
Question Number 219347 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:{K}_{\mathrm{0}} \left({z}\right){e}^{−{kz}} \mathrm{d}{z}=??? \\ $$$${K}_{\nu} \left({z}\right)\:\mathrm{is}\:\mathrm{modified}\:\mathrm{Bessel}\:\mathrm{function} \\ $$
Question Number 219346 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \mathrm{ln}\left({z}\right){e}^{−\mathrm{3}{z}} \mathrm{d}{z}=??? \\ $$
Question Number 219345 Answers: 0 Comments: 0
$$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{\:+\infty} \:\:−\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:\mathrm{da}=???\:\: \\ $$
Question Number 219344 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{cos}\left({z}\right)}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{z}=?? \\ $$
Question Number 219343 Answers: 0 Comments: 0
$$\int\int\int_{\:\mathrm{S}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{z}^{\mathrm{2}} } \:\mathrm{dA}=??? \\ $$
Question Number 219365 Answers: 0 Comments: 0
Question Number 219361 Answers: 1 Comments: 0
$$\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{cos}\left({z}\right){e}^{−{z}} }{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z}=?? \\ $$
Question Number 219360 Answers: 0 Comments: 0
$$\mathrm{prove}\:\underset{{k}=−\infty} {\overset{\:\infty} {\sum}}\:{J}_{{k}} \left({z}\right)=\mathrm{1} \\ $$
Question Number 219359 Answers: 0 Comments: 0
$$\mathrm{is}\:\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:{J}_{\nu} \left({k}\right)= \\ $$$$\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:\underset{{l}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{l}} }{{l}!\left({l}+\nu\right)!}\left(\frac{{k}}{\mathrm{2}}\right)^{\mathrm{2}{l}+\nu} =\underset{{l}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{l}} }{{l}!\left({l}+\nu\right)!}\left(\frac{{k}}{\mathrm{2}}\right)^{\mathrm{2}{l}+{k}} ?? \\ $$
Question Number 219358 Answers: 0 Comments: 0
$$\underset{{h}=−\infty} {\overset{\infty} {\sum}}{J}_{\nu} \left({h}\right)=??\:,\:\nu\in\mathbb{Z}\backslash\left\{\mathrm{2}\mathbb{Z}\right\} \\ $$
Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com