Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 279

Question Number 192958    Answers: 4   Comments: 0

Question Number 192957    Answers: 4   Comments: 2

bx^3 =10a^2 bx + 3a^3 y , ay^3 = 10ab^2 y + 3b^3 x solve for x and y in terms of (a , b) and solve for a and b in terms of (x , y )

$$ \\ $$$${bx}^{\mathrm{3}} =\mathrm{10}{a}^{\mathrm{2}} {bx}\:+\:\mathrm{3}{a}^{\mathrm{3}} {y}\:,\:{ay}^{\mathrm{3}} =\:\mathrm{10}{ab}^{\mathrm{2}} {y}\:+\:\mathrm{3}{b}^{\mathrm{3}} {x} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\right) \\ $$$${and}\:{solve}\:{for}\:{a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:\:\left({x}\:,\:{y}\:\right) \\ $$

Question Number 192942    Answers: 2   Comments: 1

Question Number 192937    Answers: 0   Comments: 0

Question Number 192936    Answers: 2   Comments: 0

Question Number 192933    Answers: 2   Comments: 0

Question Number 192928    Answers: 1   Comments: 0

2x^2 −6x+k = 0 where k<0 ((α/β) + (β/α))_(max) = ?

$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+{k}\:=\:\mathrm{0}\:{where}\:{k}<\mathrm{0}\: \\ $$$$\left(\frac{\alpha}{\beta}\:+\:\frac{\beta}{\alpha}\right)_{\mathrm{max}} \:=\:? \\ $$

Question Number 192927    Answers: 2   Comments: 0

Question Number 192925    Answers: 1   Comments: 0

Find: x = ? 1. 2^(x+1) + 0,5^(x−2) = 9 2. 4^(3x) = 12 3. 6^(x+2) = 18

$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\mathrm{2}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \:+\:\mathrm{0},\mathrm{5}^{\boldsymbol{\mathrm{x}}−\mathrm{2}} \:=\:\mathrm{9} \\ $$$$\mathrm{2}.\:\mathrm{4}^{\mathrm{3}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{12} \\ $$$$\mathrm{3}.\:\mathrm{6}^{\boldsymbol{\mathrm{x}}+\mathrm{2}} \:=\:\mathrm{18} \\ $$

Question Number 192924    Answers: 2   Comments: 0

1•determiner: tan (x/2) en fonction de tan x 2•on donne tan x=(1/8) tan (x/2)=? 3• la valeur proche de x?

$$\mathrm{1}\bullet\mathrm{determiner}:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\mathrm{en}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{tan}\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{2}\bullet\mathrm{on}\:\mathrm{donne}\:\:\mathrm{tan}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=? \\ $$$$\mathrm{3}\bullet\:\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{proche}\:\mathrm{de}\:\boldsymbol{\mathrm{x}}? \\ $$

Question Number 192918    Answers: 1   Comments: 0

Question Number 192917    Answers: 1   Comments: 0

Question Number 192916    Answers: 2   Comments: 0

Question Number 192914    Answers: 1   Comments: 0

x^2 (x^2 −1)=(1−(c/x))^3 +((c/x))^3

$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)=\left(\mathrm{1}−\frac{{c}}{{x}}\right)^{\mathrm{3}} +\left(\frac{{c}}{{x}}\right)^{\mathrm{3}} \\ $$

Question Number 192909    Answers: 0   Comments: 0

let P(x) is polinomial with integer coefficient s.t P(6)P(38)P(57)+19 is divided by 114. P(-13)=479 and P≥0 what is minimum value of P(0)?

$$\: \\ $$$$\:{let}\:{P}\left({x}\right)\:{is}\:{polinomial}\:{with}\:{integer} \\ $$$$\:{coefficient}\:{s}.{t}\:{P}\left(\mathrm{6}\right){P}\left(\mathrm{38}\right){P}\left(\mathrm{57}\right)+\mathrm{19}\:{is} \\ $$$$\:{divided}\:{by}\:\mathrm{114}.\:{P}\left(-\mathrm{13}\right)=\mathrm{479}\:{and}\:{P}\geqslant\mathrm{0} \\ $$$$\:{what}\:{is}\:{minimum}\:{value}\:{of}\:{P}\left(\mathrm{0}\right)? \\ $$$$ \\ $$

Question Number 192901    Answers: 2   Comments: 0

Question Number 192898    Answers: 0   Comments: 1

Solve for x x^3 −7x−2=0

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{2}=\mathrm{0} \\ $$

Question Number 192893    Answers: 1   Comments: 0

Q : Find the remainder of dividing the following number by 7 . N = 3^( 10^( 1) ) + 3^( 10^( 2) ) + 3^( 10^( 3) ) + ... + 3^( 10^( 10) ) ... @ nice − mathematics ...

$$ \\ $$$$\:\:\:\:\:\:\mathrm{Q}\::\:\mathrm{Find}\:\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{of}\:\:\mathrm{dividing} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{number}\:\mathrm{by}\:\:\mathrm{7}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{N}\:=\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{1}} } \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{2}} \:} \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{3}} \:} \:+\:...\:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{10}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:\:@\:\mathrm{nice}\:−\:\mathrm{mathematics}\:... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 192884    Answers: 0   Comments: 3

Question Number 192883    Answers: 1   Comments: 0

Question Number 192879    Answers: 1   Comments: 0

Good morning please what book do you recommended for calculus and physics for undergraduate

$${Good}\:{morning} \\ $$$${please}\:{what}\:{book}\:{do}\:{you}\:{recommended} \\ $$$${for}\:{calculus}\:{and}\:{physics}\:{for}\:{undergraduate} \\ $$

Question Number 192875    Answers: 2   Comments: 0

x^2 −yz=a^n y^2 −zx=b^n z^2 −xy=c^n find (x , y , z) in terms of (a , b , c)

$${x}^{\mathrm{2}} −{yz}={a}^{{n}} \\ $$$${y}^{\mathrm{2}} −{zx}={b}^{{n}} \\ $$$${z}^{\mathrm{2}} −{xy}={c}^{{n}} \\ $$$${find}\:\left({x}\:,\:{y}\:,\:{z}\right)\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\:,\:{c}\right) \\ $$

Question Number 192867    Answers: 1   Comments: 0

derivate of csc(2x) by definition

$${derivate}\:{of}\:\:{csc}\left(\mathrm{2}{x}\right)\:{by}\:\:{definition} \\ $$

Question Number 192862    Answers: 1   Comments: 0

Solve for x x^3 −115x+150=0

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{115}{x}+\mathrm{150}=\mathrm{0} \\ $$

Question Number 192858    Answers: 1   Comments: 0

∫_(4x) ^( x^3 ) (√((√t)+t^(1/3) ))dt

$$\int_{\mathrm{4}{x}} ^{\:{x}^{\mathrm{3}} } \sqrt{\sqrt{{t}}+{t}^{\mathrm{1}/\mathrm{3}} }{dt} \\ $$

Question Number 192856    Answers: 2   Comments: 0

if a+b+c +d = 63 and a,b,c,d ∈ N find the maximum value of ab+bc+cd = ?

$$\:{if}\:{a}+{b}+{c}\:+{d}\:\:=\:\mathrm{63}\:{and}\:{a},{b},{c},{d}\:\in\:\mathbb{N}\:{find}\: \\ $$$$\:\:\:{the}\:{maximum}\:{value}\:{of}\:{ab}+{bc}+{cd}\:=\:? \\ $$

  Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com