Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 279

Question Number 193079    Answers: 0   Comments: 2

Find all x∈R that satisfy the following inequalities: a) ∣4x−3∣≤11 b) ∣x−2∣>∣x+1∣ c) ∣x∣ + ∣x+2∣ + ∣2−x∣≤8

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R}\:\mathrm{that}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{inequalities}: \\ $$$$\left.\mathrm{a}\right)\:\mid\mathrm{4x}−\mathrm{3}\mid\leqslant\mathrm{11} \\ $$$$\left.\mathrm{b}\right)\:\mid\mathrm{x}−\mathrm{2}\mid>\mid\mathrm{x}+\mathrm{1}\mid \\ $$$$\left.\mathrm{c}\right)\:\mid\mathrm{x}\mid\:+\:\mid\mathrm{x}+\mathrm{2}\mid\:+\:\mid\mathrm{2}−\mathrm{x}\mid\leqslant\mathrm{8} \\ $$

Question Number 193078    Answers: 1   Comments: 0

1) Prove that if ε>0 and a,x∈R, then ∣a−x∣<ε iff x−ε<a<x+ε help

$$\left.\mathrm{1}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\varepsilon>\mathrm{0}\:\mathrm{and}\:\mathrm{a},\mathrm{x}\in\mathbb{R},\:\mathrm{then} \\ $$$$\mid\mathrm{a}−\mathrm{x}\mid<\varepsilon\:\mathrm{iff}\:\mathrm{x}−\varepsilon<\mathrm{a}<\mathrm{x}+\varepsilon \\ $$$$ \\ $$$$\mathrm{help} \\ $$

Question Number 193087    Answers: 1   Comments: 0

Question Number 193073    Answers: 1   Comments: 0

Question Number 193130    Answers: 3   Comments: 1

Solve for x x^2 −c=(√(c−x))

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{2}} −{c}=\sqrt{{c}−{x}} \\ $$

Question Number 193069    Answers: 1   Comments: 0

Question Number 193065    Answers: 1   Comments: 1

Question Number 193052    Answers: 2   Comments: 1

determiner la valeur de r

$$\boldsymbol{\mathrm{determiner}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{valeur}}\:\boldsymbol{\mathrm{de}}\:\:\boldsymbol{\mathrm{r}} \\ $$

Question Number 193049    Answers: 0   Comments: 0

Question Number 193045    Answers: 1   Comments: 0

what is the HCF of 8k+1 and 9k ? where k ∈ Z^+

$${what}\:{is}\:{the}\:{HCF}\:{of}\: \\ $$$$\mathrm{8}{k}+\mathrm{1}\:{and}\:\mathrm{9}{k}\:?\:{where}\:{k}\:\in\:\mathbb{Z}^{+} \\ $$

Question Number 193037    Answers: 2   Comments: 0

Question Number 193036    Answers: 1   Comments: 0

if f(x)=x(√((16−x^2 )^3 )) find ∫_(0.5) ^(3.5) f(x) dx using trapezoidal method then find the max and min value of the error with the given n steps x_n f(x_n ) −− −−− 0.5 31.24 0.93 54.69 1.36 72.3 1.79 81.98 2.21 81.25 2.64 71.54 3.07 51.68 3.5 25.41

$${if}\:{f}\left({x}\right)={x}\sqrt{\left(\mathrm{16}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$${find}\:\int_{\mathrm{0}.\mathrm{5}} ^{\mathrm{3}.\mathrm{5}} {f}\left({x}\right)\:{dx}\:{using}\:{trapezoidal}\:{method} \\ $$$${then}\:{find}\:{the}\:{max}\:{and}\:{min}\:{value}\:{of}\:{the}\:{error} \\ $$$$\:{with}\:{the}\:{given}\:{n}\:{steps} \\ $$$${x}_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}_{{n}} \right) \\ $$$$−−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−− \\ $$$$\mathrm{0}.\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{31}.\mathrm{24} \\ $$$$\mathrm{0}.\mathrm{93}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{54}.\mathrm{69} \\ $$$$\mathrm{1}.\mathrm{36}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{72}.\mathrm{3} \\ $$$$\mathrm{1}.\mathrm{79}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{81}.\mathrm{98} \\ $$$$\mathrm{2}.\mathrm{21}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{81}.\mathrm{25} \\ $$$$\mathrm{2}.\mathrm{64}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{71}.\mathrm{54} \\ $$$$\mathrm{3}.\mathrm{07}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{51}.\mathrm{68} \\ $$$$\mathrm{3}.\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{25}.\mathrm{41} \\ $$$$ \\ $$

Question Number 193031    Answers: 0   Comments: 0

Question Number 193027    Answers: 2   Comments: 0

Question Number 193026    Answers: 2   Comments: 0

Question Number 192999    Answers: 1   Comments: 0

Show that the following functions are continous on a close interval [0, 1]. f(x)={_(3 x=1) ^(((x^2 +x−2)/(x−1)) x≠1) Help!

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions} \\ $$$$\mathrm{are}\:\mathrm{continous}\:\mathrm{on}\:\mathrm{a}\:\mathrm{close}\:\mathrm{interval} \\ $$$$\left[\mathrm{0},\:\mathrm{1}\right]. \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left\{_{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=\mathrm{1}} ^{\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{2}}{\mathrm{x}−\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\neq\mathrm{1}} \right. \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 192992    Answers: 1   Comments: 0

{ ((2x+3y≡1(mod26))),((7x+8y≡2(mod26))) :}

$$\begin{cases}{\mathrm{2x}+\mathrm{3y}\equiv\mathrm{1}\left(\mathrm{mod26}\right)}\\{\mathrm{7x}+\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod26}\right)}\end{cases} \\ $$$$ \\ $$

Question Number 192991    Answers: 1   Comments: 0

the first, third and sixth terms of a linear sequence are the first three terms of an exponential sequence. find the common ratio

$${the}\:{first},\:{third}\:{and}\:{sixth}\:{terms}\:{of}\:{a} \\ $$$${linear}\:{sequence}\:{are}\:{the}\:{first}\:{three}\: \\ $$$${terms}\:{of}\:{an}\:{exponential}\:{sequence}.\: \\ $$$${find}\:{the}\:{common}\:{ratio} \\ $$

Question Number 192990    Answers: 1   Comments: 0

A fair die is tossed four times .what is the probability of obtaining a prime each time

$${A}\:{fair}\:{die}\:{is}\:{tossed}\:{four}\:{times}\:.{what} \\ $$$${is}\:{the}\:{probability}\:{of}\:{obtaining}\:{a}\: \\ $$$${prime}\:{each}\:{time} \\ $$

Question Number 192988    Answers: 2   Comments: 0

Question Number 192987    Answers: 1   Comments: 0

Question Number 192985    Answers: 1   Comments: 0

prove it : lim_(n→∞) Π_(i=1) ^n cos(θ/2^i )=((sinθ)/θ) then show : im_(n→∞) cos(π/4)cos(π/8)...cos(π/2^(n+1) ) =(2/π)

$${prove}\:{it}\:: \\ $$$${lim}_{{n}\rightarrow\infty} \:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\frac{\theta}{\mathrm{2}^{{i}} }=\frac{{sin}\theta}{\theta} \\ $$$${then}\:{show}\:: \\ $$$${im}_{{n}\rightarrow\infty} \:{cos}\frac{\pi}{\mathrm{4}}{cos}\frac{\pi}{\mathrm{8}}...{cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:=\frac{\mathrm{2}}{\pi} \\ $$$$ \\ $$

Question Number 192979    Answers: 0   Comments: 0

Can this be optimized (getting the minimum) using backprobagation? α(x_i ,y_i ,h_i )=(h_i −x_i )^2 +y_i ^2 β(y_i ,h_i )=y_i h_i ^2 −2uy_i h_i γ(h_i )=h_i ^4 −4uh_i ^3 +4u^2 h_i ^2 Cost=Σ_(i=0) ^m (cα(x_i ,y_i ,h_i )−2c^2 β(y_i ,h_i )+c^3 γ(h_i )) and how?

$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{optimized}\:\left(\mathrm{getting}\:\mathrm{the}\:\mathrm{minimum}\right)\:\mathrm{using}\:\mathrm{backprobagation}? \\ $$$$ \\ $$$$\alpha\left({x}_{{i}} ,{y}_{{i}} ,{h}_{{i}} \right)=\left({h}_{{i}} −{x}_{{i}} \right)^{\mathrm{2}} +{y}_{{i}} ^{\mathrm{2}} \\ $$$$\beta\left({y}_{{i}} ,{h}_{{i}} \right)={y}_{{i}} {h}_{{i}} ^{\mathrm{2}} −\mathrm{2}{uy}_{{i}} {h}_{{i}} \\ $$$$\gamma\left({h}_{{i}} \right)={h}_{{i}} ^{\mathrm{4}} −\mathrm{4}{uh}_{{i}} ^{\mathrm{3}} +\mathrm{4}{u}^{\mathrm{2}} {h}_{{i}} ^{\mathrm{2}} \\ $$$$\mathrm{Cost}=\underset{{i}=\mathrm{0}} {\overset{{m}} {\sum}}\left(\mathrm{c}\alpha\left({x}_{{i}} ,{y}_{{i}} ,{h}_{{i}} \right)−\mathrm{2}{c}^{\mathrm{2}} \beta\left({y}_{{i}} ,{h}_{{i}} \right)+{c}^{\mathrm{3}} \gamma\left({h}_{{i}} \right)\right) \\ $$$$\mathrm{and}\:\mathrm{how}? \\ $$

Question Number 192969    Answers: 2   Comments: 1

Question Number 192966    Answers: 1   Comments: 0

Question Number 192960    Answers: 0   Comments: 0

$$ \\ $$

  Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com