Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 279

Question Number 193924    Answers: 1   Comments: 2

question about tinkutara how can an answer be placed in a box.

$$\:\:\underline{\mathrm{question}\:\mathrm{about}\:\mathrm{tinkutara}} \\ $$$$\:\:\mathrm{how}\:\mathrm{can}\:\mathrm{an}\:\mathrm{answer}\:\mathrm{be}\:\mathrm{placed}\:\: \\ $$$$\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{box}. \\ $$

Question Number 193922    Answers: 4   Comments: 0

Question Number 193921    Answers: 0   Comments: 0

Show that the kernel of a group homomorhism θ : G → H is a normal subgroup. Hint: Check the existence of the combination g^(−1) kg in the kernel.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{kernel}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group}\:\mathrm{homomorhism} \\ $$$$\theta\::\:\mathrm{G}\:\rightarrow\:\mathrm{H}\:\mathrm{is}\:\mathrm{a}\:\mathrm{normal}\:\mathrm{subgroup}. \\ $$$$\mathrm{Hint}:\:\mathrm{Check}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of}\:\mathrm{the}\:\mathrm{combination} \\ $$$$\mathrm{g}^{−\mathrm{1}} \mathrm{kg}\:\mathrm{in}\:\mathrm{the}\:\mathrm{kernel}. \\ $$

Question Number 193918    Answers: 0   Comments: 0

Question Number 193908    Answers: 2   Comments: 0

Question Number 193906    Answers: 1   Comments: 0

Question Number 193896    Answers: 0   Comments: 0

Ques. 12 If Y = {0, 1, 2, 3, 4} is transversal for 5Z in (Z, +). Show whether or not Y is a subgroup of 5Z subgroup under addition of integers modulo of 5

$$\mathrm{Ques}.\:\mathrm{12} \\ $$$$\mathrm{If}\:\mathrm{Y}\:=\:\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right\}\:\mathrm{is}\:\mathrm{transversal}\:\mathrm{for}\:\mathrm{5}\mathbb{Z} \\ $$$$\mathrm{in}\:\left(\mathbb{Z},\:+\right).\:\mathrm{Show}\:\mathrm{whether}\:\mathrm{or}\:\mathrm{not}\:\mathrm{Y}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{subgroup}\:\mathrm{of}\:\mathrm{5}\mathbb{Z}\: \\ $$$$ \\ $$$$\mathrm{subgroup}\:\mathrm{under}\:\mathrm{addition}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{modulo} \\ $$$$\mathrm{of}\:\mathrm{5} \\ $$

Question Number 193893    Answers: 1   Comments: 0

Ques. 11 Let {H_α } ∈ Ω be a family of subgroup of a group G then prove that ∩_(α=Ω) H_α is also a subgroup Ques. 12 Using GAP, find the elements A, B and C in D_5 such that AB = BC but A ≠ C.

$$\mathrm{Ques}.\:\mathrm{11} \\ $$$$\:\:\:\:\:\mathrm{Let}\:\left\{\mathrm{H}_{\alpha} \right\}\:\in\:\Omega\:\mathrm{be}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{subgroup}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{G}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\underset{\alpha=\Omega} {\cap}\mathrm{H}_{\alpha} \:\mathrm{is}\:\mathrm{also}\:\mathrm{a} \\ $$$$\mathrm{subgroup} \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{12}\: \\ $$$$\:\:\:\:\:\mathrm{Using}\:\mathrm{GAP},\:\mathrm{find}\:\mathrm{the}\:\mathrm{elements}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\: \\ $$$$\mathrm{C}\:\mathrm{in}\:\mathrm{D}_{\mathrm{5}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{AB}\:=\:\mathrm{BC}\:\mathrm{but}\:\mathrm{A}\:\neq\:\mathrm{C}. \\ $$

Question Number 193892    Answers: 2   Comments: 0

Ques. Find the number of integers in the set S={1,2,3,...,60} which are not divisible by 2 nor by 3 nor by 5. Hello

$$\mathrm{Ques}. \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{in}\:\mathrm{the}\:\mathrm{set} \\ $$$$\mathrm{S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{60}\right\}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{2}\:\mathrm{nor}\:\mathrm{by}\:\mathrm{3}\:\mathrm{nor}\:\mathrm{by}\:\mathrm{5}. \\ $$$$ \\ $$$$\mathrm{Hello} \\ $$

Question Number 193886    Answers: 2   Comments: 0

Question Number 193883    Answers: 1   Comments: 0

If a 9000kg water flows in a minute through a pipe of cross sectional area 0.3m², what is the speed of water in the pipe?

$$ \\ $$If a 9000kg water flows in a minute through a pipe of cross sectional area 0.3m², what is the speed of water in the pipe?

Question Number 193880    Answers: 1   Comments: 0

Question Number 193875    Answers: 2   Comments: 0

a,b,c,d,e,f, are + real numbers prove: (a/(b+c))+(b/(c+d))+(c/(d+e))+(d/(e+f))+(e/(f+a))+(f/(a+b))≥3

$${a},{b},{c},{d},{e},{f},\:{are}\:+\:{real}\:{numbers} \\ $$$${prove}: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{d}}+\frac{{c}}{{d}+{e}}+\frac{{d}}{{e}+{f}}+\frac{{e}}{{f}+{a}}+\frac{{f}}{{a}+{b}}\geqslant\mathrm{3} \\ $$

Question Number 193874    Answers: 1   Comments: 0

Question Number 193871    Answers: 1   Comments: 1

Ques. 8 Find the signum (sign or sgn) of the permutation θ=(12345678). Hint : for any permutation β, take sgn β = {_(−1 if β is odd) ^(1 if β is even) Ques. 9 Prove that ∣S_n ∣ = n!. Ques. 10 Provd that for b∈S_n , sgn b = sgn b^(−1) .

$$\mathrm{Ques}.\:\mathrm{8}\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{signum}\:\left(\mathrm{sign}\:\mathrm{or}\:\mathrm{sgn}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{permutation}\:\theta=\left(\mathrm{12345678}\right). \\ $$$$\mathrm{Hint}\::\:\mathrm{for}\:\mathrm{any}\:\mathrm{permutation}\:\beta,\:\mathrm{take} \\ $$$$\mathrm{sgn}\:\beta\:=\:\left\{_{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{odd}} ^{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{even}} \right. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{9} \\ $$$$\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mid\mathrm{S}_{\mathrm{n}} \mid\:=\:\mathrm{n}!. \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\mathrm{Provd}\:\mathrm{that}\:\mathrm{for}\:\mathrm{b}\in\mathrm{S}_{\mathrm{n}} ,\:\mathrm{sgn}\:\mathrm{b}\:=\:\mathrm{sgn}\:\mathrm{b}^{−\mathrm{1}} \:. \\ $$

Question Number 193866    Answers: 1   Comments: 0

prove Σ_(i=1) ^(+∞) (1/n^i )=(1/(n−1)) n∈N^∗ and if n>0∧ n∈R is it right?

$${prove} \\ $$$$\:\:\underset{{i}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{i}} }=\frac{\mathrm{1}}{{n}−\mathrm{1}}\:\:\:\:\:\:{n}\in\mathbb{N}^{\ast} \\ $$$${and}\:{if}\:{n}>\mathrm{0}\wedge\:{n}\in\mathbb{R} \\ $$$${is}\:{it}\:{right}? \\ $$

Question Number 193864    Answers: 1   Comments: 0

Question Number 193863    Answers: 2   Comments: 0

lim_(x→0) ((1−(1/2)x^2 −cos ((x/(1−x^2 ))))/x^4 ) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} −\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)}{\mathrm{x}^{\mathrm{4}} }\:=? \\ $$

Question Number 193853    Answers: 0   Comments: 0

Let n & k be positive integers and let S be a set of n points in The plane such that : For any point P of S there are at least K points of S Equidistant from p Prove that k<(1/2)+(√(2n))

$$ \\ $$$$\boldsymbol{{Let}}\:\boldsymbol{{n}}\:\&\:\boldsymbol{{k}}\:\boldsymbol{{be}}\:\boldsymbol{{positive}}\:\boldsymbol{{integers}}\:\boldsymbol{{and}}\:\boldsymbol{{let}} \\ $$$$\boldsymbol{{S}}\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{set}}\:\boldsymbol{{of}}\:\boldsymbol{{n}}\:\boldsymbol{{points}}\:\boldsymbol{{in}}\:\boldsymbol{{The}}\:\boldsymbol{{plane}}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:: \\ $$$$\boldsymbol{{For}}\:\boldsymbol{{any}}\:\boldsymbol{{point}}\:\boldsymbol{{P}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{there}}\:\boldsymbol{{are}}\:\boldsymbol{{at}}\:\boldsymbol{{least}}\:\boldsymbol{{K}}\:\boldsymbol{{points}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{Equidistant}}\:\boldsymbol{{from}}\:\boldsymbol{{p}} \\ $$$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\:\boldsymbol{{k}}<\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\mathrm{2}\boldsymbol{{n}}} \\ $$

Question Number 193852    Answers: 3   Comments: 0

Question Number 193848    Answers: 2   Comments: 0

Question Number 193847    Answers: 1   Comments: 0

Question Number 193835    Answers: 2   Comments: 1

Question Number 193821    Answers: 0   Comments: 1

Question Number 193819    Answers: 1   Comments: 0

lim_(x→0) cos ((((Π/3)+x)/x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\:\left(\frac{\frac{\Pi}{\mathrm{3}}+{x}}{{x}}\right) \\ $$

Question Number 193809    Answers: 0   Comments: 0

A(-1, 2), B(3, 5) and C(4, 8) are the vertices of triangle ABC. Forces whose magnitudes are 5N and 3√10N act along (AB) ⃗ and (CB) ⃗ respectively. Find the direction of the resultant of the forces.

A(-1, 2), B(3, 5) and C(4, 8) are the vertices of triangle ABC. Forces whose magnitudes are 5N and 3√10N act along (AB) ⃗ and (CB) ⃗ respectively. Find the direction of the resultant of the forces.

  Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com